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Abstract

Endophytic fungus Serendipita indica can bolster plant growth and confer protection
against various biotic and abiotic stresses. However, S. indica-reshaped rhizosphere
microecology interactions and root-soil interface processes in situ at the submicron
scale remain poorly understood. We combined amplicon sequencing and
high-resolution nano x-ray fluorescence (nano-XRF) imaging of the root-soil interface
to reveal cadmium (Cd) rhizosphere processes. S. indica can successfully colonize the
roots of Sedum alfredii Hance, which induces a remarkable increase in shoot biomass
by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that S.
indica colonization altered Cd distribution in the rhizosphere and facilitated the
proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot.
Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable
network structure after S. indica inoculation. Keystone species were strongly
associated with growth promotion and Cd absorption. For example, Comamonadaceae
are closely related to the organic acid cycle and S bioavailability, which could
facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could

release auxin and boost plant biomass. In summary, we construct a mutualism system
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for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient
remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.
Keywords

Nano-XRF, Root-soil interface, Endophytic fungus, in situ visualization,
Phytoremediation

Synopsis

Beneficial fungi-hyperaccumulator plants mutualism system can significantly
augment phytoremediation efficiency of cadmium by increasing soil sulfur migration
and reshaping the rhizosphere microbiota, which contributes to the safe production of

farmland.
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1. Introduction
Soil cadmium (Cd) contamination has evolved into a significant and urgent global

problem !

. Cd, known for its high toxicity and environmental mobility, can
accumulate in diverse crops, thereby posing a substantial threat to both human health
and the environment %3, Long-term consumption of Cd-contaminated rice has led to
the itai-itai disease, which is characterized by weakened and brittle bones * °.
Consequently, effective  countermeasures are required for remediating
Cd-contaminated soil. Phytoremediation, employing hyperaccumulator plants, offers
an environmentally friendly and cost-effective approach compared to physical,
chemical, and other biological methods ®°. Hyperaccumulator plants can transfer or
immobilize heavy metals in the soil, thereby mitigating their adverse impacts on
ecosystems 1°.

As a native Cd hyperaccumulator in China, Sedum alfredii Hance holds
significant potential for usage in the remediation of polluted sites !! and exhibits great
Cd extraction efficiency !2. S. alfredii achieves exceptionally high Cd concentrations
in its young leaves and stems due to its efficient mechanisms of root uptake, xylem

loading, and phloem remobilization of Cd '3 4

However, phytoremediation
effectiveness is constrained by the slow growth and low biomass . Thus, the
optimization of phytoremediation technology hinges on the promotion plant of growth.
One of the most promising and sustainable approaches is the inoculation of
plant-growth-promoting microorganisms (PGPM) into the rhizosphere '6. This
approach is known for its cost-effectiveness, environmental friendliness, and low risk
17" which not only significantly bolsters plant resistance against various environmental
stressors (e.g., drought, salinity, and heavy metals), but also improves overall plant
growth and yield '%2°, Previous studies have pointed out its significant enhancements
in germination rates, seedling survival, and plant biomass 2!2>, PGPMs also regulate
heavy metal bioavailability through the production of siderophores, organic acids, and
biosurfactants, as well as stimulating the release of root exudates 2*. Additionally,

heavy metal-resistant endophytes have been shown to enhance the mobilization of Pb

in the rhizosphere, further contributing to phytoremediation efficiency 2°. Moreover,
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when endophytes are added to heavy metal-contaminated soil, they can change the
structure and composition of microbial community. Previous researches have
highlighted the key role of microbiota in S. alfredii rhizosphere, with specific focus on
the bacterial and archaeal communities, in controlling the bioavailability, uptake, and
transformation processes of essential nutrients and metal 26-2%. Since the enhancement

of phytoremediation efficiency is associated with microbe species %30

, it 18 necessary
to raise the core strains for phytoremediation.
Serendipita indica (formerly known as Piriformospora indica), a fungus

31 has been

belonging to the Serendipitaceae family within the order Sebacinales
extensively studied as a root-colonizing fungus with a wide range of beneficial effects
on numerous host plants >33, This fungal species establishes symbiotic associations
with a broad spectrum of over 200 plant species, facilitating plant growth and
improving nutrient and water absorption **. Furthermore, this mutualistic association
protects against pathogens and mitigates the adverse effects of various stressors,
including acidity, desiccation, and heavy metal toxicity 3°. Shahabivand, et al.
demonstrated that S. indica effectively improves the tolerance of sunflower
(Helianthus annuus L.) to Cd toxicity by immobilizing Cd in the root system 3°.
Meanwhile, S. indica can alter root-associated microbiome structure to protect plant
growth and enhance phytoremediation, such as king grass (Pennisetum purpureum %
P. americanum) and Artemisia annua L. 3. S. indica also plays a key role in
enhancing plant sulfur (S) nutrition. S nutrition is a key element in conferring stress

tolerance and promoting heavy metal detoxification 40 4!

. This is important for
improving the stress adaptation and detoxification capabilities of hyperaccumulator
plants and enhancing the phytoremediation. However, it is still unknown whether S.
indica can enhance phytoremediation by reshaping the microecology of the
rhizosphere microbial community of the hyperaccumulator plants. Hence, it is
essential to elucidate the mechanisms governing Cd tolerance, absorption, and
rhizosphere microbiota in the symbiotic system of hyperaccumulators and S. indica.

This aimed was to increase the efficiency of phytoremediation and safeguard

agricultural production on contaminated farmlands.
5/ 41



114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

In our research, we harnessed the Cd hyperaccumulator S. alfredii as the plant
and the endophyte S. indica as a fungal inoculant for the remediation of
Cd-contaminated soils. We aim: I) to evaluate the phytoremediation potential of the
hyperaccumulator S. alfredii and the endophyte S. indica in a pot system by
measuring plant biomass and determining Cd accumulation, etc.; II) to investigate
how the rhizosphere microbial community affects element migration and absorption at
the root-soil interface under S. indica treatment utilizing synchrotron-based X-ray
fluorescence (SR-XRF) in situ imaging at the submicron scales; III) to explore the
correlation between phytoremediation efficiency and rhizosphere microecological
characteristic.

2. Materials and methods

2.1. Soil materials

We collected topsoil (0—20 cm) from a disused farmland near Hangzhou, China,
where crop growth is impaired due to heavy metal contamination resulting from
mining activities. The initial soil properties are as follows: pH 7.4, total carbon
content of 18.12 g-kg!, total phosphorus content of 472.63 mg-kg™!, total nitrogen
content of 10.07 g-kg!, S content of 310.23 mg-kg™!, total Cd content of 6.47 mg-kg!,
and cation exchange capacity (CEC) of 16.60 cmol (+) ‘kg'!. According to the
regulations provided in China's Environmental Quality Evaluation Standards for
Farmland of Edible Agricultural Products (HJ/T 332-2006) and the Environmental
Quality Standard for Soils of China (GB 15618-1995), the soil was categorized as
severely contaminated with Cd.

2.2. Plant growth and S. indica co-cultivation

S. alfredii seedlings were sourced from a historical Pb/Zn mining site in Quzhou,
Zhejiang Province, China. It was reported as a powerful Cd hyperaccumulator and can
offer a useful plant material for phytoremediation of Cd-contaminated soils !!. To
reduce internal metal content, these seedlings were grown for more than three
generations in uncontaminated soil. Subsequently, we selected healthy and uniformly

sized plant shoots for two-week pre-cultivation in a basic nutrient solution to facilitate

128
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root development, as outlined in Lu, et a
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The S. indica strain was kindly provided by Prof. Wenying Zhang from Yangtze
University, China. To cultivate the S. indica mycelium, we utilized a modified liquid
Aspergillus medium *? and maintained it at 28 + 2°C with agitating at 150 rpm in an
orbital shaker, and incubated in the absence of light for two weeks #. Fresh mycelia
were harvested from the liquid medium, weighed, and subsequently diluted to a
concentration of 250 mg-mL™! using sterile water. To aid in the grinding process, one
steel bead (@ 2.0 — 4.0 mm) was added per milliliter of the mycelial suspension before
undergoing two cycles of grinding, each lasting for 10 seconds at a frequency of 50
Hz, employing a rotor-stator homogenizer (Shanghai Wonbio Biotechnology). The
mycelium was washed twice with nine volumes of water, followed by centrifugation
at 700 x g for 2 minutes. The final pellets were resuspended in sterile water and
adjusted to a concentration of 1 g- L.

After homogeneous S. alfredii seedlings were transplanted into pots (Fig. 1b), S.
indica-treated microcosms were inoculated with 1.6 mL of a mycelial suspension,
containing 100 mg of mycelium per pot, using a pipettor (Fig. 1¢) as described #. The
control pots received an equivalent volume of sterile water as an amendment.

2.3. Pot experiment design

The experiment was conducted in the greenhouse located at Zijingang Campus,
Zhejiang University, Zhejiang, China. Controlled environmental conditions included a
16/8-hour light/dark cycle, day/night temperatures of 30/24°C, relative humidity
levels of 70%/85%, and a photon flux density of 400 umol m™2-s!.

The treatments included the following: (i) unplanted soil (unplanted, Un); (ii) S.
alfredii-planted soil without S. indica (control, CK); (iii) S. alfredii-planted soil
inoculated with S. indica (+Si); (iv) S. alfredii-planted y-irradiated soil without S.
indica; (v) S. alfredii-planted y-irradiated soil inoculated with S. indica. The soil
samples were subjected to air-drying, passed through a 2 mm sieve, and placed into
plastic pots measuring 13.00 cm in diameter and 14.50 cm in height. To distinct
between the rhizosphere and bulk soil, we used a polyester mesh root bag with a pore
size of 300 mesh, measuring 8 cm in diameter and 18 cm in height. The root bag was

filled with 200 g of soil and positioned within each pot. To surround the root bags, an
7/ 41
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additional 550 g of soil was integrated as bulk soil (Fig. 1a). Nylon meshes were
placed between the compartments to constrain root hair movement while ensuring
unobstructed water and solute passage. To uphold soil moisture at around 60% of its
water-holding capacity, deionized water was utilized. Each treatment was replicated in
six separate pots, and these pots were randomly arranged for the experiment.
2.4. Soil sampling and plant harvesting
Following a 60-day cultivation period, the plants were harvested. We collected
rhizosphere soil by shaking the plant roots and placing the soil adhering to the roots
into a 20 ml phosphate-buffered saline solution. The rhizosphere compartment was
formed from the soil dislodged from the plant roots, and the bulk soil was collected
from the outer layer of the soil. Subsequently, the plant and soil samples were
transported to the laboratory on dry ice. After transport, the samples were stored at a
temperature of -80°C until the extraction of DNA was conducted. More details about
elemental analyses are shown in Supplementary Materials and Methods.
2.5. Histochemical analysis
To visualize the colonization of roots by S. indica, we initially treated fresh root
samples by immersing them in a 10% KOH solution for 15 min, followed by
acidification using 1 M HCI for another 10 min. Then these samples were examined
using a light microscope (Nikon, Tokyo, Japan). Detecting chlamydospores within the
roots provided a clear indication of successful colonization (refer to Supplemental Fig.
S1).
2.6. Element Mapping by Nano-XRF

We sliced the root-soil interface samples to a thickness of 120 um for Nano-XRF
analysis using a cryotome (CM1950, Leica Biosystems) at -20°C, as described .
Nano-XRF imaging was executed (Fig. 1d) at the Advanced Photon Source 2-ID-D
hard X-ray microprobe beamlines within a helium atmosphere ¢ 47 X-rays with an
incident energy of 28 keV were employed to excite elements varying from potassium
(K) to Cd. Utilizing a Fresnel zone plate, we focused the X-ray beam onto the sample,
achieving a spot size of 1 x 1 um and 500 % 500 nm. The sample image was then

systematically raster-scanned, with each pixel having a dwell time of 10 ms. The
8/ 41
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X-ray fluorescence emitted by the sample was collected using an energy-dispersive
silicon drift detector. Subsequently, maps depicting the distribution of Cd, K, and S

were generated and analyzed using the MAPS software 3

. More procedures are
showed in Supplementary Materials and Methods.

2.7. DNA extraction and amplicon sequencing

Soil genomic DNA was isolated using the MOBIO DNeasy PowerSoil kit (Qiagen,
Valencia, CA, USA). Subsequently, we quantified the DNA samples by
spectrophotometry, using a Nanodrop spectrophotometer (Nanodrop Technologies
Inc., Wilmington, DE, USA), and then stored at -80°C before the amplification
process (Fig. 1d). The amplification of the V3-V4 regions of bacterial 16S rRNA
genes was carried out using the primer sets 338F
(5'-ACTCCTACGGGAGGCAGCA-3") and 806R
(5'-GGACTACHVGGGTWTCTAAT-3") #*-3° The fungal ITS1 region were amplified
using primers ITSIF (5-CTTGGTCATTTAGAGGAAGTAA-3") and ITS2-2043R
(5'-GCTGCGTTCTTCATCGATGC-3") 31,

PCR reactions were conducted following the established protocol 2. We
performed high-throughput sequencing of PCR amplicons using 250bp paired-end
sequencing on the Illumina HiSeq 2500 platform (Guangdong Magigene
Biotechnology Co., Ltd. Guangzhou, China) (Fig. 1d). Microbiome 16S rRNA and
ITS gene sequencing were analyzed utilizing the Quantitative Insights into Microbial
Ecology 2 (QIIME2) platform 3. Initially, raw reads underwent demultiplexing using
the "q2-demux" plugin. Subsequently, the sequences were subjected to denoising
employing the DADA?2 algorithm. The "q2-dada2" plugin 3* was utilized to get a table
of amplicon sequence variants (ASVs).

ASVs were then annotated by aligning them with the SILVA reference database
version 138 for bacteria  and the UNITE database version 6.0 for fungi

(https://unite.ut.ee/) 6. ASVs from chloroplasts or mitochondria were excluded from

the subsequent analysis.
2.8. Data analysis

To examine the variations in plant and soil parameters among different soil
9/ 41
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compartments, SPSS 26.0 (IBM Corp., Armonk, NY, USA) was used for statistical
analysis. We used the Shapiro-Wilk test to assess the normality of the residuals and
the Levene's test to evaluate the homoscedasticity of the data. We conducted student's
t-test or analysis of variance and subsequently performed post hoc comparisons with
Tukey's Honestly Significant Difference test. The translocation factor (TF) and the
bioaccumulation factor (BF) were calculated to quantify the efficiency of
phytoextraction and evaluate the capacity of transporting or accumulating Cd -8, TF
value represents the ratio of contaminant concentration in the plant shoots to that in
the roots, while the BF denotes the ratio of contaminant concentration in the plant to
that in the soil. We utilized Origin v2019b (OriginLab Corp., Northampton, MA, USA)
to visualize the relative abundances of bacterial and fungal communities via 100%
stacked columns. For statistical analysis and figure generation, we employed the R

program v4.3.0 (http://www.r-project.org/). More statistical analyses are showed in

Supplementary Materials and Methods.

2.9. Network construction based on the random matrix theory

We conducted microbial co-occurrence network analysis employing Spearman's
correlation method to distinguish pairwise associations among ASVs %°. ASVs with
relative abundances below 0.02% were excluded. Afterward, we applied the
Benjamini-Hochberg FDR control procedure * to adjust p values for multiple
comparisons. To establish Spearman correlation thresholds, we employed the Random
Matrix Theory (RMT) method ®'. Finally, correlations were retained if their adjusted
p-value was below 0.05, and they achieved a score above the specified threshold.
Network properties were computed using the Molecular Ecological Network Analysis

pipeline (MENA, http://ieg2.ou.edu/MENA/) ¢,

3. Results and Discussion

S. indica plays a significant role in enhancing plant growth and heavy metal

3

accumulation, benefiting phytoremediation strategies 3. This fungal endophyte is

40, 44, 63 64, 65

known to improve nutrient uptake , modulate hormone levels , and enhance

37, 66

stress tolerance in plants, facilitating greater biomass and heavy metal uptake in

contaminated environments. The interactions between S. indica and plant hosts such
10 / 41
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38,39 and Artemisia annua L. 37 have been documented, highlighting

as king grass
increased accumulation capabilities for heavy metals such as Cd. However, the
specific rhizosphere microbiota mechanisms underpinning these enhancements,
particularly in hyperaccumulators like S. alfredii, remain poorly understood. We
aimed to delve into the soil-plant-microbe interactions that contribute to improving
the phytoremediation efficiency of hyperaccumulator S. alfredii.
3.1. 8. indica colonization enhanced S uptake and growth of S. alfredii from soil
To assess the impact of S. indica on the phytoremediation efficiency of S. alfredii,

we cultivated S. alfredii plants in Cd-contaminated soil under CK and +Si treatment.

We observed the chlamydospores of S. indica were formed in the root after

colonization (Fig. S1), suggesting the successful inoculation of S. indica in the root of

S. alfredii. Earlier researchers found that S. indica improves nutrients uptake from soil
and promotes plant growth ¢7. We also found that shoot biomass was significantly
improved by 211.32% under +Si treatment (Fig. 2a, b). S. indica employs diverse

68, 69

growth-promoting mechanisms, including regulating hormones , enhancing

70 40, 44, 71

tolerance ', and facilitating nutrient acquisition . In our study, S. indica

enhanced plant growth through increasing plant S uptake (Fig. 4). Similarly, SiSulT, as
a sulfate transporter of S. indica facilitates sulfate absorption by maize plants .
Furthermore, nano-XRF images showed that S hotspots were exhibited in the root and
rhizoplane soil on the submicron scale under +Si treatment (Fig. 3b). A distinct
distribution pattern of S on the rhizoplane, tightly encircling the roots. In contrast,
under CK treatment, S showed an irregular distribution within the rhizosphere (Fig.
3a). This indicated that S. indica inoculation activated rhizosphere soil S, which
promoted plants to uptake S from soil to the root. S is a critical component of

glutathione and phytochelatins 7273

, which are essential for detoxification processes
and chelating heavy metals such as Cd. To sum up, S. indica inoculation helped
transport S to the plant.

Significant decreases were observed in the K localization of rhizosphere soil (Fig.

3). This depletion is a common response in plant-soil interactions. S. indica enhanced

1/ 41
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plants’ nutrient uptake capabilities 777, The symbiotic relationship with S. indica not
only boosts K absorption due to increased metabolic needs and growth but also
influences root architecture, promoting increased branching and thus expanding the
root surface area for more effective nutrient extraction.

3.2. 8. indica colonization facilitated Cd absorption and soil Cd mobilization

S. indica not only promoted plant growth but also facilitated Cd uptake by S. alfredii.
In our study, although the Cd concentration showed no significant difference in the
shoot under +Si treatment (Fig. 2c), the Cd accumulation increased by 235.72%
remarkably in the shoot of S. alfredii (Fig. 2d). Cd influx reached 3.98 mg Cd-g! dry
weight, which was 2.73-fold higher than that under CK treatment (Fig. 2e). Previous
research also showed that S. indica increased Cd uptake by king grass 3%, Meanwhile,
we also found that soil Cd concentrations decreased significantly by 32.17% in
rhizosphere soils under +Si treatment (Table 1). Liu, et al. also found that endophyte
led to a significant decrease of soil Cd concentration 78,

Moreover, TFs, BFs, and removal efficiency are used to gauge the
phytoextraction potential of plants 7. S. indica inoculation significantly promoted TFs,
BFs and removal efficiency of Cd (Fig. 2f, g and h). The average TF value (7.58)
under CK treatment was significantly lower than that (8.92) under +Si treatment.
Higher TFs value indicated that S. indica can promote Cd transport from root to shoot.
But previous researchers found that S. indica reduced the TFs of arsenic (As) and Cd
in rice 3 and sunflower 3¢ by sequestering these heavy metals within the root systems.
This is due to variations in heavy metal transport capacities among different plant
species. Hyperaccumulator plants can transport heavy metals from root to shoot
efficiently 133183 S, alfredii is recognized as a hyperaccumulator plant celebrated for
its high-efficiency mechanism of translocating nutrients from roots to shoots 3. S.
alfredii exhibited shoot Cd accumulation of 96.6 mg-kg!, with a corresponding BF of
29.5 in soils that harbored Cd at 0.90 mg-kg! Meanwhile, it phytoextracted
approximately 540 pg Cd over six months . However, we found that the average BF
exhibited a significant increase under +Si treatment. The average BF greatly reached

58.02, representing a substantial enhancement compared to CK treatment (Fig. 2g).
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The BF was used to assess the ability of plants to transport or accumulate Cd from the
soil into their shoots, revealing an enhanced BF in plants associated with S. indica.
This increase is attributed to several factors: the fungus induces a larger root biomass
and surface area, enhancing soil contact and Cd uptake *>%; it alters the rhizosphere
chemistry, increasing Cd solubility through reduced pH and the release of chelating
agents %, and it stimulates the production of metal-binding proteins and
phytochelatins that aid in Cd detoxification and accumulation ®”-#. These findings
highlight the potential of S. indica to not only enhance plant growth and stress
tolerance but also improve phytoremediation efficiency in Cd-contaminated soils,
offering valuable insights into the ecological and practical applications of using
endophytic fungi in environmental pollution management. Furthermore, Cd
accumulation in S. alfredii shoots impressively reached 593.15 pg in just 60 days
under +Si treatment (Fig. 2d). During the remediation, the bioavailability of soil
heavy metal determines the remediation efficiency . S. indica directly increases root
biomass by producing indole-3-acetic acid (IAA) and organic acid %°. Due to the
increase of organic acid, reduced rhizosphere soil pH could help Cd and S
mobilization and absorption (Table 1 and Fig. 4c). Jiang, et al. also believed that
important targets and signaling components of phytohormones in response to abiotic
stress 0.

To explore in situ distribution of Cd in the root-soil interface under +Si treatment,
high-resolution nano-XRF mapping was utilized on cross-sections of the root-soil
interface. We found that S. indica inoculation significantly altered Cd distribution in
the root-soil interface. Cd were preferentially located in the rhizosphere but less in the
root under CK treatment (Fig. 3a). Under +Si treatment, Cd were preferentially
allocated to the root and the rhizoplane, tightly encircling the roots with the highest
intensity found within the rhizoplane (Fig. 3b). To better show the difference, images
were digitally extracted and made into a composite for comparison (Fig. S5). Cd
intensity values of the selected areas (marked with a white scanning lines of Fig. 3)

across the root-soil interface (from L1 to L2) are shown. Nano-XRF mapping

revealed that S. indica inoculation enhances the root system's ability to absorb Cd
13/ 41
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from the soil. Prior researches also showed PGPM depends on the activation of soil
heavy metals to enhance phytoremediation °' 2. The bulk and rhizosphere soil pH
exhibited a significant decrease under +Si treatment (Table 1). The decrease of soil pH
contributes to an increased soil Cd availability and absorption by plant roots.
Moreover, S may improve the Cd availability of the rhizosphere soils in previous

researches 23 %

. To explore the relationship between S and Cd, we extracted the
intensity values of Cd and S specifically from the rhizoplane of the Nano-XRF image
(Fig. 3) and conducted linear fitting. This analysis revealed a significant correlation
between Cd and S in both CK and +Si treatments (Fig. S6). Moreover, under +Si
treatment, the correlation was notably stronger. This indicates that S may facilitate the
soil Cd mobilization. Localized measurements at the root-soil interface are crucial for
capturing the true dynamics between these elements using Nano-XRF. Therefore, S.
indica enhances Cd accumulation in the host plant and augments phytoremediation
efficiency by promoting both plant biomass and Cd uptake from the soil. The S.
indica-S. alfredii mutualism systems have great potential in phytoremediation. The
systems facilitated Cd bioavailability of soil, Cd uptake, and Cd accumulation of
hyperaccumulator shoot.

3.3. 8. indica colonization recruited specific microbial taxa related to S cycle

S. indica inoculation resulted in a remarkable increase of shoot biomass by 211.32%
in native soil (Fig. 2b). Conversely, in y-irradiated soil, the improvement in shoot
biomass was comparatively lower, with only a 25.93% increase observed (Table S1).
These results suggested that soil microbial communities played a key role, consistent
with recent studies that strong correlations between root endophytic fungi and the
composition of soil microbial communities .

To delve deeper into the factors affecting rhizosphere microbial variation, we
conducted a Mantel analysis to assess the connection between microbial communities
and environmental variables (Fig. 4a). The assessment of the microbial communities
was performed using Mantel's p and Mantel's r. We found that the rhizosphere
communities were significantly affected by biomass, shoot S concentration, available

S concentration, organic matter concentration, soil total S concentration, and pH
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under +Si treatment (Fig. 4a). Meanwhile, soil total S concentration and available S
concentration in the rhizosphere were increased by 21.50% and 68.85%, respectively
(see Fig. 4b and c). We also found that S. indica significantly enhanced the S
concentration of the shoot (Fig. 4d).

Utilizing Faith's phylogenetic diversity index, a significant enhancement of both
bacterial and fungal community diversities was showed in the rhizosphere under +Si
treatment (Fig. 5a, Table S2). This increase in phylogenetic diversity does not
correspond to changes in observed OTUs, Shannon index, or evenness, as these
indices did not show significant differences between treatments (Table S2). This
distinction highlights that the +Si treatment enriches the rhizosphere in more
phylogenetically diverse taxa. The principal coordinates analysis (PCoA) illustrated a
distinct segregation among the unplanted soil, bulk soil, and rhizosphere soil for both
bacteria and fungi (Fig. 5b). But it seems like an unclear segregation between CK and
+Si treatment groups (Fig. 5b). This aligns with previous findings that S. indica
actively modulates the diversity of both bacteria and fungi in the rhizosphere soil 7.
When it comes to the microbial community composition, a diverse array of
predominant bacterial species was identified, encompassing eight phyla, such as
Proteobacteria, Bacteroidota,  Actinobacteria, Chloroflexi, = Acidobacteriota,
Gemmatimonadetes, Myxococcota, and Verrucomicrobiota. In addition, the phyla of
Ascomycota, Glomeromycota, and Basidiomycota were identified as the prevailing
fungal species, accounting for most of the fungi present. A small proportion of ASVs
(less than 5%) were categorized as Rozellomycota and Mortierellomycota (Fig. 5c¢).

DESeq2 analysis elucidated variations in ASV levels (Table S3). Fifteen core
bacterial ASVs and two core fungal ASVs were identified in +Si treatment. The
abundances of specific bacteria and fungi enriched significantly in the rhizosphere
under +Si treatment (Fig. 5d, e, f, and g). These were identified as the dominant
members of the rhizosphere microbiomes. As shown in Fig. 5h and i, the abundances
of  Lacunisphaera,  Pedosphaeraceae,  Bradyrhizobium,  Novosphingobium,
Comamonadaceae, and Entoloma (BASV1197, 1236, 890, 921, 964 and FASV213)

displayed positive correlations with soil AvS and S concentration, plant biomass, and
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shoot S concentration (blue arrow in Fig. 5h and 1). In contrast, they exhibited a
negative correlation with soil pH. Bradyrhizobium and Novosphingobium are involved
in S oxidation °* %7, and strengthen soil metabolic ability °®. The Comamonadaceae
family played a pivotal role in mineralization of carbon-bound S, transformation of
soil sulfate between organic and inorganic states . S desulfonation reactions that
provide an important source of S for wheat from soil 1%,

Moreover, the keystone microbial taxa were related to plant growth promotion
and Cd tolerance under +Si treatment (Fig. 5h and 1), such as Pedosphaeraceae and
Bradyrhizobium. Pedosphaeraceae is a metabolic generalist with vital ecological
functions. It can promote plant growth and tolerate Cd bio-toxicity !0 102,
Bradyrhizobium is not only endophytic in rice plants and contributes to improving
crop yield 19104 but also directly participates in reducing the oxidative damage of Cd
105 Tt is regarded as a potential bacterial resource for maintaining community stability
and Cd contamination bioremediation '°°. Further, we also found that Piscinibacter
and Entoloma were related to soil acidification (Fig. 5e), which is the first time to be
reported. These specific microbiomes could be potential microbial regulators for the
optimization of Cd-contaminated phytoremediation. We concluded that S. indica
could recruit specific microbiomes related to the S cycle, growth promotion, and Cd
uptake of plant, thereby reshaping rhizosphere microecology. The rhizosphere
microecology could promote S absorption, plant growth, soil Cd mobilization, and
phytoremediation efficiency.

3.4. 8. indica inoculation greatly alters microbial community network topologies

Not only is it important to decipher the keystone taxa, but the network hubs correlated
with the S. indica and host plants are vital for utilizing plant microbiota to boost plant
growth and health 1°7- 1% Network analyses of MENs were performed to unveil the
microbial interactions within the bacterial and fungal communities, elucidating
distinct topological characteristics (Table S4 and Fig. 6a). We depicted microbial
interactions with microbial ecological networks in both the CK and +Si treatment (Fig.
6a). Network analysis was utilized to acquire co-occurrence patterns between bacteria

and fungi. The modularity threshold exceeded 0.4 (Table S4), thus signifying a typical
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module structure %% 1%, The values of edge numbers, average degree (avgK), average
clustering coefficient (avgCC), and modularity in empirical networks under +Si
treatment were higher than those under CK treatment (Table S4), representing greater

62, 111

complexity and connectivity . Previous research also showed that beneficial

112

fungi generate positive feedbacks ''2, The positive feedbacks enhance their

competitiveness and interactions with neighbors to alter microbial community

structures '3

. Therefore, S. indica inoculation shaped more steady microbial networks
of soil.

Stable microbial networks can provide a favorable environment for shoot and
root development to optimize nutrient cycling and transformation processes !4 13,
Under +Si treatment, Module 1 was highly correlated with plant biomass, shoot S
concentration, and AvS, while Module 4 was correlated with soil available Cd (Fig.
6b). Comamonadaceae (class Gammaproteobacteria) of Modules 1 commonly inhabit
the rhizosphere soils of terrestrial plants, which promote plant growth ''®. Moreover,
they are closely related to the citric acid cycle. The hydrogen ions (H") in the citric
acid cycle decreased soil pH significantly, regulating soil properties and the microbial

17 Decreased soil pH facilitated heavy metals and S

community networks
mobilization. Moreover, Comamonadaceae is involved in desulfonation reactions ',
potentially providing S source of plant nutrition in the rhizosphere of S. alfredii. In
addition, Sphingomonadaceae (class Alphaproteobacteria) of Module 4 was found in
the rhizosphere. Sphingomonadaceae can produce and release ACC deaminase, [AA,
and siderophores. These contribute to root elongation and heavy metal tolerance of

plants 118, 119

, resulting in greater plant biomass and Cd accumulation. Environmental
functional modules played direct or indirect roles in activating and facilitating S and
Cd uptake by roots, thereby fostering plant growth and Cd accumulation. The
rhizosphere soil microbial networks exhibited robust correlations with the
phytoextraction potential of plant nutrients under +Si treatment. PLS-PM analysis
also extensively elucidated how different factor strategies influenced both the

rhizosphere microbial ecology and Cd remediation efficiency from the soil (Fig. S4).

The model exhibited a good fit to the data, with a goodness-of-fit (GoF) value of 0.82.
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S. indica treatment directly affected soil pH, soil available S concentration,
rhizosphere microbial communities, and Cd remediation efficiency. The Cd
remediation efficiency was indirectly influenced by rhizosphere microbial
communities. Therefore, reshaped microbial community networks synergistically
could promote plant growth and enhanced the accumulation of heavy metals in the
shoot.

In conclusion, we successfully visualized the submicron-scale spatial distribution
of key elements at the root-soil interface induced by S. indica inoculation using
Nano-XRF for the first time. S. indica can colonize S. alfredii roots and recruit
specific microbial taxa related with plant growth promotion and nutrient and heavy
metal mobilizations in the rhizosphere. S. indica could help plants thrive and increase
Cd accumulation in plants, having potential of endophyte-assisted phytoremediation
to regulate microecology characteristics and its promising application in sustainable
agriculture. In the future, we will focus on the cellular-level distribution of elements,
metabolomics, and metagenomic analysis to further elucidate the interaction between
microbes, plants, and rhizosphere processes of heavy metals in contaminated
farmland.
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Supporting Information

Supplemental methods and additional results. Dry biomass and Cd concentration of S.

alfredii (Table S1); microbial a-diversity (Table S2); differential ASVs assessed by

DESeq2 (Table S3); topological properties of networks (Table S4); soil microbial

community composition (Table S5); microscopy of S. indica chlamydospores (Fig.

S1); Cd, K, and S distribution in root-soil interface (Fig. S2); Z-P plot of ASVs (Fig.

S3); PLS-PM analysis (Fig. S4); Cd intensity of the selected areas (Fig. S5);

correlation between Cd vs S intensities (Fig. S6).
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Figure and Table Captions

Table 1 Soil physicochemical parameters under CK and +Si treatments. The mean
values (with corresponding standard deviations) were calculated (n = 6). Significance
levels at p < 0.05, p < 0.01, and p < 0.001 were denoted with *, ** and ***,
respectively, using the student’s t-test to identify significant differences between
treatments. DOC: dissolved organic carbon, DON: dissolved organic nitrogen, TCd:
total cadmium concentration, AvCd: available Cd concentration. CK, without S.

indica inoculation treatment; +Si, with S. indica inoculation treatment.

Fig. 1 Schematic illustration of the experimental procedures. (a) The root bag system,
containing the bulk and rhizosphere compartments; (b) Seedlings are transplanted into
soil of the root bags; (c) Desired input S. indica is inoculated using a 1 mL pipette and
pots are transferred to the greenhouse; (d) Sample collection and determination by
high-throughput sequencing and Nano-XRF imaging.

Fig. 2 S. indica promotes plant growth in Cd contaminated soil. (a) Growth status of S.
alfredii planted in Cd contaminated soil without S. indica (CK) and with S. indica
inoculation treatment (+Si). Dry biomass (g-plant!) (b), Cd concentration (c), Cd
accumulation (d), Cd influx (e), translocation factors (f), bioaccumulation factors (g),
and Cd removal efficiency (h) in S. alfredii. The asterisks *, ** and *** represent
significant differences between CK and +Si treatment at p < 0.05, p < 0.01, and p <
0.001, respectively. Scale bars = 5 cm.

Fig. 3 Nano-XRF mapping of elements (Cd, K, and S) in the cross-sections of
root-soil interface collected from CK (a) and +Si (b) treatment. Pixel brightness is
displayed in RGB. Fluorescence intensities (ug-cm?) of elements Cd, K, and S were
normalized and scaled between red (high) and blue (low) for each map. Bar = 200 pum.
CK, without S. indica inoculation treatment; +Si, with S. indica inoculation treatment.
Fig. 4 Drivers of variation in the rhizosphere microbiota. (a) Mantel analysis maps
showed the relationship between environmental physicochemical properties and the
composition of microbial communities under without S. indica (CK) and with S.

indica inoculation treatment (+Si). Soil sulfur concentration (b), soil available sulfur
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concentration (c¢), and sulfur concentration in plant (d) are showed. Asterisks indicate
values that are significantly different from CK and +Si treatment (*p < 0.05, **p <
0.01, ***p < 0.001). The letters a and b indicate significant differences between bulk
and rhizosphere at p < 0.05 under CK treatment. The letters a’ and b’ indicate
significant differences between bulk and rhizosphere at p < 0.05 under +Si treatment.
Cd: soil Cd concentration, S: soil sulfur concentration, AvCd: soil available Cd
concentration, AvS: soil available sulfur concentration, DOC: soil dissolved organic
carbon, DON: soil dissolved organic nitrogen, OM: soil organic matter. CK, without S.
indica inoculation treatment; +Si, with S. indica inoculation treatment.

Fig. 5 Assembly of bacterial and fungal communities in the bulk and rhizosphere soil
and Spearman correlation analysis of keystone ASVs with rhizosphere soil and plant
properties. (a) Box plots for alpha-diversity indices, including the faith’s phylogenetic
diversity of bacterial and fungal communities in rhizosphere and root under without S.
indica (CK) and with S. indica inoculation treatment (+S7). The asterisks *, **, and
*#* represent significant differences between CK and S. indica inoculation treatment
at p < 0.05, p < 0.01, and p < 0.001, respectively. (b) Principal coordinate analysis
(PCoA) plots for visualizing the Bray-Curtis dissimilarity matrix among the bacterial
communities and fungal communities. (¢) Relative abundances of bacterial and fungal
communities in rhizosphere soils of S. alfredii grown in Cd contaminated soil without
S. indica (CK) and with S. indica inoculation treatment (+S7). Keystone ASVs used
for discriminating bacterial (d) and fungal (e) communities without S. indica (CK)
and with S. indica inoculation treatment (+S7) (detected by random forest model). The
assigned taxonomy of each taxon is displayed at the ASV level. The bubbles show the
ASVs numbers of bacteria (f) and fungi (g) without S. indica (CK) and with S. indica
inoculation treatment (+Si); the Spearman correlations between environmental
variables and the relative abundances of keystone ASVs are depicted in the right
heatmaps (h and 1). Cd, soil Cd concentration; S, soil sulfur concentration; AvCd, soil
available Cd concentration; AvS, soil available sulfur concentration; DOC, soil
dissolved organic carbon; DON, soil dissolved organic nitrogen; OM, soil organic

matter. *p < 0.05, **p <0.01, ***p <0.001.
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Fig. 6 Microbial ecology networks and functional modules of S. alfredii rhizosphere
bacteria and fungi, and their relationships with environmental factors. (a) Networks
contained both bacterial and fungal taxa, showing a higher number of edges in the S.
indica inoculation treatment than those in CK networks. The nodes are colored
according to bacterial and fungal phylum. The edge color represents positive (blue)
and negative (purple) correlations. (b) Spearman’s correlation analysis of modules
with rhizosphere soil and plant properties in CK and S. indica inoculation treatment.
Only significant correlations (p < 0.05) are shown. Cd, soil Cd concentration; S, soil
sulfur concentration; AvCd, soil available Cd concentration; AvS, soil available sulfur
concentration; DOC, soil dissolved organic carbon; DON, soil dissolved organic
nitrogen; OM, soil organic matter. *p < 0.05, **p <0.01, ***p < 0.001. CK, without S.

indica inoculation treatment; +Si, with S. indica inoculation treatment.
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630  Table 1 Soil physicochemical parameters under CK and +Si treatments.

DOC DON pH TCd AvCd
(mg-L") (ng-L?) (mg-kg™) ((mg-kg™)
Bulk
. 8171+ 1243100+ 6.83+ 5.81 + 247 +
2.45 155410 *  0.02 * 0.11 *** 0.04 ***
. 78.67+ 8234.78 + 6.78 + 493 + 1.83 +
2.69 491.37 0.02 0.20 0.08

Rhizosphere

CK 99.23 + 16220.56 * 6.72 + 493+ 2.00 +
1.93 1485.53 ***  0.01 *** 0.10 *** 0.06 ***

+Si 95.45 + 9748.85 + 6.63 = 3.73 = 1.52 +
2.78 490.13 0.01 0.17 0.07

631  The mean values (with corresponding standard deviations) were calculated (n = 6).
632  Significance levels at p < 0.05, p < 0.01, and p < 0.001 were denoted with *, ** and
633  *** respectively, using the student’s t-test to identify significant differences between
634  treatments. DOC: dissolved organic carbon, DON: dissolved organic nitrogen, TCd:
635 total cadmium concentration, AvCd: available Cd concentration. CK, without S.

636  indica inoculation treatment; +Si, with S. indica inoculation treatment.
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Fig. 1 Schematic illustration of the experimental procedures. (a) The root bag system,
containing the bulk and rhizosphere compartments; (b) Seedlings are transplanted into
soil of the root bags; (c) Desired input S. indica is inoculated using a 1 mL pipette and
pots are transferred to the greenhouse; (d) Sample collection and determination by

high-throughput sequencing and Nano-XRF imaging.
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Fig. 2 S. indica promotes plant growth in Cd contaminated soil. (a) Growth status of S.
alfredii planted in Cd contaminated soil without S. indica (CK) and with S. indica
inoculation treatment (+Si). Dry biomass (g-plant!) (b), Cd concentration (c), Cd
accumulation (d), Cd influx (e), translocation factors (f), bioaccumulation factors (g),
and Cd removal efficiency (h) in S. alfredii. The asterisks *, ** and *** represent
significant differences between CK and +Si treatment at p < 0.05, p < 0.01, and p <

0.001, respectively. Scale bars = 5 cm.
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Fig. 3 Nano-XRF mapping of elements (Cd, K, and S) in the cross-sections of
root-soil interface collected from CK (a) and +Si (b) treatment. Pixel brightness is
displayed in RGB. Fluorescence intensities (ug-cm?) of elements Cd, K, and S were
normalized and scaled between red (high) and blue (low) for each map. Bar = 200 pum.

CK, without S. indica inoculation treatment; +Si, with S. indica inoculation treatment.
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Fig. 4 Drivers of variation in the rhizosphere microbiota. (a) Mantel analysis maps
showed the relationship between environmental physicochemical properties and the
composition of microbial communities under without S. indica (CK) and with S.
indica inoculation treatment (+S7). Soil sulfur concentration (b), soil available sulfur
concentration (c), and sulfur concentration in plant (d) are showed. Asterisks indicate
values that are significantly different from CK and +Si treatment (*p < 0.05, **p <
0.01, ***p < 0.001). The letters a and b indicate significant differences between bulk

and rhizosphere at p < 0.05 under CK treatment. The letters a’ and b’ indicate
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significant differences between bulk and rhizosphere at p < 0.05 under +Si treatment.
Cd: soil Cd concentration, S: soil sulfur concentration, AvCd: soil available Cd
concentration, AvS: soil available sulfur concentration, DOC: soil dissolved organic
carbon, DON: soil dissolved organic nitrogen, OM: soil organic matter. CK, without S.

indica inoculation treatment; +Si, with S. indica inoculation treatment.
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673  Fig. 5 Assembly of bacterial and fungal communities in the bulk and rhizosphere soil
674  and spearman correlation analysis of keystone ASVs with rhizosphere soil and plant
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properties. (a) Box plots for alpha-diversity indices, including the faith’s phylogenetic
diversity of bacterial and fungal communities in rhizosphere and root under without S.
indica (CK) and with S. indica inoculation treatment (+S7). The asterisks *, **, and
*#% represent significant differences between CK and S. indica inoculation treatment
at p < 0.05, p < 0.01, and p < 0.001, respectively. (b) Principal coordinate analysis
(PCoA) plots for visualizing the Bray-Curtis dissimilarity matrix among the bacterial
communities and fungal communities. (¢) Relative abundances of bacterial and fungal
communities in rhizosphere soils of S. alfredii grown in Cd-contaminated soil without
S. indica (CK) and with S. indica inoculation treatment (+S7). Keystone ASVs used
for discriminating bacterial (d) and fungal (e) communities without S. indica (CK)
and with S. indica inoculation treatment (+S7) (detected by random forest model). The
assigned taxonomy of each taxon is displayed at the ASV level. The bubbles show the
ASVs numbers of bacteria (f) and fungi (g) without S. indica (CK) and with S. indica
inoculation treatment (+Si); the Spearman correlations between environmental
variables and the relative abundances of keystone ASVs are depicted in the right
heatmaps (h and i). Cd, soil Cd concentration; S, soil sulfur concentration; AvCd, soil
available Cd concentration; AvS, soil available sulfur concentration; DOC, soil
dissolved organic carbon; DON, soil dissolved organic nitrogen; OM, soil organic

matter. *p < 0.05, **p <0.01, ***p <0.001.
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Fig. 6 Microbial ecology networks and functional modules of S. alfredii rhizosphere
bacteria and fungi, and their relationships with environmental factors. (a) Networks
contained both bacterial and fungal taxa, showing a higher number of edges in the S.
indica inoculation treatment than those in CK networks. The nodes are colored
according to bacterial and fungal phylum. The edge color represents positive (blue)
and negative (purple) correlations. (b) Spearman’s correlation analysis of modules
with rhizosphere soil and plant properties in CK and S. indica inoculation treatment.
Only significant correlations (p < 0.05) are shown. Cd, soil Cd concentration; S, soil
sulfur concentration; AvCd, soil available Cd concentration; AvS, soil available sulfur
concentration; DOC, soil dissolved organic carbon; DON, soil dissolved organic
nitrogen; OM, soil organic matter. *p < 0.05, **p <0.01, ***p < 0.001. CK, without S.

indica inoculation treatment; +Si, with S. indica inoculation treatment.
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