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Executive Summary 
Analysis of advanced controls and novel system types is often not directly feasible in building 
energy simulation tools. Various techniques extend building energy simulation tool capabilities 
to allow the use of user-defined scripts and programs, but these approaches have limitations. The 
EnergyPlus™ Python plugin offers users new flexibility to use EnergyPlus to call an external 
Python module at specific points in the simulation, as well as to use Python to call EnergyPlus 
functionality through an application programming interface (API). This paper presents four case 
studies leveraging the EnergyPlus Python plugin to facilitate analysis of advanced controls and 
system types. The use of the Python plugin offers greater modularity and flexibility relative to 
previous approaches, is less error prone, and is simpler for users to adopt. 

The Python plugin allows EnergyPlus to be used in a more flexible manner and to accommodate 
the expanding realm of energy modeling applications. 
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1 Introduction 
The development of building energy simulation programs began in the 1960s. Most notably, 
DOE-2 (Winkelmann et al. 1993) and BLAST (Building Systems Laboratory 1999) were 
developed independently utilizing different approaches. However, in 1999, a group of 
researchers came together to develop a unified building energy simulation program named 
EnergyPlus (Crawley et al. 2001). At the time, the program represented a major advancement in 
the development of building energy simulation programs by coupling building heat load 
calculations with mechanical systems simulation capabilities. The result is a fully coupled energy 
simulation of the building structure and all mechanical and heating, ventilating, and air-
conditioning (HVAC) equipment. As of this writing, updated versions of EnergyPlus are 
regularly provided, incorporating new features, bug fixes, and general software enhancements. 

As EnergyPlus matured and gained adoption, users began requesting the ability to implement 
user-designed control algorithms, analogous to those deployed in real building control systems 
for energy management. To fill this need, researchers developed the Energy Management System 
(EMS). This new feature was originally conceived with core runtime language functionality 
developed but not exposed to public users through EnergyPlus’ input structures (Ellis, Torcellini, 
and Crawley 2007). The first functional version was released to the public in 2009 in EnergyPlus 
Version 4.0 (Lawrie 2009; Griffith 2023). 

EMS capabilities were developed as a way for users to get data during the simulation from 
“sensors,” and then, using IF-ELSE-THEN control logic, implement control algorithms to 
change the state of controllable variables within the program, referred to as “actuators.” This 
capability opened the door for users to write their own control logic to make decisions in real 
time during the simulation to achieve desired outcomes. In the initial implementation, users had 
the ability to customize relatively simple programmable logic, such as manipulating thermostat 
set points or equipment and system availability schedules. As EnergyPlus continued to mature, 
additional sensors and actuators continued to be added, unlocking new opportunities for users to 
customize control of the simulation. 

One limitation of this initial implementation of EMS was that users were required to program the 
control logic directly into the input file in a rudimentary programming language, referred to as 
EnergyPlus Runtime Language (ERL). This language supported the following capabilities: 
“subroutines,” which are a way for users to encapsulate smaller blocks of code; IF-ELSE-THEN 
logic; the naming of variables; and CALL statements to call other ERL subroutines and 
programs. The programs had little debugging support other than large flat text output files that 
output records for each line of ERL code that was executed. Despite these difficulties, users were 
still able to implement novel control algorithms to serve various purposes. Recent studies include 
Sardoueinasab, Yin, and O’Neal (2018), which used EMS to study the impact of primary air 
leakage from parallel fan-powered terminal air units, and Goia, Chaudhary, and Fantucci (2018), 
which used EMS to study the effects of thermal hysteresis in phase change materials. 

Another advancement that allows users to interact with and control EnergyPlus simulations was 
the development of the Building Controls Virtual Test Bed (BCVTB) (Wetter 2011), which was 
intended to connect various simulation programs (including EnergyPlus, Modelica, Radiance, 
and MATLAB/Simulink) together with a common data exchange framework. During the 
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development of BCVTB, an external interface for EnergyPlus was developed to allow for 
interaction with EnergyPlus data in real time during the simulation. For example, the BCVTB 
allows one to simulate a building envelope and loads in EnergyPlus and an HVAC and control 
system in Modelica, which can provide greater flexibility. The program Ptolemy II (University 
of California 2023) was used as the program orchestrator, meaning that it oversaw the 
marshalling of data between the various simulation programs. 

Building on the work enabled by the BCVTB, MLE+ was developed to extend the capabilities of 
EnergyPlus by leveraging the previously mentioned external interface to integrate with 
MATLAB and Simulink (Bernal et al. 2012). MLE+ seeks to facilitate optimization, hardware-
in-the-loop analyses, and modeling of advanced control strategies in an EnergyPlus building 
model, including model predictive control. Sophisticated controls strategies such as model 
predictive control cannot be readily implemented in EMS because of the rudimentary 
programming capabilities of ERL. MLE+ offers full access to MATLAB’s code generation and 
debugging capabilities and offers users the ability to externally modify a control scheme without 
changing the EnergyPlus input file. For example, MLE+ has been used to implement a model 
predictive control approach for electric radiant floor heating systems in EnergyPlus to minimize 
system electrical demand, with MLE+ feeding the optimum power levels to EnergyPlus at each 
time step (Bernal et al. 2012).  

Co-simulation, in which multiple modeling tools are used to simulate the performance of a 
coupled system, is an advanced energy modeling use case (Taveres-Cachat et al. 2021). 
Examples of systems that can benefit from a co-simulation approach include advanced building 
facades and daylighting analyses, because of the intersecting physical domains involved in their 
operation, and the existence of specialized tools focused on modeling their performance, separate 
from whole-building energy simulation. Co-simulation with a whole-building energy modeling 
tool offers the opportunity to analyze the performance of these systems in a more nuanced and 
rigorous way. Co-simulation can also facilitate analysis of advanced control strategies and 
integration of external data sources into a model. In this way, co-simulation can enhance the 
flexibility of energy modeling tools through the integration of external modules for modeling 
particular systems (Taveres-Cachat et al. 2021). 

Co-simulation generally involves the exchange of data between tools at each simulation time 
step, or possibly other frequencies. Because many energy simulation tools, including 
EnergyPlus, were originally designed to be all-encompassing and used independently of other 
tools, data exchange between whole-building energy simulation tools and customized models of 
subsystems is often challenging (Taveres-Cachat et al. 2021). The EnergyPlus API and Python 
plugin address this challenge by facilitating data exchange between EnergyPlus and external 
tools. 
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2 Development of the Python Plugin 
Since the original release of EnergyPlus decades ago, the tool has been utilized as a closed box, 
with the only “interface” being the user’s input file(s) and the set of output files generated by the 
simulation engine. While the simulation was running, it was expected to remain uninterrupted 
from start to end. Over the years, it became apparent that industry and researchers alike could 
benefit from additional “simulation time” runtime capabilities. One such capability was user-
defined functionality, where the previously described EMS feature was added to the simulation 
engine. This unlocked enormous capability, which has been adopted by users to provide custom 
control and custom physical simulation of novel components or configurations. One limitation of 
the EMS feature is that the logic and data must be entirely defined before the simulation is run. 
The “external interface” was later added to the simulation engine to provide connection with 
other tools. Unfortunately, the complexity of this configuration led to minimal adoption. 

With the release of EnergyPlus 9.3, two new ways to connect to EnergyPlus were deployed: a 
“plugin” approach and a “library” approach. Figure 1 depicts the possible connections. 

 
Figure 1. Flow diagram showing available EnergyPlus + Python interfaces; A and B represent 

workflow entry points for the “plugin” approach and “library” approach, respectively. 

To maintain a “traditional” simulation workflow, where EnergyPlus is the driving process, a 
Python interpreter was embedded inside EnergyPlus. In this “Python plugin” approach, the user 
writes custom Python code, and the workflow is initiated by providing a path to a Python file in 
the base EnergyPlus input file and asking EnergyPlus to run. In Figure 1, this is represented by 
Point A, where the process begins with EnergyPlus. In this workflow, the user’s code will be 
called automatically by EnergyPlus while it is running, and the frequency of the calls is 
dependent on which Python EMS function is overwritten in the user code. 

To enable more flexible workflows, the functionality within the EnergyPlus engine was exposed 
through a C application programming interface (API) with Python bindings. Users can leverage 
this interface by calling EnergyPlus as a “library.” In Figure 1, this is represented by Point B, 
where the process begins with a user’s Python interpreter. In this workflow, the user’s Python 
code will utilize the runtime API functions to connect to the simulation while it is running, and 
the frequency of the calls is dependent on which callback functions are used to register user 
code. Co-simulation with other simulation tools is enabled using these callback functions to 
synchronize the tool integration times. Communication with EnergyPlus can take place through 
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the raw API, or by wrapping the API with a Functional Mock-up Interface layer, which is what 
Spawn of EnergyPlus utilizes to co-simulate Modelica with EnergyPlus (Wetter et al. 2022). 
When running EnergyPlus as a library, a language like Python can be in control of the software 
stack, making it easier to install and communicate with dependencies. 

The Python plugin approach allows a traditional workflow, which is beneficial for long-term 
users of EnergyPlus, while the API allows diverse new workflows. Regardless of the entry point 
into the simulation, the Python code must be able to interact with the simulation. In Figure 1, 
Point 1 represents the EnergyPlus time integration loop stopping to make a call to user Python 
code. While inside Python, Point 2 represents the user code calling the EnergyPlus API functions 
for two primary purposes: 

• Property evaluation: The internal psychrometric, steam, and water property calculations 
can be utilized to perform user-defined physical calculations. 

• Data exchange: Sensor data from EnergyPlus (output variables and meters) can be read, 
and actuators can be written (control signals). 

Finally, Point 3 in Figure 1 represents Python returning to EnergyPlus, where the time 
integration will continue until the next Python calling point is reached. The existing EMS calling 
points are available for use by the Python plugin (DOE 2023a).  

Since the release of the new API and Python EMS, researchers and users have begun exploring 
the possibilities of connecting EnergyPlus to user-defined code, as well as outside data sources 
and simulation engines (NREL 2022b; Stripp, Turrin, and Bokel 2024). For example, these 
applications include: 

• Connecting EnergyPlus to weather data sources to allow for complex forecast-based 
control strategies. 

• Connecting EnergyPlus to hardware, treating EnergyPlus as a digital twin to evaluate 
control strategy options and control the actual building systems. 

• Connecting EnergyPlus to trained machine-learning algorithms to determine optimized 
control signals. 

• Using the API to connect EnergyPlus to other languages, such as Modelica, to perform 
more detailed analysis of parts of the simulation while allowing EnergyPlus to run the 
whole-building aspects of the simulation and get real-time feedback from interaction. 

The new API and plugin system are not adding any new actuators to the simulation. The 
actuators available in the simulation are carefully chosen to allow a user to modify control 
signals and operation, while not breaking the energy balance calculations being performed. There 
is much potential for new actuators to be added into the EnergyPlus code itself, and the 
development team continually receives requests for new actuators. The purpose of the API and 
plugin are to make using the existing sensors and actuators more flexible and powerful. By using 
generic actuators like schedule inputs, a user can leverage Python and countless libraries to 
manipulate the running simulation. 
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3 Case Studies 
This report presents four case studies describing applications of the EnergyPlus Python plugin. 
Each case study is meant to be an illustrative example of a way that the Python plugin could be 
used, rather than to draw meaningful conclusions from simulation results. The cases studies are 
all examples that would have been exceedingly difficult, if not impossible, to implement using 
traditional EMS. The case studies address different applications of the Python plugin, including 
enhancements to existing EnergyPlus capabilities, incorporation of equipment performance data, 
and modeling of systems for which component models are not available in EnergyPlus, and 
whose performance is described with complex equations. The use of the Python plugin also 
enhances the modularity of the modeling workflows, readily enabling future additions and 
refinements. 

3.1 Electric Vehicle Charging 
This case study presents an illustrative example of extending EnergyPlus capabilities with a 
Python model. The Python model is not described in detail, nor are any conclusions presented. 
Instead, we show how the Python plugin can be used to quickly add a model to EnergyPlus, 
without the time-consuming process of altering the EnergyPlus code base. 

3.1.1 Background 
When creating a building energy model, a user may wish to model an electrical or fuel load that 
consumes energy from a building’s infrastructure but does not contribute to the building thermal 
load. A building may contain a component that is external to the building envelope, but still 
contributes to a building’s utility bill, and correctly capturing a building’s utility costs could be a 
requirement for a building energy model. Some examples include outdoor living items (e.g., 
natural gas grill or fireplace, televisions, other electronics), outdoor pool pumps and heaters, and 
electric vehicles (EVs). EVs are becoming increasingly commonplace (International Energy 
Agency 2020), and managing the electricity needed to charge these vehicles is an area of interest 
(Gilleran et al. 2021; Muratori et al. 2019). EVs can place a significant electric load on a 
building, and modeling this EV load in conjunction with the rest of the building load helps 
inform how a building with an EV may impact the electric grid. 

The National Renewable Energy Laboratory has developed a Python model (Mishra et al. 2022) 
that includes the charging and discharging behavior of an EV as well as the electric vehicle 
supply equipment (EVSE) (i.e., the EV charging port). This model, dubbed the PyChargeModel, 
can be configured to generate multiple EV and EVSE agents that can interact with one another. 
The EnergyPlus Python plugin can be used to instantiate these EV/EVSE agents and model their 
charging behavior from the perspective of a building electric meter. For example, a single-family 
home EnergyPlus building model could be coupled with a PyChargeModel for a single charging 
port to capture how a home-based EV would not only impact that home’s electric bill, but also 
how that home’s electric load changed from the utility provider’s perspective. Similarly, an 
EnergyPlus office building model could be connected to multiple PyChargeModels to explore 
how adding multiple EV chargers to a commercial building would impact the building’s electric 
demand. 
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3.1.2 Approach 
To join an EnergyPlus model with the PyChargeModel, the built-in Exterior:FuelEquipment 
object is used. This object is meant to model an item exterior to the building load considerations 
to facilitate the reporting of all consuming devices behind a building’s utility meter. Here, a 
placeholder Exterior:FuelEquipment object is added to the EnergyPlus model. One of the 
PyChargeModel outputs is the power draw (in watts) from the charging port. This value is passed 
to EnergyPlus using an actuator on the schedule for the placeholder Exterior:FuelEquipment 
object. At the beginning of an EnergyPlus simulation, the PyChargeModel is initialized. As the 
EnergyPlus simulation runs, it tracks time and passes this time to the PyChargeModel. The 
PyChargeModel executes various EV charging events based on this time. At every EnergyPlus 
time step, the wattage output from the PyChargeModel is passed to EnergyPlus through the 
schedule actuator on the placeholder Exterior:FuelEquipment object. When the EnergyPlus 
simulation is complete, EnergyPlus processes the energy consumed by the placeholder 
Exterior:FuelEquipment object(s) as it would any other object, and this energy is included with 
the standard EnergyPlus report, such as annual electricity consumption or peak electricity 
demand. 

Figure 2 shows the data exchange between EnergyPlus and Python for EV modeling. 

 
Figure 2. Schematic diagram of EV Python plugin modeling workflow 

The PyChargeModel is an independent, dynamic model with its own EV charging objectives. A 
main reason to use the PyChargeModel instead of a predetermined charging schedule is that the 
model is “stand-alone”; i.e., it runs independently of the EnergyPlus simulations. In this 
example, the PyChargeModel was used to simulate the interruption of EV charging as a building 
demand response measure. Figure 3 shows sample EnergyPlus output with the EV charging 
model integrated into a building model via the Python plugin. The blue line in Figure 3 shows a 
week of EV charging in an uncontrolled scenario, and the orange line shows the EV charging 
power with EV charging being interrupted as a demand response measure. 
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Figure 3. Example EnergyPlus model outputs with Python plugin EV charging 

When EV charging is interrupted, the EV retains its current charge state and waits until charging 
is available again to resume. This type of dynamic EV modeling is made possible with the 
Python plugin. Traditional EnergyPlus EMS can be used to actuate the Exterior:FuelEquipment 
object schedules. However, co-simulation with the PyChargeModel, providing the EV charge 
state and power draw of the charger, is only possible with the Python plugin—specifically the 
connection with the dynamic model that resumes EV charging if it is disrupted. 

3.2 Refrigerated Case Modeling 
This case study presents an illustrative example of enhancing EnergyPlus’ capabilities with a 
gray box Python model. The gray box model is not described in detail, nor are any conclusions 
presented. Instead, we show how the Python plugin can be used to incorporate additional 
considerations, such as product temperature, into commercial refrigeration modeling using 
EnergyPlus. 

3.2.1 Background 
While EnergyPlus is a comprehensive whole-building energy simulation program, detailed 
simulation of certain building subsystems is outside of its native capabilities. One example of 
this is a refrigerated case. Although EnergyPlus does contain a refrigerated case model, it 
assumes a constant refrigerated case temperature. In most instances, this assumption is adequate; 
however, in this example, the dynamics of the refrigerated case (including the product inside the 
case) are of interest to the user. This application of the Python plugin seeks to enhance a native 
EnergyPlus capability. 

3.2.2 Approach 
Here, we used a gray box model written in Python that simulates refrigerated case temperature 
and product temperature. We used the EnergyPlus Python plugin to connect this gray box model 
to the native EnergyPlus refrigerated case. Section 18.2.3 of the EnergyPlus Engineering 
Reference (DOE 2023b) details how commercial refrigeration systems are modeled in 
EnergyPlus. In this instance, the gray box model is being used to determine two things: (1) the 
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temperature of the product inside the refrigerated case, and (2) the sensible and latent 
contribution of the refrigerated case to the thermal zone inside the EnergyPlus model. 

Product Temperature 
EnergyPlus does not encompass modeling of temperatures of the product inside the refrigerated 
case. Therefore, the gray box model simulates alongside the EnergyPlus model and extracts 
information from the EnergyPlus model (e.g., zone temperature) while running. The case credit 
gray box model described in the next section uses the product temperature as an input, so the 
product temperature affects upstream EnergyPlus calculations (e.g., the load on the HVAC 
system), as well as the zone conditions inside the EnergyPlus model. 

Case Credits 
“Case credit” is the term used for removal of sensible and latent energy from the surrounding 
environment (typically the EnergyPlus zone) by the refrigerated case. EnergyPlus currently 
includes calculations for sensible and latent case credits. 

Sensible Case Credits 
First, a rated sensible case credit value is calculated using fixed case characteristics, such as the 
latent heat ratio of the case and the installed lighting power (see Equation 18.144 in the 
EnergyPlus Engineering Reference [DOE 2023b]). Normally, the simulation program 
(EnergyPlus) would calculate the sensible case credit per time step for each refrigerated case 
using Equation 18.145 in the EnergyPlus Engineering Reference (DOE 2023b). In this instance, 
we use the Python model described above to determine the sensible case credit per time step 
using (in part) the zone temperature and humidity ratio at that time step. In other words, the 
Python model provides the left-hand side of Equation 18.145, also shown below (DOE 2023b): 

𝑄̇𝑄𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑄̇𝑄𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑇𝑇𝑑𝑑𝑑𝑑,𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑑𝑑𝑑𝑑,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� (𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶) 

For implementation in EnergyPlus, Equation 18.145 is solved for the sensible case credit 
schedule value (SCHCC) and then set a Python API actuator assigned to this schedule. In the 
model itself we use a placeholder schedule that always has a value of 1, which we then overwrite 
at each time step with the result from solving Equation 18.145. Finally, the zone conditions are 
updated for the next time step with this sensible load from each refrigerated case. 

Latent Case Credits 
The latent case credits are calculated in a very similar manner to the sensible case credits. The 
Python model provides a latent case credit value for every simulation time step using the zone 
temperature and humidity ratio from that time step. For implementation in EnergyPlus, we solve 
Equation 18.147 from the EnergyPlus Engineering (DOE 2023b) for the latent case credit 
schedule value (SCHCC) and then set a Python API actuator assigned to this schedule: 

𝑄̇𝑄𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙 = −𝑄̇𝑄𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)(𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)(𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶)(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Finally, the zone conditions are updated for the next time step with this latent load from each 
refrigerated case. 
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Figure 4 shows the data exchange between EnergyPlus and Python for the refrigerated case 
modeling. 

 
Figure 4. Schematic diagram of refrigerated case Python plugin modeling workflow 

Figure 5 shows example EnergyPlus output with the case temperature and product temperature 
model integrated into a building model via the Python plugin. In Figure 5, the blue line shows 
the “bulk” or average temperature of the air inside the refrigerated case, and how it changes in 
response to other model inputs (including refrigeration compressor cycling). Similarly, the 
orange line in Figure 5 shows the average temperature of the product inside the refrigerated case. 

 
Figure 5. Example EnergyPlus model outputs with Python plugin refrigerated case enhancements 

Both the bulk case air temperature and product temperature are outputs that are not native to 
EnergyPlus, and the Python plugin system allows the user to couple these additional models with 
the whole-building energy simulation, using inputs (such as zone temperature) from the building 
model, and modifying the building model’s behavior by adjusting the case credits. Traditional 
EnergyPlus EMS could be used to actuate the case credit schedules; however, co-simulation with 
the more nuanced Python model that is calculating the case credits is only possible with the new 
Python plugin. 
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3.3 Outdoor Air Pretreatment 
This case study presents an illustrative example of streamlined modeling of new HVAC 
technologies within EnergyPlus. The technology is not described in detail, nor are any 
conclusions presented. Instead, we show how the Python plugin can be used to rapidly create a 
model using performance data, without the time-consuming process of updating the EnergyPlus 
code base. 

3.3.1 Background 
The need to translate tabular equipment performance data into a format that is usable by a 
simulation program is common in building energy modeling. Typically, a regression approach is 
used to fit a curve to the data. This preprocessing step is generally cumbersome and time-
consuming, with the outcome being a set of regression coefficients that must be accounted for 
and properly input into the simulation program. Because of this burdensome and error-prone 
process, generic performance data are often used and deemed good enough. In this example, we 
illustrate a way that the EnergyPlus Python plugin can be utilized to streamline incorporation of 
tabular equipment performance data into a building energy model. 

3.3.2 Approach 
In this instance, we modeled an outdoor air (OA) pretreatment device that conditions OA to a 
specified dew point temperature. Typically, untreated OA is mixed with return air before 
entering the intake of an air handling unit, and then this entire mass of air is conditioned by the 
cooling coils in the air handling unit to meet building cooling needs. Here, the OA is being 
conditioned before mixing with return air. Treating the OA separately decouples a building’s 
ventilation-driven cooling needs from its internal gain-driven cooling needs. This allows an air 
handling unit to better match its operation to the building’s needs and thus operate in a more 
energy-efficient manner. 

Custom Component Modeling 
In this instance, we utilized the scikit-learn machine-learning Python module (Pedregosa et al. 
2011). scikit-learn is an open-source, commercially usable, and universally accessible tool for 
predictive data analysis in Python. With the scikit-learn module, we can, at simulation time: 

• Read in performance data for the OA pretreatment device in a comma-separated value 
(CSV) format. 

• Define the independent and dependent variables in the dataset. 
• Fit a regression to the dataset. 
• Report goodness of fit metrics (e.g., coefficient of restitution and root mean square error). 
• Use the regression (at each simulation time step) to simulate the performance of the OA 

pretreatment device. 
Once the regression has been created using scikit-learn, the OA pretreatment device is 
represented in EnergyPlus with a user-defined component model, specifically the 
Coil:UserDefined object. The Coil:UserDefined object is used within EnergyPlus to define a 
generic coil for custom simulation of a device that processes air as part of an air handling system. 
This user-defined component model is a shell that provides the user with useful inputs (such as 
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inlet conditions) and requires certain outlet conditions to be passed from the custom component 
model to the rest of EnergyPlus. Finally, the Python plugin system: 

• Passes the inlet conditions from EnergyPlus to the regression. 
• Uses the regression to calculate the OA pretreatment device performance and outlet 

conditions. 
• Passes this information to EnergyPlus to be included in the whole-building energy 

simulation. 
Figure 6 shows the data exchange between EnergyPlus and Python for the OA pretreatment 
modeling. 

 
Figure 6. Schematic diagram of OA pretreatment Python plugin modeling workflow 

Figure 7 shows example EnergyPlus output with the OA pretreatment model integrated into a 
building model via the Python plugin. The blue line shows the temperature of the mixed air 
entering a typical air handling unit, and the orange line shows the temperature of the mixed air 
entering a typical air handling unit after it has been pretreated. 

 
Figure 7. Example EnergyPlus model outputs with Python plugin OA pretreatment device 

The orange line is consistently lower during building occupied hours (7:00–22:00), which then 
allows for the air handling unit to be controlled to a different (higher) leaving air temperature due 
to dehumidification of the pretreated OA, reducing reheat (and overall building energy 
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consumption). This type of dynamic coupling of the user-defined component model and the 
Python-based regression is not possible without the EnergyPlus Python plugin. EnergyPlus uses 
this Python-based regression model directly, as opposed to articulating a lookup table or curve in 
EnergyPlus. This not only removes the burden from the user to generate and implement the 
regression-based model, but also allows for the use of potentially unconventional independent 
variables. EnergyPlus has a finite, albeit expansive, set of independent variables, whereas the 
Python plugin would allow for almost any independent variable imaginable. 

3.4 Groundwater Heat Exchanger and OpenStudio  
This case study presents an illustrative example of the modeling of new HVAC technologies 
within EnergyPlus. The technology is not described in detail, nor are any conclusions presented. 
Instead, we show how the Python plugin can be used to create a new model using sophisticated 
equations, without requiring developers to alter the EnergyPlus code base. This case study is also 
an example of leveraging the Python plugin through OpenStudio® rather than directly from 
EnergyPlus.  

3.4.1 Background 
EnergyPlus offers EMS and ERL for user-defined representation of component behavior that 
does not exist as objects in EnergyPlus. However, ERL is limited in its ability to represent 
complex equations. In this example, the Python plugin facilitated use of a complex set of 
equations to model performance of a novel heat source and sink—a groundwater heat exchanger 
(GWHE). A study was conducted to characterize the potential performance of a GWHE system 
coupled with a building HVAC system. In the configuration analyzed, which was based on a 
system patented and commercially available in the United States, groundwater flow is induced 
by a circulation pump through a heat exchanger submersed in a wellbore. Water from a building 
circulates down into the wellbore through the other side of the heat exchanger. With the indirect 
heat exchanger configuration, there is no consumptive use of groundwater, and no risk of cross-
contamination between the working fluid and groundwater. In this configuration, the building 
loop can serve as the condenser loop for water-source heat pumps or a chiller, or it can be used 
directly in medium-temperature cooling applications, such as for chilled beams. The study aimed 
to understand key design parameters of the systems and their influence on energy performance. 

3.4.2 Approach 
The commercially available technology is relatively nascent, and experimental system 
performance data were not available in sufficient quantities to develop an empirical model. 
Additionally, there are not any native EnergyPlus objects within the codebase to model this type 
of technology. Instead, the performance of the GWHE was characterized by a set of analytical 
equations. The equations required to characterize the performance of the heat exchanger could 
not have been represented directly in the ERL used by EMS, given their use of exponentiation 
and other complex functions. The use of external lookup tables to evaluate these functions would 
have been cumbersome and error prone. Typical OpenStudio measures, which modify 
OpenStudio models programmatically through Ruby code, are executed once, and not at each 
simulation time step, as required for this application. Thus, for this study, OpenStudio measures 
were used for configuration of the underlying model and to initiate the Python plugin workflow, 
and the Python plugin was used to model the ground heat exchanger performance.  
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Use of the Python plugin allowed the analytical equations to be programmed and solved in 
Python and still interact with the EnergyPlus model at each time step. The analytical equations 
represent the finite annular flow solution for heat exchange in a tube/annulus pair (Chanson 
2004; Harmen and Abdurrachim 2018). This approach also made the workflow modular and 
readily adaptable to any modeling refinements, as the Python module was separate from the 
building energy model, generating boundary conditions for the model. 

Groundwater Heat Exchanger and Building Model Connection 
The Python EMS feature in EnergyPlus is used to connect a foundational Python script (the 
“root” module) with a building energy model. This implementation includes three Python 
modules; however, the fundamental requirement for this workflow is a Python module connected 
to EnergyPlus through the Python API. In addition to the root module, separate Python modules 
evaluate the heat exchanger performance at each time step (GWHE module) and pump power 
(pump power module). Figure 8 shows an overview of the architecture of the workflow. This 
approach corresponds to the use of entry Point A in Figure 1. 

The root Python script takes inputs for the GWHE design parameters and loop set points and 
initiates the calling of helper modules. The root Python script calls the GWHE module to 
calculate outputs of the GWHE and the pump power module to calculate the ground loop pump 
power. The root Python script was called at the “after predictor after HVAC managers” EMS 
calling point at each time step of the simulation. The GWHE module calculates a return 
temperature to the building condenser loop based on a mass flow rate and entering temperature, 
using equations describing the heat exchanger’s performance. The interactions between the 
EnergyPlus model and the Python modules are shown in the schematic diagram in Figure 8. 

The following steps take place in the Python workflow:  

• In the root Python module, condenser water temperature and mass flow rate are read in 
from EMS sensor objects. This corresponds to Point 2 in Figure 1.  

• If a nonzero mass flow rate is present, the condenser loop temperature value is compared 
to the set point range. 

• If the condenser loop temperature value is outside of the range, the mass flow rate and 
temperature are passed to the Python GWHE module.  

• The GWHE module calculates the return water temperature, based on the heat 
exchanger’s effectiveness at the given conditions, and calls the pump power module to 
calculate the ground loop pump power.  

• The GWHE module returns the outlet temperature and pump power to the root module.  
• The root module uses EMS actuators for the PlantComponent:TemperatureSource and 

schedule for the OtherEquipment object representing the ground loop pump to set the 
return temperature and pump power, respectively. This corresponds to Point 3 in Figure 
1.  
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Figure 8. Schematic diagram of GWHE Python plugin modeling workflow 

OpenStudio Modeling Workflow 
An OpenStudio model of a building with a hydronic HVAC system was modified through 
custom OpenStudio measures to add an additional hydronic loop (termed the “wellfield loop”) 
that modeled the connection with the GWHE and an OtherEquipment object to track the energy 
use of the circulation pump serving the GWHE, referred to as the “ground loop pump.” A 
modified version of the “Office HVAC WSHP DOAS” measure from the Advanced Energy 
Design Guide OpenStudio gem was used to create the desired HVAC system, and a custom 
measure was used to add the required Python EMS objects (NREL 2022a).  

The wellfield loop incorporates a PlantComponent:TemperatureSource object on the primary 
side of the loop. In EnergyPlus, such an object can represent an infinite heat source or sink at a 
given temperature, which can be set by a schedule. An actuator in EnergyPlus’ EMS was used to 
control the temperature to represent the return temperature from the GWHE. The ground loop 
pump was represented with an OtherEquipment object, with its power draw set by a schedule. 
An EMS actuator tied to the pump’s schedule was used to set the power consumption of the 
pump based on the value calculated by the pump power module. Using OpenStudio measures, 
this workflow is generally applicable to other commercial or residential building models that are 
compatible with a hydronic HVAC system.  

As an illustration of the workflow’s functionality, Figure 9 shows an example of how the ground 
loop pump is actuated to maintain the wellfield loop temperature within the desired range over 
the course of a day during the 1-year period analyzed. The ground loop pump effectively 
maintains the wellfield loop temperature within the desired bounds of 8°C to 17°C. This set point 
range was selected to establish an appropriate trade-off between heat pump and circulation pump 
energy. It is important to note that the OtherEquipment object is a zone object, and the EMS 
calling point occurs after its value is calculated. Therefore, a post-processing adjustment is made 
to account for this temporal lag.  
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Figure 9. An illustration of how the ground loop pump is actuated to maintain the loop 

temperature within the desired range. Note that the upper loop set point temperature is 17°C. 

The modularity of the Python plugin approach facilitates refinements to the model. One such 
refinement made by the authors during this study is implementation of a variable-speed ground 
loop pump in the model. The heat exchanger effectiveness, and thus the return temperature, is 
dependent on the ground loop mass flow rate. The intention in controlling the variable-speed 
pump was to reduce the pump flow to the minimum level necessary to ensure that the return 
water temperature was within the desired range. To avoid having to set up a closed form of the 
equations characterizing the heat exchanger performance, an iterative approach was implemented 
in the root Python module to determine the minimum pump speed that would meet the water 
loop set point temperature.  
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4 Conclusion 
The EnergyPlus Python API and Python plugin provide users with more flexibility, including the 
ability to call EnergyPlus from Python as a library and to use the plugin to call Python scripts 
from EnergyPlus. The Python API and plugin help address some limitations of energy simulation 
tools by allowing advanced control strategies and novel HVAC systems and components to be 
modeled as part of a whole-building energy simulation. The case studies presented illustrate 
applications of the EnergyPlus Python plugin to extend and enhance EnergyPlus capabilities and 
facilitate the integration of performance data for simulation at runtime. The Python plugin allows 
EnergyPlus to be used in a more flexible manner and to accommodate the expanding realm of 
energy modeling applications, including hardware-in-the-loop studies, modeling of grid-
interactive systems, and modeling of novel heat sources and sinks that can play a role in energy 
efficiency.  
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