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Evolving Grid Increasingly Requires Flexibility
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Data for Electric Reliability Council of Texas (ERCOT) ISO

Source: https://www.ercot.com/gridinfo/generation 
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Integrated Energy Systems (IES) Provide Dynamic Flexibility

Multiple inputs 

and 

technologies:

Nuclear

Gas turbine

Fossil fuels 

(w/ carbon capture)

Solar 

Wind

Batteries

PEM electrolyzer

Multiple 

outputs and 

markets:

Electricity

Energy Storage

Ancillary Services

Heating/Cooling

Chemicals

Figure adapted from: Arent, Douglas J., et al. "Multi-input, multi-output hybrid energy systems." Joule 5.1 (2021): 47-58.

Advantages:

Provide operation flexibility

Facilitate integration of multiple energy sources

Reduce grid operation costs

Increases grid reliability and resiliency

Challenge:

How to co-optimize IES design 

and operation considering 

dynamic market interactions?
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Presentation Outline
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How to co-optimize IES design and operation considering dynamic markets

Price Taker

Solid oxide fuel cell IESs that co-produce H2 and electricity

Beyond Price Taker

Nuclear and electrolyzer IESs that co-produce H2 and electricity

Wind and electrolyzer IESs that co-produce H2 and electricity

Wind and battery IESs



Compare Solid Oxide Cells (Emerging Technology) with Legacy 
Technology (NGCC)

• Analyze the viability of SOFCs 
against legacy technology 
(NGCCs)

5

Which generators/technologies should be retired?

Which emerging technologies are worth 

research/scale-up investment?



Evaluate Production of Alternative Fuels

• Analyze the viability of SOFCs 
against legacy technology 
(NGCCs)

• Evaluate the viability of 
alternative fuel production 
(e.g., Hydrogen from SOEC)

6

Which technologies should produce hydrogen?

What price of hydrogen is economical?



Evaluate Coproduction

• Analyze the viability of SOFCs 
against legacy technology 
(NGCCs)

• Evaluate the viability of 
alternative fuel production 
(e.g., hydrogen from SOEC)

• Evaluate integrated energy 
systems (IESs)
• Coproduction:

• Power (NGCC, SOFC)

• Hydrogen (SOEC)

• Reversible system (rSOC)

7

Which technologies should be coupled to 

comprise an integrated energy system?

Which emerging technologies are worth 

research/scale-up investment?



Grid-Wide Decisions for Locational Markets Require a Streamlined 
Evaluation Framework

Which technologies should 
produce hydrogen?

Which technologies should be 
coupled to comprise an integrated 
energy system?

Which generators/technologies 
should be retired?

Which emerging technologies are 
worth research/scale-up 
investment?

8



Price Taker Model Considers Dynamic Prices
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Locational marginal price (LMP) changes 

dynamically, where traditional low-fidelity 

modeling only uses a static levelized cost 

of electricity (LCOE)

Profit expression at each time period (e.g., hour)

Capacity Constraints

Ramping Constraints

Startup and Shutdown Constraints

Objective options: NPV,      Annualized NPV,      Net Profit 



61 Markets Used to Evaluate Emerging Technologies
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Figure from FERC (https://www.ferc.gov/electric-power-markets)

• 15 historical markets (2019)

• 15 “current” markets (2022)

• 16 forecasted scenarios (2030)
• “Princeton”

• 10 forecasted scenarios (2035) 
• “NREL”

• 5 forecasted scenarios (2035)
• “NETL”

Multimodal 

Markets

Regional Market Association

https://www.ferc.gov/electric-power-markets


Emerging Coproduction Technologies Make a Profit in Most Scenarios

Takeaway: At sufficient hydrogen price ($2.50+), even the existing thermal generation 
technology with co-production (NGCC +SOEC) sees profit in over half of the market 
scenarios.

11

Percentage of scenarios that make profit at each hydrogen selling price ($1.00 kg-1 to $3.00 kg-1)



Price Taker Class Streamlines Optimal Operation Scheduling

• Automatically populates LMP 
(market data) in model

• Only need to specify costing 
equations and choose operational 
constraints for a representative 
time period

• Easily automated/scriptable using 
the IDAES ecosystem (Python, 
open-source)

12

Modeling 

effort lowered 

from weeks to 

hours

IDAES Documentation:

https://idaes-pse.readthedocs.io/en/main/reference_guides/apps/grid_integration/index.html 

https://idaes-pse.readthedocs.io/en/main/reference_guides/apps/grid_integration/index.html


Presentation Outline
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How to co-optimize IES design and operation considering dynamic markets.

Price Taker

Solid oxide fuel cell IESs that co-produce H2 and electricity

Beyond Price Taker

Nuclear and electrolyzer IESs that co-produce H2 and electricity

Wind and electrolyzer IESs that co-produce H2 and electricity

Wind and battery IESs



Moving Beyond Price Taker
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Beyond Price Taker: Co-Production of Electricity and H2
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Problem Statement Overall Approach

Example Surrogates (Nuclear + PEM)

Chen et al, (2025) in preparation



Nuclear + PEM Case Study
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Price Taker

(Day-Ahead + Real-Time Markets)
Surrogates

Production Cost Model

(Ground Truth)

H2 Break Even ~ $1.2 kg-1 ~ $1.6 kg-1 ~ $1.7 kg-1

Key Finding: Price taker is overly optimistic about IES economics

(H2 break even price, payback period)



Renewables + PEM Case Study: Key Finding

17Key Finding: IES changes price (LMP) distribution 



Presentation Outline
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How to co-optimize IES design and operation considering dynamic markets

Price Taker

Solid oxide fuel cell IESs that co-produce H2 and electricity

Beyond Price Taker

Nuclear and electrolyzer IESs that co-produce H2 and electricity

Wind and electrolyzer IESs that co-produce H2 and electricity

Wind and battery IESs



Multiperiod Optimization (MO) of the Wind-Battery IES

𝑝𝑡,𝑖
𝑤

Wind Farm

Battery 
Storage

𝑝𝑡,𝑖
𝑐

𝑝𝑡,𝑖
𝑑𝑝𝑡,𝑖

𝑠

(c) MO(PCM)

𝑝𝑡,𝑖

(b) Bids, (𝑬𝒕,𝒊, 𝝅𝒕,𝒊)

Price Signal, ෝ𝝅𝒕

Dispatch Schedule, ෝ𝒑𝒕

303_WIND_1

(a) Wind-Battery IES

(e) Electric Grid
(d) Market Outcomes

Solve the stochastic bidding 

problem to generate time-

variant bids for the IES

MO (PCM, product cost 

model) clears the market

The market outcomes (LMP 

and dispatch schedule) are 

sent to the IES

IES follows the dispatch 

commitment and gets paid

19



Price-taker (PT) with Perfect Information and Uncertainty

Choose wind farm 

‘303_W N _1’ in t e 

RTS-GMLC dataset

Obtain the real-

time LMP price 

signals 

Solve the price-taker optimization

RTS-GMLC

303_WIND_1

Max    Net Present Values of IES Investments

Product Cost 

Model (PCM)

𝑠. 𝑡. Wind farm and battery operation constraints

Perfect Information Mode:

LMP signals are deterministic

𝑅𝑡,𝑖 =  ( ො𝜋𝑡,𝑖+𝜀) ∙ 𝑝𝑡,𝑖 ∙ ∆𝑡

Where 𝐼 = 0 , 𝑇 = 0, 1, . . , 8783
𝑅𝑡,𝑖: Total revenue at time 𝑡, scenario 𝑖.

ො𝜋𝑡,𝑖: LMP at time 𝑡, perfect information.

𝑝𝑡,𝑖: IES power output at time 𝑡, 

scenario 𝑖.
𝜀: Small incentive (0.001 $/MWh) to 

avoid degeneracy. 

∆𝑡: Time step, hour. 

Uncertainty Mode:

Rolling horizon stochastic 

optimization and use historical prices 

as scenarios.

𝑅𝑡,𝑖 =  (𝜋𝑡,𝑖+𝜀) ∙ 𝑝𝑡,𝑖 ∙ ∆𝑡

Nonanticipativity constraints

𝑝𝑡,𝑖 = 𝑝𝑡,𝑖′  ∀𝑡 ∈ 𝑇1
′, ∀𝑖′ ∈ 𝐼\i

Where 𝐼 = 0, . . , 9 , 𝑇 = 𝑇1
′ ∪ 𝑇2

′

𝜋𝑡,𝑖: LMP at time 𝑡 and scenario i.

𝑇1
′:  tage 1 time set, {0,…,23}.

𝑇2
′:  tage 2 time set, {24,…,71}.

After optimization is solved:

෠𝑅𝑑 = ෍
𝑡∈𝑇1

′
ො𝜋𝑡 ∙ 𝑝𝑡,0 ∙ ∆𝑡

20



PT is Overly Optimistic on IES Economic Values
ഥ 𝐏

𝐛
/

ഥ 𝐏
𝐰
 [

M
W

/
M

W
]

Battery Capacity [hr]

(a) NPV, PT, PI

(d) ER, PT, PI

(b) NPV, PT, U10 (c) NPV, MO

(e) NPV, PT, U10 (f) ER, MO

NPV: Net present value [M$]

ER: Annual electricity revenue [M$]

PI: Perfect information

U10: Uncertainty with 10 scenarios

• All NPV values are negative in both PT and 

MO (overbuilt grid).

• Electricity revenue (ER), [M$] 

     Case 1 (PT, PI, smallest battery): 24.2

     Case 2 (PT, PI, largest battery): 100.4

     Case 3 (PT, U10, smallest battery): 21.2

     Case 4 (PT, U10, largest battery):65.9

     Case 5 (MO, smallest battery): 25.5

     Case 6 (MO, largest battery): 36.0

• PT overestimates the NPV and ER.

• NPV and ER and more sensitive to the 

maximum battery power ത𝑃𝑏 ( ത𝑃𝑤: maximum 

wind power, parameter)
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Take Away Messages

Optimization is a powerful tool to analyze 

integrated energy systems (IESs) in dynamic 

energy markets.

Price taker assumes IES decisions do not 

impact market prices.

• Surrogates and PriceTaker class in 

IDAES makes this analysis fast and easy.

Need to go beyond price taker (with IDEAS)!

• Price taker is often overly optimistic.

• IES decisions shift market prices.

22
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