DISPATCHES ’///:72\\\”:3

Design Integration and Synthesis C
Platform to Advance Tightly MODERNIZATION

Coupled Hybrid Energy Systems LABORATORY
ORI,

Beyond Price Taker: Optimizing Integrated Energy
Systems Considering Market/Grid Interactions

Alexander W. Dowling, Ph.D.

IDAES

Institute for the Design of
Advanced Energy Systems

Associate Professor, Chemical & Biomolecular Engineering
University of Notre Dame

With contributions from: Xinhe Chen (UND), Daniel Laky (UND), Radhakrishna Gooty (NETL), Tony Burgard
(NETL), John Siirola (SNL), J. Kyle Skolfield (SNL), Darice Guittet (NREL), Bernard Knueven (NREL)

NATIONAL = Sandia Carnegie o UNIVERSITY OF ]
N TECHNOLOGY /\lﬂ National Mellon WestViginiaUniversity, NOTRE DAME Ge?rregclﬁ @
TLJASORATORY  BERKELEY LAB Laboratories ~ University ° i

::\1\\ 'I U-S' DEPARTMENT

P VENT O
V7 A
Iy == \o\
=1 =i
2 3]/
RSO 4
R CATES Uhg




Evolving Grid Increasingly Requires Flexibility

Data for Electric Reliability Council of Texas (ERCOT) ISO

ERCOT Generation Mix - March 2023
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Integrated Energy Systems (IES) Provide Dynamic Flexibility

; : ""ﬂ&f‘.{ 5&?{;3“5 (" conc. Solar Wind PV Solar MUItlple
Multiple inputs 5% % f e E@ outputs and
and A Nk & markets:
technologies: ("~ Gas Turbine ) | ower
Combined Cycle o eneraton o
- Dﬂ T = _ Electricity
Nuclear 20 I Energy “Energy. Energy Storage
apture . .
Gas turbine ,, [ caml. O or ) Aok ey’ X — Ancillary Services
Fossil fuels $ o Fal Ve O 5 g |[ e 1 @ Heating/Cooling
— E i ¥ Chemicals
(w/ carbon capture) —’ ! Energy Storage i -
SOlar .{ Chemical Process EIFe‘c'g'oclg'er )i Co:sumérs
. "\ + (O, Utilization H, ﬁ%:-j’ !
Wind Enhanced Oil . i QJ
Batteries | feemeye | (Twms N o
PEM electrolyzer
Advantages: Challenge:
Proyl_de operation flexibility | How to co-optimize IES design
Facilitate Integration of multiple energy sources and operation considering
Reduce grid operation costs dynamic market interactions?
Increases grid reliability and resiliency
IDAES 3

Riancec Eneroy Systorns Figure adapted from: Arent, Douglas J., et al. "Multi-input, multi-output hybrid energy systems.” Joule 5.1 (2021): 47-58.



Presentation Outline

How to co-optimize IES design and operation considering dynamic markets

& SOFC

_ B —fuel®gp®

Oo 'f-l
BgP CO, + HO0—» @

Price Taker
Solid oxide fuel cell IESs that co-produce H, and electricity

‘@

Beyond Price Taker
Nuclear and electrolyzer IESs that co-produce H, and electricity

Wind and electrolyzer IESs that co-produce H, and electricity
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Compare Solid Oxide Cells (Emerging Technology) with Legacy
Technology (NGCC) —
Combined Cycle (NGOO)

g Analyze the V|ab|l|ty Of SOFCS Power only
against legacy technology .
(NGCCs)

Standalone Solid
Oxide Fuel Cell (SOFC)
Power only

Which generators/technologies should be retired?

Which emerging technologies are worth
research/scale-up investment?
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Evaluate Production of Alternative Fuels

Standalone Natural Gas
Combined Cycle (NGCC)

* Analyze the V|ab|l|ty Of SOFCS Power only
against legacy technology .
(NGCCs)

 Evaluate the viability of Stamdatons Sofd
alternative fuel production Oxide Pusi Goll (SOFC)

(e.g., Hydrogen from SOEC)

Standalone Solid Oxide
Electrolyzer Cell (SOEC)

Which technologies should produce hydrogen?

What price of hydrogen is economical?
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Single Product Systems Integrated Systems

Evaluate Coproduction _ DU
Standalone Natural Gas NGCC + SOEC o)
. .y- Combined Cycle (NGCC i o]

- Analyze the viability of SOFCs o ewaronly | Power Hvdrogen, Coproduction 3 Z
against legacy technology S = | L8385
(NGCCs) 2 50

< Q
o
f.?
 Evaluate the viability of  Standalone Solid
: - ide Fuel Cell (SOF
alternative fuel production M e only

(e.g., hydrogen from SOEC)

- Evaluate integrated energy
systems (IESs)

« Coproduction:
. Power (NGCC Which technologies should be coupled to

« Hydrogen (SC comprise an integrated energy system?
* Reversible sy{

SOFC + SOEC
Power, Hydrogen, Coproduction

Standalone Solid Oxide
Electrolyzer Cell (SOEC)

R
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Q Which emerging technologies are worth
|DA—ES research/scale-up investment?
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Grid-Wide Decisions for Locational Markets Require a Streamlined

Evaluation Framework

Which technologies should
produce hydrogen?

Which technologies should be
coupled to comprise an integrated
energy system?

Which generators/technologies
should be retired?

Which emerging technologies are
worth research/scale-up
Investment?

ccccccccccccccccccc

A '(I;rain & Analyze Surrogate Models
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Price Taker Model Considers Dynamic Prices

1001 — e sigra Objective options: NPV,  Annualized NPV,  Net Profit
0 Profit expression at each time period (e.g., hour)
TT 1 ﬁ e ﬂ-g ue var
= ” . "= Ty Pt — Tgff I(Pt) — " (pt)
= T
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0 Py, < Py < Py, vte T
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Yt < Zbuild VieT d
Locational marginal price (LMP) changes t t_;ﬂwj =~ >0y
dynamically, where traditional low-fidelity D vi=u {t|t> 7"} Ve Yot — v — des 1)
modeling only uses a static levelized cost ol
of electricity (LCOE) Ramping Constraints
(Pt — P—1)
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61 Markets Used to Evaluate Emerging Technologies

Historical Historical Princeton NREL NETL
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https://www.ferc.gov/electric-power-markets

Emerging Coproduction Technologies Make a Profit in Most Scenarios

Percentage of scenarios that make profit at each hydrogen selling price ($1.00 kg to $3.00 kg)

Process Concept | 1.008-kg=! | 1.508-kg~! | 2.008-kg~! | 2.508-kg~! | 3.008-kg~!
NGCC 13% 13% 13% 13% 13%
SOFC 54% 54% 54% 54% 54%
NGCC + SOEC 8% 11% 16% 62% 0%
rSOC 54% 7% 97% 100% 100%
SOFC + SOEC 46% 79% 98% 100% 100%
SOEC 10% 49% 74% 7% 98%

Takeaway: At sufficient hydrogen price ($2.50+), even the existing thermal generation
technology with co-production (NGCC +SOEC) sees profit in over half of the market

scenarios.
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Price Taker Class Streamlines O

* Automatically populates LMP
(market data) in model

* Only need to specify costing
equations and choose operational
constraints for a representative
time period

* Easily automated/scriptable using
the IDAES ecosystem (Python,
open-source)

IDAES Documentation:
IDAES

A 'Ii;rain & Analyze Surrogate Models
a

a_P, (Ctuel + Cvariable)

m (Ctuel + Cvariable)

H-' Marginal Cost of H, $-kg'
a5 KT\

Modeling
effort lowered
from weeks to

hours

ntimal Operation Scheduling

B Curate Market Scenario Data

NETL (2035) PJM West with 100 $-tonne™' CO, Tax
28.6% [ r———
|| Natural Gas Price = $1.42.MMbtu |
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https://idaes-pse.readthedocs.io/en/main/reference guides/apps/grid integration/index.html
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https://idaes-pse.readthedocs.io/en/main/reference_guides/apps/grid_integration/index.html

Presentation Outline

How to co-optimize IES design and operation considering dynamic markets.
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Moving Beyond Price Taker
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Beyond Price Taker: Co-Production of Electricity and H,

Problem Statement
Electric Grid (RTS-GMLC)

Wind Farm
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(c) Conceptual Design

(d) Verify Results

Example Surrogates (Nuclear + PEM)
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Nuclear + PEM Case Study

Price Taker Surrogates Production Cost Model
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Renewables + PEM Case Study: Key Finding
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How to co-optimize IES design and operation considering dynamic markets
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Multiperiod Optimization (MO) of the Wind-Battery IES

c) MO(PCM
The market outcomes (LMP (c) ( )
and dispatch schedule) are \ 37 PRESCIENT
sent to the IES

MO (PCM, product cost
model) clears the market

(e) Electric Grid
<

(d) Market Outcomes S (b) Bids, (E.; m;)
800 E 3
= 100 —— LMP  ---- Power - = I —
= : 1600 = =
= 7O & & 2 —
E 50 i -400B -;- t :
P10 3 9 !
z > R gt
01 . -~ : : . ! O 0 El E2 E2
0 20 40 60 80 t t t
Time [hr] Energy Output [MWh]
Price Signal, 7,
Dispatch Schedule, p,
IES follows the dispatch Solve the stochastic bidding
commitment and gets paid wind Farm problem to generate time-
variant bids for the IES
Battery
Storage

IDAES (a) Wind-Battery IES 19
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Price-taker (PT) with Perfect Information and Uncertainty

Choose wind farm
‘303 WIND 1’in the
RTS-GMLC dataset

l

ﬁ/l ”7 PRESCIENT

303 WIND_1

i

Product Cost
Model (PCM) l

MP [$/MWh]

RTS-GMLC

Obtain the real- _” | -

time LMP price :: L L |
signals T 1T T

l

Solve the price-taker optimization

ddddddddddddddddddddd

Max

Net Present Values of IES Investments

s.t. Wind farm and battery operation constraints

Perfect Information Mode:

LMP signals are deterministic
Ryi = (ftyi+e) - pei- At
Where I = {0}, T ={0,1,..,8783}

R, ;: Total revenue at time t, scenario i.
¢ ;- LMP at time ¢, perfect information.

pei: |IES power output at time ¢,
scenario i.

e: Small incentive (0.001 $/MWh) to
avoid degeneracy.

At: Time step, hour.

Uncertainty Mode:

Rolling horizon stochastic
optimization and use historical prices
as scenarios.
Ry = (myi+e) - pei- At

Nonanticipativity constraints

Dei =Dy VEET]Vi'€NI
Where I ={0,..,9},T = {T{ UT,}
m¢;: LMP at time ¢ and scenario i.
T,: Stage 1 time set, {0,...,23}.
T,: Stage 2 time set, {24,...,71}.
After optimization is solved:

Ry = Z ,ﬁt'Pt,o'At
ter]

20



P /PY [MW/MW]

PT Is Overly Optimistic on IES Economic Values

(a) NPV, PT, PI

(b) NPV, PT, U10

(e) NPV, PT, U10

Institute for the ign of
Adh

Design
vvvvv d Energy Systems

1.0
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0.2

10 0. 4 6 8 10

(c) NPV, MO

All NPV values are negative in both PT and
MO (overbuilt grid).

Electricity revenue (ER), [M$]
A Case 1 (PT, PI, smallest battery): 24.2
® Case 2 (PT, PI, largest battery): 100.4
A Case 3 (PT, U10, smallest battery): 21.2
@ Case 4 (PT, U10, largest battery):65.9

A Case 5 (MO, smallest battery): 25.5
® Case 6 (MO, largest battery): 36.0

* PT overestimates the NPV and ER.
* NPV and ER and more sensitive to the

maximum battery power P? (PY: maximum
wind power, parameter)

Battery CapaCity [hr] NPV: Net present value [M$]

ER: Annual electricity revenue [M$]
Pl: Perfect information
U10: Uncertainty with 10 scenarios 21



Take Away Messages

o @ SOFC
Optimization is a powerful tool to analyze D —fuel®p®
Integrated energy systems (IESs) in dynamic :3..-@”0*9

energy markets.
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Price taker assumes IES decisions do not
Impact market prices.

« Surrogates and PriceTaker class in
IDAES makes this analysis fast and easy.

& @ | prices

A

‘1

O
€ @—bH Q')@CD

-T SOEC

Nuclear

Need to go beyond price taker (with IDEAS)!
* Price taker is often overly optimistic.
« |ES decisions shift market prices.
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