

1 **Article type: Research Article**

2 **Title:** *Serendipita indica* drives sulfur-related microbiota in enhancing growth of
3 hyperaccumulator *Sedum alfredii* and facilitating soil cadmium remediation

4 **Running title:** *Serendipita indica* recruits sulfur-related microbiota for
5 phytoremediation

6 **Authors' names:** Yabei Qiao^{1,2}, Zhi Lin^{1,2}, Luxi Li³, Wei Jiang⁴, Jun Ge^{1,2}, Jiuzhou
7 Chen^{1,2}, Lingli Lu^{1,2}, Shengke Tian^{1,2*}

8 **Author affiliations:**

9 ¹ MOE Key Laboratory of Environment Remediation and Ecological Health, College
10 of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, P.R.
11 China.

12 ² Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang
13 University, Hangzhou 310058, P.R. China.

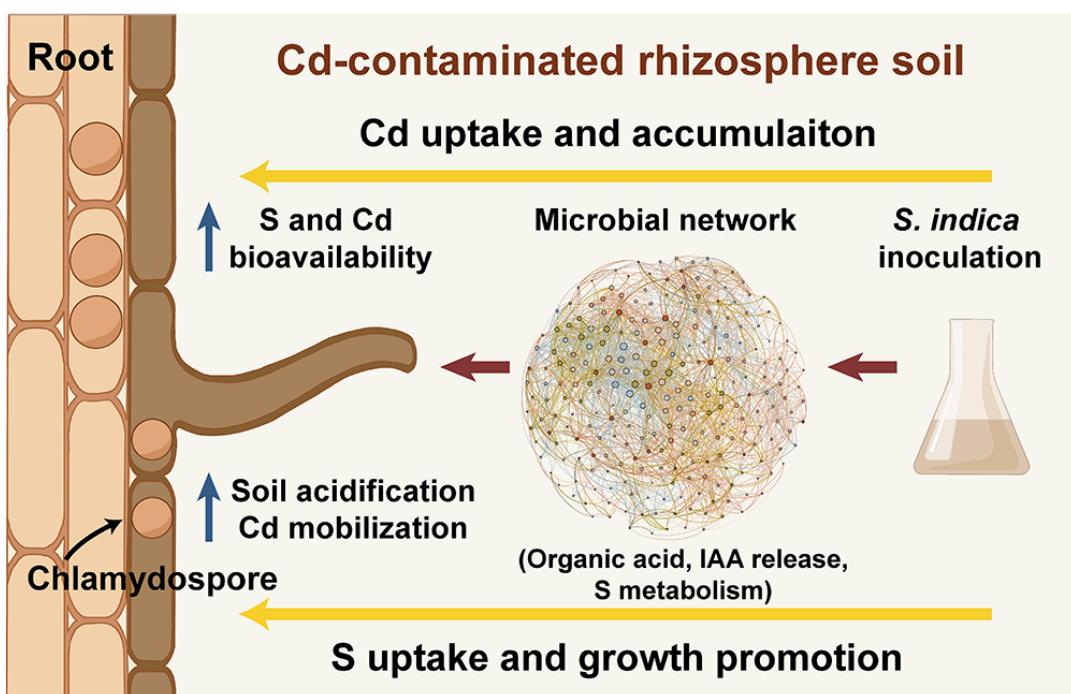
14 ³ Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439,
15 USA.

16 ⁴ Xianghu Laboratory, Biotechnology Institute, Hangzhou 311231, P.R. China.

17 *** Corresponding author:**

18 Shengke Tian, E-mail: tiansk@zju.edu.cn

19 Address: 866 Yuhangtang Rd, Hangzhou 310058, P.R. China


20 Tel: 86-571-88982515

21 Mobile: 86-15700123781

22 **Orcid:**

23 Shengke Tian: <https://orcid.org/0000-0001-8242-3581>

24 Yabei Qiao: <https://orcid.org/0000-0002-1529-0392>

25 **Table of Contents Graphic**

26

27 **Abstract**

28 Endophytic fungus *Serendipita indica* can bolster plant growth and confer protection
 29 against various biotic and abiotic stresses. However, *S. indica*-reshaped rhizosphere
 30 microecology interactions and root-soil interface processes *in situ* at the submicron
 31 scale remain poorly understood. We combined amplicon sequencing and
 32 high-resolution nano x-ray fluorescence (nano-XRF) imaging of the root-soil interface
 33 to reveal cadmium (Cd) rhizosphere processes. *S. indica* can successfully colonize the
 34 roots of *Sedum alfredii* Hance, which induces a remarkable increase in shoot biomass
 35 by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that *S.*
 36 *indica* colonization altered Cd distribution in the rhizosphere and facilitated the
 37 proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot.
 38 Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable
 39 network structure after *S. indica* inoculation. Keystone species were strongly
 40 associated with growth promotion and Cd absorption. For example, Comamonadaceae
 41 are closely related to the organic acid cycle and S bioavailability, which could
 42 facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could
 43 release auxin and boost plant biomass. In summary, we construct a mutualism system

44 for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient
45 remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.

46 **Keywords**

47 Nano-XRF, Root-soil interface, Endophytic fungus, *in situ* visualization,
48 Phytoremediation

49 **Synopsis**

50 Beneficial fungi-hyperaccumulator plants mutualism system can significantly
51 augment phytoremediation efficiency of cadmium by increasing soil sulfur migration
52 and reshaping the rhizosphere microbiota, which contributes to the safe production of
53 farmland.

54 **1. Introduction**

55 Soil cadmium (Cd) contamination has evolved into a significant and urgent global
56 problem ¹. Cd, known for its high toxicity and environmental mobility, can
57 accumulate in diverse crops, thereby posing a substantial threat to both human health
58 and the environment ^{2,3}. Long-term consumption of Cd-contaminated rice has led to
59 the itai-itai disease, which is characterized by weakened and brittle bones ^{4, 5}.
60 Consequently, effective countermeasures are required for remediating
61 Cd-contaminated soil. Phytoremediation, employing hyperaccumulator plants, offers
62 an environmentally friendly and cost-effective approach compared to physical,
63 chemical, and other biological methods ⁶⁻⁹. Hyperaccumulator plants can transfer or
64 immobilize heavy metals in the soil, thereby mitigating their adverse impacts on
65 ecosystems ¹⁰.

66 As a native Cd hyperaccumulator in China, *Sedum alfredii* Hance holds
67 significant potential for usage in the remediation of polluted sites ¹¹ and exhibits great
68 Cd extraction efficiency ¹². *S. alfredii* achieves exceptionally high Cd concentrations
69 in its young leaves and stems due to its efficient mechanisms of root uptake, xylem
70 loading, and phloem remobilization of Cd ^{13, 14}. However, phytoremediation
71 effectiveness is constrained by the slow growth and low biomass ¹⁵. Thus, the
72 optimization of phytoremediation technology hinges on the promotion plant of growth.
73 One of the most promising and sustainable approaches is the inoculation of
74 plant-growth-promoting microorganisms (PGPM) into the rhizosphere ¹⁶. This
75 approach is known for its cost-effectiveness, environmental friendliness, and low risk
76 ¹⁷, which not only significantly bolsters plant resistance against various environmental
77 stressors (e.g., drought, salinity, and heavy metals), but also improves overall plant
78 growth and yield ¹⁸⁻²⁰. Previous studies have pointed out its significant enhancements
79 in germination rates, seedling survival, and plant biomass ²¹⁻²³. PGPMs also regulate
80 heavy metal bioavailability through the production of siderophores, organic acids, and
81 biosurfactants, as well as stimulating the release of root exudates ²⁴. Additionally,
82 heavy metal-resistant endophytes have been shown to enhance the mobilization of Pb
83 in the rhizosphere, further contributing to phytoremediation efficiency ²⁵. Moreover,

84 when endophytes are added to heavy metal-contaminated soil, they can change the
85 structure and composition of microbial community. Previous researches have
86 highlighted the key role of microbiota in *S. alfredii* rhizosphere, with specific focus on
87 the bacterial and archaeal communities, in controlling the bioavailability, uptake, and
88 transformation processes of essential nutrients and metal ²⁶⁻²⁸. Since the enhancement
89 of phytoremediation efficiency is associated with microbe species ^{29, 30}, it is necessary
90 to raise the core strains for phytoremediation.

91 *Serendipita indica* (formerly known as *Piriformospora indica*), a fungus
92 belonging to the Serendipitaceae family within the order Sebacinales ³¹, has been
93 extensively studied as a root-colonizing fungus with a wide range of beneficial effects
94 on numerous host plants ^{32, 33}. This fungal species establishes symbiotic associations
95 with a broad spectrum of over 200 plant species, facilitating plant growth and
96 improving nutrient and water absorption ³⁴. Furthermore, this mutualistic association
97 protects against pathogens and mitigates the adverse effects of various stressors,
98 including acidity, desiccation, and heavy metal toxicity ³⁵. Shahabivand, et al.
99 demonstrated that *S. indica* effectively improves the tolerance of sunflower
100 (*Helianthus annuus* L.) to Cd toxicity by immobilizing Cd in the root system ³⁶.
101 Meanwhile, *S. indica* can alter root-associated microbiome structure to protect plant
102 growth and enhance phytoremediation, such as king grass (*Pennisetum purpureum* ×
103 *P. americanum*) and *Artemisia annua* L. ³⁷⁻³⁹. *S. indica* also plays a key role in
104 enhancing plant sulfur (S) nutrition. S nutrition is a key element in conferring stress
105 tolerance and promoting heavy metal detoxification ^{40, 41}. This is important for
106 improving the stress adaptation and detoxification capabilities of hyperaccumulator
107 plants and enhancing the phytoremediation. However, it is still unknown whether *S.*
108 *indica* can enhance phytoremediation by reshaping the microecology of the
109 rhizosphere microbial community of the hyperaccumulator plants. Hence, it is
110 essential to elucidate the mechanisms governing Cd tolerance, absorption, and
111 rhizosphere microbiota in the symbiotic system of hyperaccumulators and *S. indica*.
112 This aimed was to increase the efficiency of phytoremediation and safeguard
113 agricultural production on contaminated farmlands.

114 In our research, we harnessed the Cd hyperaccumulator *S. alfredii* as the plant
115 and the endophyte *S. indica* as a fungal inoculant for the remediation of
116 Cd-contaminated soils. We aim: I) to evaluate the phytoremediation potential of the
117 hyperaccumulator *S. alfredii* and the endophyte *S. indica* in a pot system by
118 measuring plant biomass and determining Cd accumulation, etc.; II) to investigate
119 how the rhizosphere microbial community affects element migration and absorption at
120 the root-soil interface under *S. indica* treatment utilizing synchrotron-based X-ray
121 fluorescence (SR-XRF) *in situ* imaging at the submicron scales; III) to explore the
122 correlation between phytoremediation efficiency and rhizosphere microecological
123 characteristic.

124 **2. Materials and methods**

125 **2.1. Soil materials**

126 We collected topsoil (0–20 cm) from a disused farmland near Hangzhou, China,
127 where crop growth is impaired due to heavy metal contamination resulting from
128 mining activities. The initial soil properties are as follows: pH 7.4, total carbon
129 content of 18.12 g·kg⁻¹, total phosphorus content of 472.63 mg·kg⁻¹, total nitrogen
130 content of 10.07 g·kg⁻¹, S content of 310.23 mg·kg⁻¹, total Cd content of 6.47 mg·kg⁻¹,
131 and cation exchange capacity (CEC) of 16.60 cmol (+) ·kg⁻¹. According to the
132 regulations provided in China's Environmental Quality Evaluation Standards for
133 Farmland of Edible Agricultural Products (HJ/T 332-2006) and the Environmental
134 Quality Standard for Soils of China (GB 15618-1995), the soil was categorized as
135 severely contaminated with Cd.

136 **2.2. Plant growth and *S. indica* co-cultivation**

137 *S. alfredii* seedlings were sourced from a historical Pb/Zn mining site in Quzhou,
138 Zhejiang Province, China. It was reported as a powerful Cd hyperaccumulator and can
139 offer a useful plant material for phytoremediation of Cd-contaminated soils ¹¹. To
140 reduce internal metal content, these seedlings were grown for more than three
141 generations in uncontaminated soil. Subsequently, we selected healthy and uniformly
142 sized plant shoots for two-week pre-cultivation in a basic nutrient solution to facilitate
143 root development, as outlined in Lu, et al. ²⁸.

144 The *S. indica* strain was kindly provided by Prof. Wenying Zhang from Yangtze
145 University, China. To cultivate the *S. indica* mycelium, we utilized a modified liquid
146 *Aspergillus* medium ⁴² and maintained it at 28 ± 2°C with agitating at 150 rpm in an
147 orbital shaker, and incubated in the absence of light for two weeks ⁴³. Fresh mycelia
148 were harvested from the liquid medium, weighed, and subsequently diluted to a
149 concentration of 250 mg·mL⁻¹ using sterile water. To aid in the grinding process, one
150 steel bead (Ø 2.0 – 4.0 mm) was added per milliliter of the mycelial suspension before
151 undergoing two cycles of grinding, each lasting for 10 seconds at a frequency of 50
152 Hz, employing a rotor-stator homogenizer (Shanghai Wonbio Biotechnology). The
153 mycelium was washed twice with nine volumes of water, followed by centrifugation
154 at 700 × g for 2 minutes. The final pellets were resuspended in sterile water and
155 adjusted to a concentration of 1 g·L⁻¹.

156 After homogeneous *S. alfredii* seedlings were transplanted into pots (Fig. 1b), *S.*
157 *indica*-treated microcosms were inoculated with 1.6 mL of a mycelial suspension,
158 containing 100 mg of mycelium per pot, using a pipettor (Fig. 1c) as described ⁴⁴. The
159 control pots received an equivalent volume of sterile water as an amendment.

160 **2.3. Pot experiment design**

161 The experiment was conducted in the greenhouse located at Zijingang Campus,
162 Zhejiang University, Zhejiang, China. Controlled environmental conditions included a
163 16/8-hour light/dark cycle, day/night temperatures of 30/24°C, relative humidity
164 levels of 70%/85%, and a photon flux density of 400 μmol·m⁻²·s⁻¹.

165 The treatments included the following: (i) unplanted soil (unplanted, Un); (ii) *S.*
166 *alfredii*-planted soil without *S. indica* (control, CK); (iii) *S. alfredii*-planted soil
167 inoculated with *S. indica* (+Si); (iv) *S. alfredii*-planted γ-irradiated soil without *S.*
168 *indica*; (v) *S. alfredii*-planted γ-irradiated soil inoculated with *S. indica*. The soil
169 samples were subjected to air-drying, passed through a 2 mm sieve, and placed into
170 plastic pots measuring 13.00 cm in diameter and 14.50 cm in height. To distinct
171 between the rhizosphere and bulk soil, we used a polyester mesh root bag with a pore
172 size of 300 mesh, measuring 8 cm in diameter and 18 cm in height. The root bag was
173 filled with 200 g of soil and positioned within each pot. To surround the root bags, an

174 additional 550 g of soil was integrated as bulk soil (Fig. 1a). Nylon meshes were
175 placed between the compartments to constrain root hair movement while ensuring
176 unobstructed water and solute passage. To uphold soil moisture at around 60% of its
177 water-holding capacity, deionized water was utilized. Each treatment was replicated in
178 six separate pots, and these pots were randomly arranged for the experiment.

179 **2.4. Soil sampling and plant harvesting**

180 Following a 60-day cultivation period, the plants were harvested. We collected
181 rhizosphere soil by shaking the plant roots and placing the soil adhering to the roots
182 into a 20 ml phosphate-buffered saline solution. The rhizosphere compartment was
183 formed from the soil dislodged from the plant roots, and the bulk soil was collected
184 from the outer layer of the soil. Subsequently, the plant and soil samples were
185 transported to the laboratory on dry ice. After transport, the samples were stored at a
186 temperature of -80°C until the extraction of DNA was conducted. More details about
187 elemental analyses are shown in *Supplementary Materials and Methods*.

188 **2.5. Histochemical analysis**

189 To visualize the colonization of roots by *S. indica*, we initially treated fresh root
190 samples by immersing them in a 10% KOH solution for 15 min, followed by
191 acidification using 1 M HCl for another 10 min. Then these samples were examined
192 using a light microscope (Nikon, Tokyo, Japan). Detecting chlamydospores within the
193 roots provided a clear indication of successful colonization (refer to Supplemental Fig.
194 S1).

195 **2.6. Element Mapping by Nano-XRF**

196 We sliced the root-soil interface samples to a thickness of 120 μm for Nano-XRF
197 analysis using a cryotome (CM1950, Leica Biosystems) at -20°C, as described ⁴⁵.
198 Nano-XRF imaging was executed (Fig. 1d) at the Advanced Photon Source 2-ID-D
199 hard X-ray microprobe beamlines within a helium atmosphere ^{46, 47}. X-rays with an
200 incident energy of 28 keV were employed to excite elements varying from potassium
201 (K) to Cd. Utilizing a Fresnel zone plate, we focused the X-ray beam onto the sample,
202 achieving a spot size of $1 \times 1 \mu\text{m}$ and $500 \times 500 \text{ nm}$. The sample image was then
203 systematically raster-scanned, with each pixel having a dwell time of 10 ms. The

204 X-ray fluorescence emitted by the sample was collected using an energy-dispersive
205 silicon drift detector. Subsequently, maps depicting the distribution of Cd, K, and S
206 were generated and analyzed using the MAPS software ⁴⁸. More procedures are
207 showed in *Supplementary Materials and Methods*.

208 **2.7. DNA extraction and amplicon sequencing**

209 Soil genomic DNA was isolated using the MOBIO DNeasy PowerSoil kit (Qiagen,
210 Valencia, CA, USA). Subsequently, we quantified the DNA samples by
211 spectrophotometry, using a Nanodrop spectrophotometer (Nanodrop Technologies
212 Inc., Wilmington, DE, USA), and then stored at -80°C before the amplification
213 process (Fig. 1d). The amplification of the V3-V4 regions of bacterial 16S rRNA
214 genes was carried out using the primer sets 338F
215 (5'-ACTCCTACGGGAGGCAGCA-3') and 806R
216 (5'-GGACTACHVGGGTWTCTAAT-3') ^{49,50}. The fungal ITS1 region were amplified
217 using primers ITS1F (5'-CTTGGTCATTAGAGGAAGTAA-3') and ITS2-2043R
218 (5'-GCTGCGTTCTTCATCGATGC-3') ⁵¹.

219 PCR reactions were conducted following the established protocol ⁵². We
220 performed high-throughput sequencing of PCR amplicons using 250bp paired-end
221 sequencing on the Illumina HiSeq 2500 platform (Guangdong Magigene
222 Biotechnology Co., Ltd. Guangzhou, China) (Fig. 1d). Microbiome 16S rRNA and
223 ITS gene sequencing were analyzed utilizing the Quantitative Insights into Microbial
224 Ecology 2 (QIIME2) platform ⁵³. Initially, raw reads underwent demultiplexing using
225 the "q2-demux" plugin. Subsequently, the sequences were subjected to denoising
226 employing the DADA2 algorithm. The "q2-dada2" plugin ⁵⁴ was utilized to get a table
227 of amplicon sequence variants (ASVs).

228 ASVs were then annotated by aligning them with the SILVA reference database
229 version 138 for bacteria ⁵⁵ and the UNITE database version 6.0 for fungi
230 (<https://unite.ut.ee/>) ⁵⁶. ASVs from chloroplasts or mitochondria were excluded from
231 the subsequent analysis.

232 **2.8. Data analysis**

233 To examine the variations in plant and soil parameters among different soil

234 compartments, SPSS 26.0 (IBM Corp., Armonk, NY, USA) was used for statistical
235 analysis. We used the Shapiro-Wilk test to assess the normality of the residuals and
236 the Levene's test to evaluate the homoscedasticity of the data. We conducted student's
237 t-test or analysis of variance and subsequently performed post hoc comparisons with
238 Tukey's Honestly Significant Difference test. The translocation factor (TF) and the
239 bioaccumulation factor (BF) were calculated to quantify the efficiency of
240 phytoextraction and evaluate the capacity of transporting or accumulating Cd^{57,58}. TF
241 value represents the ratio of contaminant concentration in the plant shoots to that in
242 the roots, while the BF denotes the ratio of contaminant concentration in the plant to
243 that in the soil. We utilized Origin v2019b (OriginLab Corp., Northampton, MA, USA)
244 to visualize the relative abundances of bacterial and fungal communities via 100%
245 stacked columns. For statistical analysis and figure generation, we employed the R
246 program v4.3.0 (<http://www.r-project.org/>). More statistical analyses are showed in
247 *Supplementary Materials and Methods*.

248 **2.9. Network construction based on the random matrix theory**

249 We conducted microbial co-occurrence network analysis employing Spearman's
250 correlation method to distinguish pairwise associations among ASVs⁵⁹. ASVs with
251 relative abundances below 0.02% were excluded. Afterward, we applied the
252 Benjamini–Hochberg FDR control procedure⁶⁰ to adjust *p* values for multiple
253 comparisons. To establish Spearman correlation thresholds, we employed the Random
254 Matrix Theory (RMT) method⁶¹. Finally, correlations were retained if their adjusted
255 *p*-value was below 0.05, and they achieved a score above the specified threshold.
256 Network properties were computed using the Molecular Ecological Network Analysis
257 pipeline (MENA, <http://ieg2.ou.edu/MENA/>)⁶².

258 **3. Results and Discussion**

259 *S. indica* plays a significant role in enhancing plant growth and heavy metal
260 accumulation, benefiting phytoremediation strategies³⁸. This fungal endophyte is
261 known to improve nutrient uptake^{40,44,63}, modulate hormone levels^{64,65}, and enhance
262 stress tolerance^{37,66} in plants, facilitating greater biomass and heavy metal uptake in
263 contaminated environments. The interactions between *S. indica* and plant hosts such

264 as king grass^{38, 39} and *Artemisia annua* L.³⁷ have been documented, highlighting
265 increased accumulation capabilities for heavy metals such as Cd. However, the
266 specific rhizosphere microbiota mechanisms underpinning these enhancements,
267 particularly in hyperaccumulators like *S. alfredii*, remain poorly understood. We
268 aimed to delve into the soil-plant-microbe interactions that contribute to improving
269 the phytoremediation efficiency of hyperaccumulator *S. alfredii*.

270 **3.1. *S. indica* colonization enhanced S uptake and growth of *S. alfredii* from soil**

271 To assess the impact of *S. indica* on the phytoremediation efficiency of *S. alfredii*,
272 we cultivated *S. alfredii* plants in Cd-contaminated soil under CK and +Si treatment.
273 We observed the chlamydospores of *S. indica* were formed in the root after
274 colonization (Fig. S1), suggesting the successful inoculation of *S. indica* in the root of
275 *S. alfredii*. Earlier researchers found that *S. indica* improves nutrients uptake from soil
276 and promotes plant growth⁶⁷. We also found that shoot biomass was significantly
277 improved by 211.32% under +Si treatment (Fig. 2a, b). *S. indica* employs diverse
278 growth-promoting mechanisms, including regulating hormones^{68, 69}, enhancing
279 tolerance⁷⁰, and facilitating nutrient acquisition^{40, 44, 71}. In our study, *S. indica*
280 enhanced plant growth through increasing plant S uptake (Fig. 4). Similarly, *SiSulT*, as
281 a sulfate transporter of *S. indica* facilitates sulfate absorption by maize plants⁴⁰.
282 Furthermore, nano-XRF images showed that S hotspots were exhibited in the root and
283 rhizoplane soil on the submicron scale under +Si treatment (Fig. 3b). A distinct
284 distribution pattern of S on the rhizoplane, tightly encircling the roots. In contrast,
285 under CK treatment, S showed an irregular distribution within the rhizosphere (Fig.
286 3a). This indicated that *S. indica* inoculation activated rhizosphere soil S, which
287 promoted plants to uptake S from soil to the root. S is a critical component of
288 glutathione and phytochelatins⁷²⁻⁷⁵, which are essential for detoxification processes
289 and chelating heavy metals such as Cd. To sum up, *S. indica* inoculation helped
290 transport S to the plant.

291 Significant decreases were observed in the K localization of rhizosphere soil (Fig.
292 3). This depletion is a common response in plant-soil interactions. *S. indica* enhanced

293 plants' nutrient uptake capabilities^{76,77}. The symbiotic relationship with *S. indica* not
294 only boosts K absorption due to increased metabolic needs and growth but also
295 influences root architecture, promoting increased branching and thus expanding the
296 root surface area for more effective nutrient extraction.

297 **3.2. *S. indica* colonization facilitated Cd absorption and soil Cd mobilization**

298 *S. indica* not only promoted plant growth but also facilitated Cd uptake by *S. alfredii*.
299 In our study, although the Cd concentration showed no significant difference in the
300 shoot under +*Si* treatment (Fig. 2c), the Cd accumulation increased by 235.72%
301 remarkably in the shoot of *S. alfredii* (Fig. 2d). Cd influx reached 3.98 mg Cd·g⁻¹ dry
302 weight, which was 2.73-fold higher than that under CK treatment (Fig. 2e). Previous
303 research also showed that *S. indica* increased Cd uptake by king grass³⁸. Meanwhile,
304 we also found that soil Cd concentrations decreased significantly by 32.17% in
305 rhizosphere soils under +*Si* treatment (Table 1). Liu, et al. also found that endophyte
306 led to a significant decrease of soil Cd concentration⁷⁸.

307 Moreover, TFs, BFs, and removal efficiency are used to gauge the
308 phytoextraction potential of plants⁷⁹. *S. indica* inoculation significantly promoted TFs,
309 BFs and removal efficiency of Cd (Fig. 2f, g and h). The average TF value (7.58)
310 under CK treatment was significantly lower than that (8.92) under +*Si* treatment.
311 Higher TFs value indicated that *S. indica* can promote Cd transport from root to shoot.
312 But previous researchers found that *S. indica* reduced the TFs of arsenic (As) and Cd
313 in rice⁸⁰ and sunflower³⁶ by sequestering these heavy metals within the root systems.
314 This is due to variations in heavy metal transport capacities among different plant
315 species. Hyperaccumulator plants can transport heavy metals from root to shoot
316 efficiently^{13, 81-83}. *S. alfredii* is recognized as a hyperaccumulator plant celebrated for
317 its high-efficiency mechanism of translocating nutrients from roots to shoots¹³. *S.*
318 *alfredii* exhibited shoot Cd accumulation of 96.6 mg·kg⁻¹, with a corresponding BF of
319 29.5 in soils that harbored Cd at 0.90 mg·kg⁻¹. Meanwhile, it phytoextracted
320 approximately 540 µg Cd over six months⁸⁴. However, we found that the average BF
321 exhibited a significant increase under +*Si* treatment. The average BF greatly reached
322 58.02, representing a substantial enhancement compared to CK treatment (Fig. 2g).

323 The BF was used to assess the ability of plants to transport or accumulate Cd from the
324 soil into their shoots, revealing an enhanced BF in plants associated with *S. indica*.
325 This increase is attributed to several factors: the fungus induces a larger root biomass
326 and surface area, enhancing soil contact and Cd uptake ^{85, 86}; it alters the rhizosphere
327 chemistry, increasing Cd solubility through reduced pH and the release of chelating
328 agents ³⁸; and it stimulates the production of metal-binding proteins and
329 phytochelatins that aid in Cd detoxification and accumulation ^{87, 88}. These findings
330 highlight the potential of *S. indica* to not only enhance plant growth and stress
331 tolerance but also improve phytoremediation efficiency in Cd-contaminated soils,
332 offering valuable insights into the ecological and practical applications of using
333 endophytic fungi in environmental pollution management. Furthermore, Cd
334 accumulation in *S. alfredii* shoots impressively reached 593.15 µg in just 60 days
335 under +Si treatment (Fig. 2d). During the remediation, the bioavailability of soil
336 heavy metal determines the remediation efficiency ⁸⁹. *S. indica* directly increases root
337 biomass by producing indole-3-acetic acid (IAA) and organic acid ⁶⁵. Due to the
338 increase of organic acid, reduced rhizosphere soil pH could help Cd and S
339 mobilization and absorption (Table 1 and Fig. 4c). Jiang, et al. also believed that
340 important targets and signaling components of phytohormones in response to abiotic
341 stress ⁹⁰.

342 To explore *in situ* distribution of Cd in the root-soil interface under +Si treatment,
343 high-resolution nano-XRF mapping was utilized on cross-sections of the root-soil
344 interface. We found that *S. indica* inoculation significantly altered Cd distribution in
345 the root-soil interface. Cd were preferentially located in the rhizosphere but less in the
346 root under CK treatment (Fig. 3a). Under +Si treatment, Cd were preferentially
347 allocated to the root and the rhizoplane, tightly encircling the roots with the highest
348 intensity found within the rhizoplane (Fig. 3b). To better show the difference, images
349 were digitally extracted and made into a composite for comparison (Fig. S5). Cd
350 intensity values of the selected areas (marked with a white scanning lines of Fig. 3)
351 across the root-soil interface (from L1 to L2) are shown. Nano-XRF mapping
352 revealed that *S. indica* inoculation enhances the root system's ability to absorb Cd

353 from the soil. Prior researches also showed PGPM depends on the activation of soil
354 heavy metals to enhance phytoremediation ^{91, 92}. The bulk and rhizosphere soil pH
355 exhibited a significant decrease under +Si treatment (Table 1). The decrease of soil pH
356 contributes to an increased soil Cd availability and absorption by plant roots.
357 Moreover, S may improve the Cd availability of the rhizosphere soils in previous
358 researches ^{93, 94}. To explore the relationship between S and Cd, we extracted the
359 intensity values of Cd and S specifically from the rhizoplane of the Nano-XRF image
360 (Fig. 3) and conducted linear fitting. This analysis revealed a significant correlation
361 between Cd and S in both CK and +Si treatments (Fig. S6). Moreover, under +Si
362 treatment, the correlation was notably stronger. This indicates that S may facilitate the
363 soil Cd mobilization. Localized measurements at the root-soil interface are crucial for
364 capturing the true dynamics between these elements using Nano-XRF. Therefore, *S.*
365 *indica* enhances Cd accumulation in the host plant and augments phytoremediation
366 efficiency by promoting both plant biomass and Cd uptake from the soil. The *S.*
367 *indica*-*S. alfredii* mutualism systems have great potential in phytoremediation. The
368 systems facilitated Cd bioavailability of soil, Cd uptake, and Cd accumulation of
369 hyperaccumulator shoot.

370 **3.3. *S. indica* colonization recruited specific microbial taxa related to S cycle**

371 *S. indica* inoculation resulted in a remarkable increase of shoot biomass by 211.32%
372 in native soil (Fig. 2b). Conversely, in γ -irradiated soil, the improvement in shoot
373 biomass was comparatively lower, with only a 25.93% increase observed (Table S1).
374 These results suggested that soil microbial communities played a key role, consistent
375 with recent studies that strong correlations between root endophytic fungi and the
376 composition of soil microbial communities ⁹⁵.

377 To delve deeper into the factors affecting rhizosphere microbial variation, we
378 conducted a Mantel analysis to assess the connection between microbial communities
379 and environmental variables (Fig. 4a). The assessment of the microbial communities
380 was performed using Mantel's p and Mantel's r. We found that the rhizosphere
381 communities were significantly affected by biomass, shoot S concentration, available
382 S concentration, organic matter concentration, soil total S concentration, and pH

383 under +*Si* treatment (Fig. 4a). Meanwhile, soil total S concentration and available S
384 concentration in the rhizosphere were increased by 21.50% and 68.85%, respectively
385 (see Fig. 4b and c). We also found that *S. indica* significantly enhanced the S
386 concentration of the shoot (Fig. 4d).

387 Utilizing Faith's phylogenetic diversity index, a significant enhancement of both
388 bacterial and fungal community diversities was showed in the rhizosphere under +*Si*
389 treatment (Fig. 5a, Table S2). This increase in phylogenetic diversity does not
390 correspond to changes in observed OTUs, Shannon index, or evenness, as these
391 indices did not show significant differences between treatments (Table S2). This
392 distinction highlights that the +*Si* treatment enriches the rhizosphere in more
393 phylogenetically diverse taxa. The principal coordinates analysis (PCoA) illustrated a
394 distinct segregation among the unplanted soil, bulk soil, and rhizosphere soil for both
395 bacteria and fungi (Fig. 5b). But it seems like an unclear segregation between CK and
396 +*Si* treatment groups (Fig. 5b). This aligns with previous findings that *S. indica*
397 actively modulates the diversity of both bacteria and fungi in the rhizosphere soil³⁷.
398 When it comes to the microbial community composition, a diverse array of
399 predominant bacterial species was identified, encompassing eight phyla, such as
400 Proteobacteria, Bacteroidota, Actinobacteria, Chloroflexi, Acidobacteriota,
401 Gemmatimonadetes, Myxococcota, and Verrucomicrobiota. In addition, the phyla of
402 Ascomycota, Glomeromycota, and Basidiomycota were identified as the prevailing
403 fungal species, accounting for most of the fungi present. A small proportion of ASVs
404 (less than 5%) were categorized as Rozellomycota and Mortierellomycota (Fig. 5c).

405 DESeq2 analysis elucidated variations in ASV levels (Table S3). Fifteen core
406 bacterial ASVs and two core fungal ASVs were identified in +*Si* treatment. The
407 abundances of specific bacteria and fungi enriched significantly in the rhizosphere
408 under +*Si* treatment (Fig. 5d, e, f, and g). These were identified as the dominant
409 members of the rhizosphere microbiomes. As shown in Fig. 5h and i, the abundances
410 of *Lacunisphaera*, Pedosphaeraceae, *Bradyrhizobium*, *Novosphingobium*,
411 Comamonadaceae, and *Entoloma* (BASV1197, 1236, 890, 921, 964 and FASV213)
412 displayed positive correlations with soil AvS and S concentration, plant biomass, and

413 shoot S concentration (blue arrow in Fig. 5h and i). In contrast, they exhibited a
414 negative correlation with soil pH. *Bradyrhizobium* and *Novosphingobium* are involved
415 in S oxidation ^{96, 97}, and strengthen soil metabolic ability ⁹⁸. The Comamonadaceae
416 family played a pivotal role in mineralization of carbon-bound S, transformation of
417 soil sulfate between organic and inorganic states ⁹⁹. S desulfonation reactions that
418 provide an important source of S for wheat from soil ¹⁰⁰.

419 Moreover, the keystone microbial taxa were related to plant growth promotion
420 and Cd tolerance under +Si treatment (Fig. 5h and i), such as Pedosphaeraceae and
421 *Bradyrhizobium*. Pedosphaeraceae is a metabolic generalist with vital ecological
422 functions. It can promote plant growth and tolerate Cd bio-toxicity ^{101, 102}.
423 *Bradyrhizobium* is not only endophytic in rice plants and contributes to improving
424 crop yield ^{103, 104}, but also directly participates in reducing the oxidative damage of Cd
425 ¹⁰⁵. It is regarded as a potential bacterial resource for maintaining community stability
426 and Cd contamination bioremediation ¹⁰⁶. Further, we also found that *Piscinibacter*
427 and *Entoloma* were related to soil acidification (Fig. 5e), which is the first time to be
428 reported. These specific microbiomes could be potential microbial regulators for the
429 optimization of Cd-contaminated phytoremediation. We concluded that *S. indica*
430 could recruit specific microbiomes related to the S cycle, growth promotion, and Cd
431 uptake of plant, thereby reshaping rhizosphere microecology. The rhizosphere
432 microecology could promote S absorption, plant growth, soil Cd mobilization, and
433 phytoremediation efficiency.

434 **3.4. *S. indica* inoculation greatly alters microbial community network topologies**

435 Not only is it important to decipher the keystone taxa, but the network hubs correlated
436 with the *S. indica* and host plants are vital for utilizing plant microbiota to boost plant
437 growth and health ^{107, 108}. Network analyses of MENs were performed to unveil the
438 microbial interactions within the bacterial and fungal communities, elucidating
439 distinct topological characteristics (Table S4 and Fig. 6a). We depicted microbial
440 interactions with microbial ecological networks in both the CK and +Si treatment (Fig.
441 6a). Network analysis was utilized to acquire co-occurrence patterns between bacteria
442 and fungi. The modularity threshold exceeded 0.4 (Table S4), thus signifying a typical

443 module structure ^{109, 110}. The values of edge numbers, average degree (avgK), average
444 clustering coefficient (avgCC), and modularity in empirical networks under +Si
445 treatment were higher than those under CK treatment (Table S4), representing greater
446 complexity and connectivity ^{62, 111}. Previous research also showed that beneficial
447 fungi generate positive feedbacks ¹¹², The positive feedbacks enhance their
448 competitiveness and interactions with neighbors to alter microbial community
449 structures ¹¹³. Therefore, *S. indica* inoculation shaped more steady microbial networks
450 of soil.

451 Stable microbial networks can provide a favorable environment for shoot and
452 root development to optimize nutrient cycling and transformation processes ^{114, 115}.
453 Under +Si treatment, Module 1 was highly correlated with plant biomass, shoot S
454 concentration, and AvS, while Module 4 was correlated with soil available Cd (Fig.
455 6b). Comamonadaceae (class Gammaproteobacteria) of Modules 1 commonly inhabit
456 the rhizosphere soils of terrestrial plants, which promote plant growth ¹¹⁶. Moreover,
457 they are closely related to the citric acid cycle. The hydrogen ions (H⁺) in the citric
458 acid cycle decreased soil pH significantly, regulating soil properties and the microbial
459 community networks ¹¹⁷. Decreased soil pH facilitated heavy metals and S
460 mobilization. Moreover, Comamonadaceae is involved in desulfonation reactions ¹⁰⁰,
461 potentially providing S source of plant nutrition in the rhizosphere of *S. alfredii*. In
462 addition, Sphingomonadaceae (class Alphaproteobacteria) of Module 4 was found in
463 the rhizosphere. Sphingomonadaceae can produce and release ACC deaminase, IAA,
464 and siderophores. These contribute to root elongation and heavy metal tolerance of
465 plants ^{118, 119}, resulting in greater plant biomass and Cd accumulation. Environmental
466 functional modules played direct or indirect roles in activating and facilitating S and
467 Cd uptake by roots, thereby fostering plant growth and Cd accumulation. The
468 rhizosphere soil microbial networks exhibited robust correlations with the
469 phytoextraction potential of plant nutrients under +Si treatment. PLS-PM analysis
470 also extensively elucidated how different factor strategies influenced both the
471 rhizosphere microbial ecology and Cd remediation efficiency from the soil (Fig. S4).
472 The model exhibited a good fit to the data, with a goodness-of-fit (GoF) value of 0.82.

473 *S. indica* treatment directly affected soil pH, soil available S concentration,
474 rhizosphere microbial communities, and Cd remediation efficiency. The Cd
475 remediation efficiency was indirectly influenced by rhizosphere microbial
476 communities. Therefore, reshaped microbial community networks synergistically
477 could promote plant growth and enhanced the accumulation of heavy metals in the
478 shoot.

479 In conclusion, we successfully visualized the submicron-scale spatial distribution
480 of key elements at the root-soil interface induced by *S. indica* inoculation using
481 Nano-XRF for the first time. *S. indica* can colonize *S. alfredii* roots and recruit
482 specific microbial taxa related with plant growth promotion and nutrient and heavy
483 metal mobilizations in the rhizosphere. *S. indica* could help plants thrive and increase
484 Cd accumulation in plants, having potential of endophyte-assisted phytoremediation
485 to regulate microecology characteristics and its promising application in sustainable
486 agriculture. In the future, we will focus on the cellular-level distribution of elements,
487 metabolomics, and metagenomic analysis to further elucidate the interaction between
488 microbes, plants, and rhizosphere processes of heavy metals in contaminated
489 farmland.

490 **Author information**

491 **Corresponding Author**

492 **Shengke Tian** - MOE Key Laboratory of Environment Remediation and Ecolog
493 ical Health, College of Environmental & Resource Science, Zhejiang Universi
494 ty, Hangzhou 310058, P.R. China; Zhejiang Provincial Key Laboratory of Su
495 btropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P.R.
496 China; orcid.org/0000-0001-8242-3581; Phone: 86-15700123781; E-mail: tian
497 sk@zju.edu.cn.

498 **Authors**

499 **Yabei Qiao** - MOE Key Laboratory of Environment Remediation and Ecological
500 Health, College of Environmental & Resource Science, Zhejiang University,
501 Hangzhou 310058, P.R. China; Zhejiang Provincial Key Laboratory of Subtropic

502 *Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P.R. China;*
503 orcid.org/0000-0002-1529-0392

504 **Zhi Lin** - *MOE Key Laboratory of Environment Remediation and Ecological Health,*
505 *College of Environmental & Resource Science, Zhejiang University, Hangzhou*
506 *310058, P.R. China; Zhejiang Provincial Key Laboratory of Subtropic Soil and*
507 *Plant Nutrition, Zhejiang University, Hangzhou 310058, P.R. China.*

508 **Luxi Li** – *Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois*
509 *60439, USA.*

510 **Wei Jiang** - *Xianghu Laboratory, Biotechnology Institute, Hangzhou 311231, P.R.*
511 *China.*

512 **Jun Ge** - *MOE Key Laboratory of Environment Remediation and Ecological Health,*
513 *College of Environmental & Resource Science, Zhejiang University, Hangzhou*
514 *310058, P.R. China; Zhejiang Provincial Key Laboratory of Subtropic Soil and*
515 *Plant Nutrition, Zhejiang University, Hangzhou 310058, P.R. China.*

516 **Jiuzhou Chen** - *MOE Key Laboratory of Environment Remediation and Ecological*
517 *Health, College of Environmental & Resource Science, Zhejiang University,*
518 *Hangzhou 310058, P.R. China; Zhejiang Provincial Key Laboratory of Subtropic*
519 *Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P.R. China.*

520 **Lingli Lu** - *MOE Key Laboratory of Environment Remediation and Ecological*
521 *Health, College of Environmental & Resource Science, Zhejiang University,*
522 *Hangzhou 310058, P.R. China; Zhejiang Provincial Key Laboratory of Subtropic*
523 *Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P.R. China.*

524 **Supporting Information**

525 Supplemental methods and additional results. Dry biomass and Cd concentration of *S.*
526 *alfredii* (**Table S1**); microbial α -diversity (**Table S2**); differential ASVs assessed by
527 DESeq2 (**Table S3**); topological properties of networks (**Table S4**); soil microbial
528 community composition (**Table S5**); microscopy of *S. indica* chlamydospores (**Fig.**
529 **S1**); Cd, K, and S distribution in root-soil interface (**Fig. S2**); Z-P plot of ASVs (**Fig.**
530 **S3**); PLS-PM analysis (**Fig. S4**); Cd intensity of the selected areas (**Fig. S5**);
531 correlation between Cd vs S intensities (**Fig. S6**).

532 **Notes**

533 The authors declare no competing financial interest.

534 **Acknowledgments**

535 This work has been funded by the National Natural Science Foundation of China
536 (grant number 42377021), the Natural Science Foundation of Zhejiang Province
537 (grant number LZ22D010004), the National Key Research and Development Program
538 of China (grant numbers 2023YFC3706700), the National Natural Science
539 Foundation of China (grant number 41977130), and the Department of Science and
540 Technology of Zhejiang Province (grant number 2023C02002). This research used
541 resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office
542 of Science user facility operated for the DOE Office of Science by Argonne National
543 Laboratory under Contract No. DE-AC02-06CH11357.

544 **Abbreviations**

545 As, arsenic; avgK, average degree; ASVs, amplicon sequence variants; avgCC,
546 average clustering coefficient; BF, bioaccumulation factor; Cd, cadmium; DOC,
547 dissolved organic carbon; DON, dissolved organic nitrogen; Faith_pd, faith's
548 phylogenetic diversity index; IAA, indole-3-acetic acid; LSD, least significant
549 difference; MENA, molecular ecological network analysis pipeline; MENs, molecular
550 ecological networks; Nano-XRF, Nano x-ray fluorescence; OM, soil organic matter;
551 K, potassium; P, phosphorus; PCoA, principal coordinates analysis; PGPM,
552 plant-growth-promoting microorganisms; Pi, among-module connectivity; PLS-PM,
553 partial least squares path modeling; QIIME2, Quantitative Insights into Microbial
554 Ecology 2; RMT, random matrix theory; S, sulfur; *S. alfredii*, *Sedum alfredii* Hance; *S.*
555 *indica*, *Serendipita indica*; SOM, soil organic matter; SR-XRF, synchrotron-based
556 x-ray fluorescence; TF, translocation factor; Un, unplanted; Zi, within-module
557 connectivity

558 **Figure and Table Captions**

559 **Table 1** Soil physicochemical parameters under CK and +*Si* treatments. The mean
560 values (with corresponding standard deviations) were calculated (n = 6). Significance
561 levels at $p < 0.05$, $p < 0.01$, and $p < 0.001$ were denoted with *, **, and ***,
562 respectively, using the student's t-test to identify significant differences between
563 treatments. DOC: dissolved organic carbon, DON: dissolved organic nitrogen, TCd:
564 total cadmium concentration, AvCd: available Cd concentration. CK, without *S.*
565 *indica* inoculation treatment; +*Si*, with *S. indica* inoculation treatment.

566

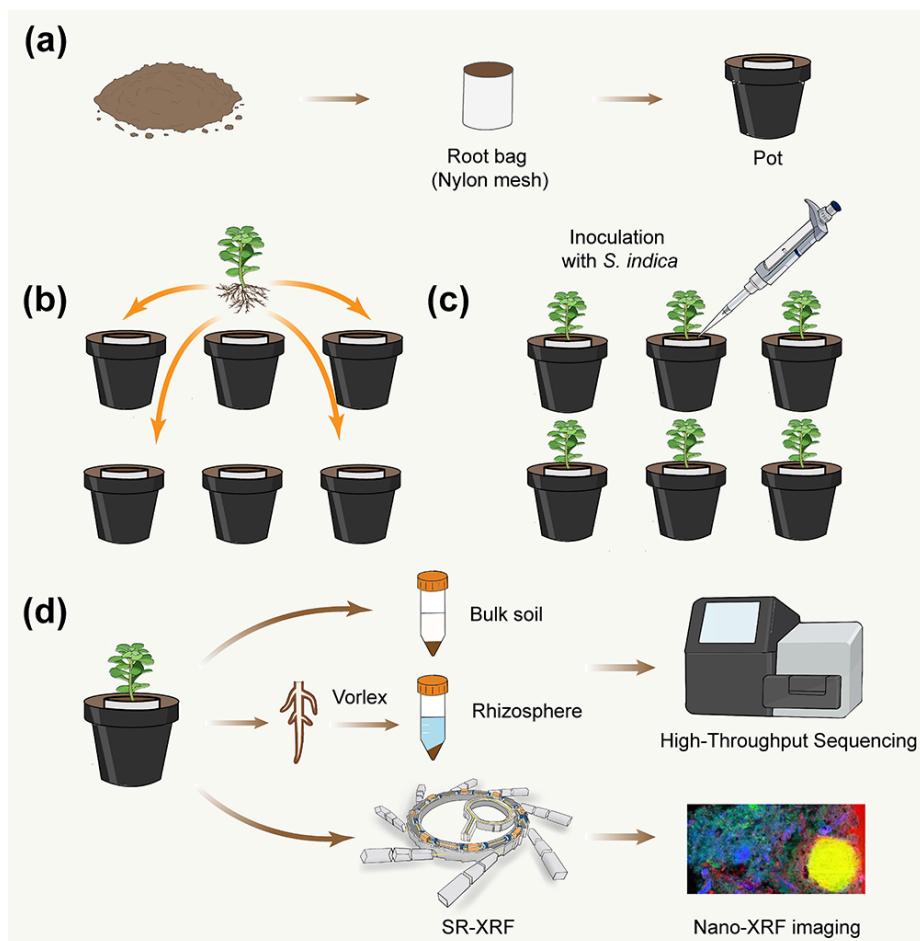
567 **Fig. 1** Schematic illustration of the experimental procedures. (a) The root bag system,
568 containing the bulk and rhizosphere compartments; (b) Seedlings are transplanted into
569 soil of the root bags; (c) Desired input *S. indica* is inoculated using a 1 mL pipette and
570 pots are transferred to the greenhouse; (d) Sample collection and determination by
571 high-throughput sequencing and Nano-XRF imaging.

572 **Fig. 2** *S. indica* promotes plant growth in Cd contaminated soil. (a) Growth status of *S.*
573 *alfredii* planted in Cd contaminated soil without *S. indica* (CK) and with *S. indica*
574 inoculation treatment (+*Si*). Dry biomass (g·plant⁻¹) (b), Cd concentration (c), Cd
575 accumulation (d), Cd influx (e), translocation factors (f), bioaccumulation factors (g),
576 and Cd removal efficiency (h) in *S. alfredii*. The asterisks *, **, and *** represent
577 significant differences between CK and +*Si* treatment at $p < 0.05$, $p < 0.01$, and $p <$
578 0.001, respectively. Scale bars = 5 cm.

579 **Fig. 3** Nano-XRF mapping of elements (Cd, K, and S) in the cross-sections of
580 root-soil interface collected from CK (a) and +*Si* (b) treatment. Pixel brightness is
581 displayed in RGB. Fluorescence intensities (μg·cm⁻²) of elements Cd, K, and S were
582 normalized and scaled between red (high) and blue (low) for each map. Bar = 200 μm.
583 CK, without *S. indica* inoculation treatment; +*Si*, with *S. indica* inoculation treatment.

584 **Fig. 4** Drivers of variation in the rhizosphere microbiota. (a) Mantel analysis maps
585 showed the relationship between environmental physicochemical properties and the
586 composition of microbial communities under without *S. indica* (CK) and with *S.*
587 *indica* inoculation treatment (+*Si*). Soil sulfur concentration (b), soil available sulfur

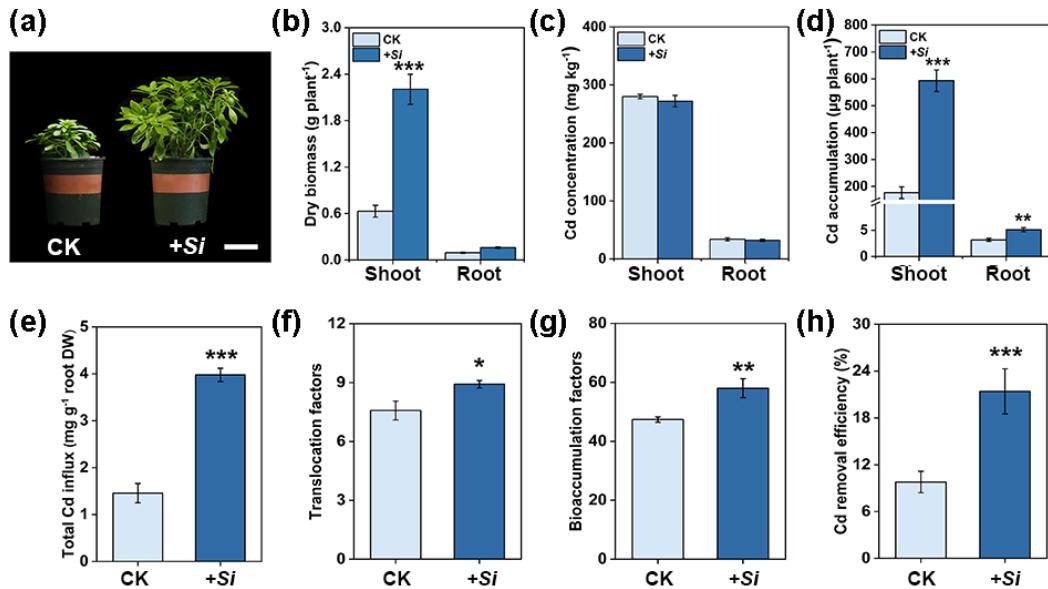
588 concentration (c), and sulfur concentration in plant (d) are showed. Asterisks indicate
589 values that are significantly different from CK and +*Si* treatment ($*p < 0.05$, $**p <$
590 0.01 , $***p < 0.001$). The letters a and b indicate significant differences between bulk
591 and rhizosphere at $p < 0.05$ under CK treatment. The letters a' and b' indicate
592 significant differences between bulk and rhizosphere at $p < 0.05$ under +*Si* treatment.
593 Cd: soil Cd concentration, S: soil sulfur concentration, AvCd: soil available Cd
594 concentration, AvS: soil available sulfur concentration, DOC: soil dissolved organic
595 carbon, DON: soil dissolved organic nitrogen, OM: soil organic matter. CK, without *S.*
596 *indica* inoculation treatment; +*Si*, with *S. indica* inoculation treatment.


597 **Fig. 5** Assembly of bacterial and fungal communities in the bulk and rhizosphere soil
598 and Spearman correlation analysis of keystone ASVs with rhizosphere soil and plant
599 properties. (a) Box plots for alpha-diversity indices, including the faith's phylogenetic
600 diversity of bacterial and fungal communities in rhizosphere and root under without *S.*
601 *indica* (CK) and with *S. indica* inoculation treatment (+*Si*). The asterisks *, **, and
602 *** represent significant differences between CK and *S. indica* inoculation treatment
603 at $p < 0.05$, $p < 0.01$, and $p < 0.001$, respectively. (b) Principal coordinate analysis
604 (PCoA) plots for visualizing the Bray-Curtis dissimilarity matrix among the bacterial
605 communities and fungal communities. (c) Relative abundances of bacterial and fungal
606 communities in rhizosphere soils of *S. alfredii* grown in Cd contaminated soil without
607 *S. indica* (CK) and with *S. indica* inoculation treatment (+*Si*). Keystone ASVs used
608 for discriminating bacterial (d) and fungal (e) communities without *S. indica* (CK)
609 and with *S. indica* inoculation treatment (+*Si*) (detected by random forest model). The
610 assigned taxonomy of each taxon is displayed at the ASV level. The bubbles show the
611 ASVs numbers of bacteria (f) and fungi (g) without *S. indica* (CK) and with *S. indica*
612 inoculation treatment (+*Si*); the Spearman correlations between environmental
613 variables and the relative abundances of keystone ASVs are depicted in the right
614 heatmaps (h and i). Cd, soil Cd concentration; S, soil sulfur concentration; AvCd, soil
615 available Cd concentration; AvS, soil available sulfur concentration; DOC, soil
616 dissolved organic carbon; DON, soil dissolved organic nitrogen; OM, soil organic
617 matter. $*p < 0.05$, $**p < 0.01$, $***p < 0.001$.

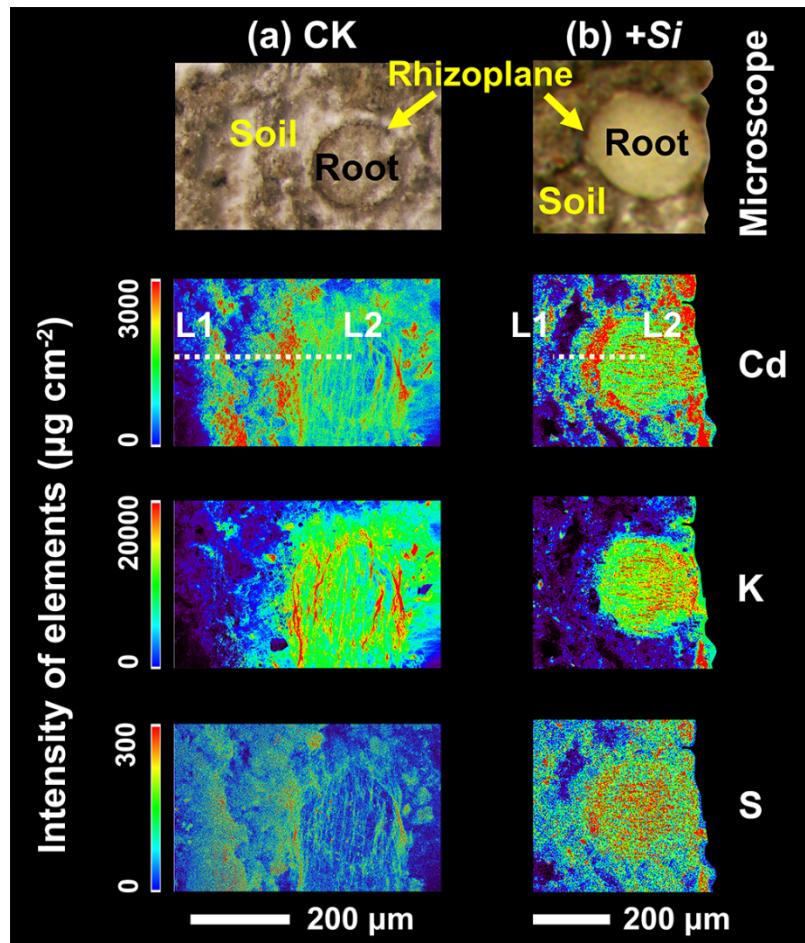
618 **Fig. 6** Microbial ecology networks and functional modules of *S. alfredii* rhizosphere
619 bacteria and fungi, and their relationships with environmental factors. (a) Networks
620 contained both bacterial and fungal taxa, showing a higher number of edges in the *S.*
621 *indica* inoculation treatment than those in CK networks. The nodes are colored
622 according to bacterial and fungal phylum. The edge color represents positive (blue)
623 and negative (purple) correlations. (b) Spearman's correlation analysis of modules
624 with rhizosphere soil and plant properties in CK and *S. indica* inoculation treatment.
625 Only significant correlations ($p < 0.05$) are shown. Cd, soil Cd concentration; S, soil
626 sulfur concentration; AvCd, soil available Cd concentration; AvS, soil available sulfur
627 concentration; DOC, soil dissolved organic carbon; DON, soil dissolved organic
628 nitrogen; OM, soil organic matter. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. CK, without *S.*
629 *indica* inoculation treatment; +*Si*, with *S. indica* inoculation treatment.

630 **Table 1** Soil physicochemical parameters under CK and +*Si* treatments.

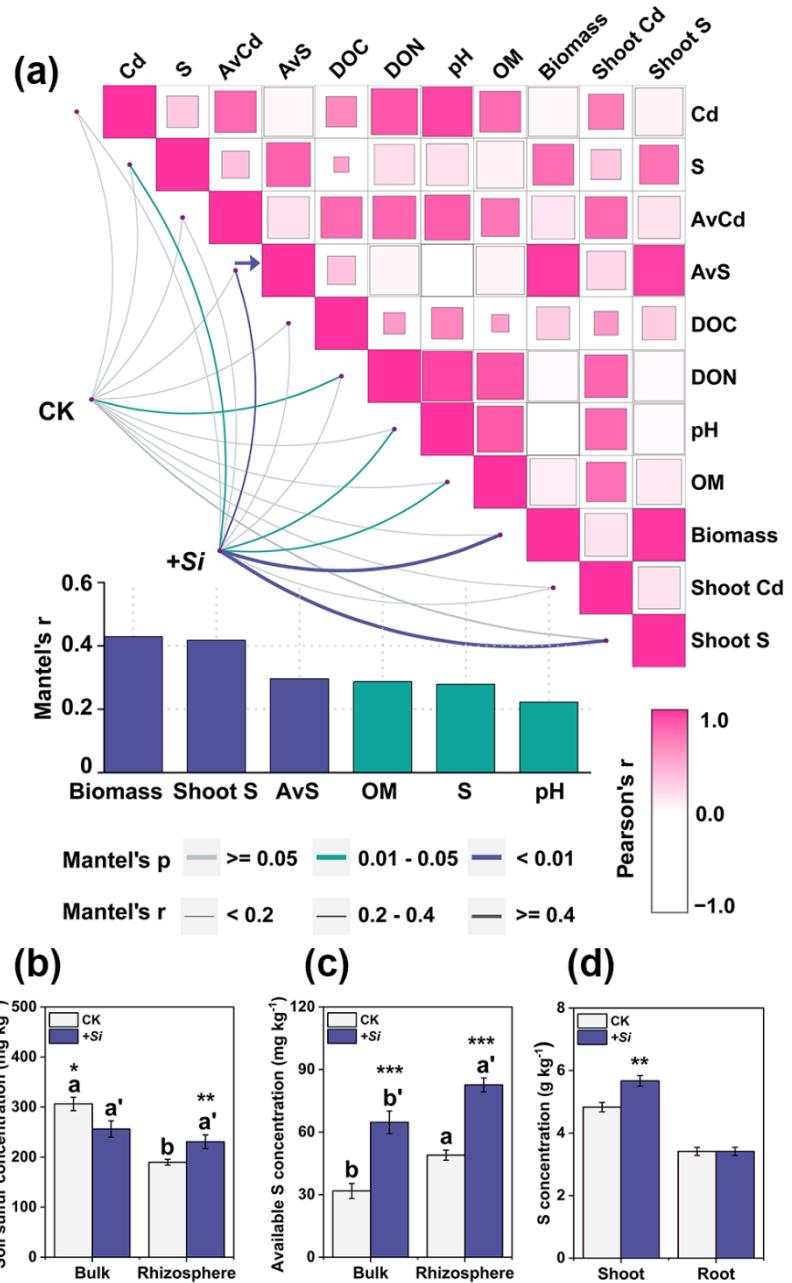
	DOC (mg·L ⁻¹)	DON (μg·L ⁻¹)	pH	TCd (mg·kg ⁻¹)	AvCd ((mg·kg ⁻¹)
Bulk					
CK	81.71 ± 2.45	12431.00 ± 1554.10 **	6.83 ± 0.02 *	5.81 ± 0.11 ***	2.47 ± 0.04 ***
+Si	78.67 ± 2.69	8234.78 ± 491.37	6.78 ± 0.02	4.93 ± 0.20	1.83 ± 0.08
Rhizosphere					
CK	99.23 ± 1.93	16220.56 ± 1485.53 ***	6.72 ± 0.01 ***	4.93 ± 0.10 ***	2.00 ± 0.06 ***
+Si	95.45 ± 2.78	9748.85 ± 490.13	6.63 ± 0.01	3.73 ± 0.17	1.52 ± 0.07


631 The mean values (with corresponding standard deviations) were calculated (n = 6).
 632 Significance levels at $p < 0.05$, $p < 0.01$, and $p < 0.001$ were denoted with *, **, and
 633 ***, respectively, using the student's t-test to identify significant differences between
 634 treatments. DOC: dissolved organic carbon, DON: dissolved organic nitrogen, TCd:
 635 total cadmium concentration, AvCd: available Cd concentration. CK, without *S.*
 636 *indica* inoculation treatment; +*Si*, with *S. indica* inoculation treatment.

637

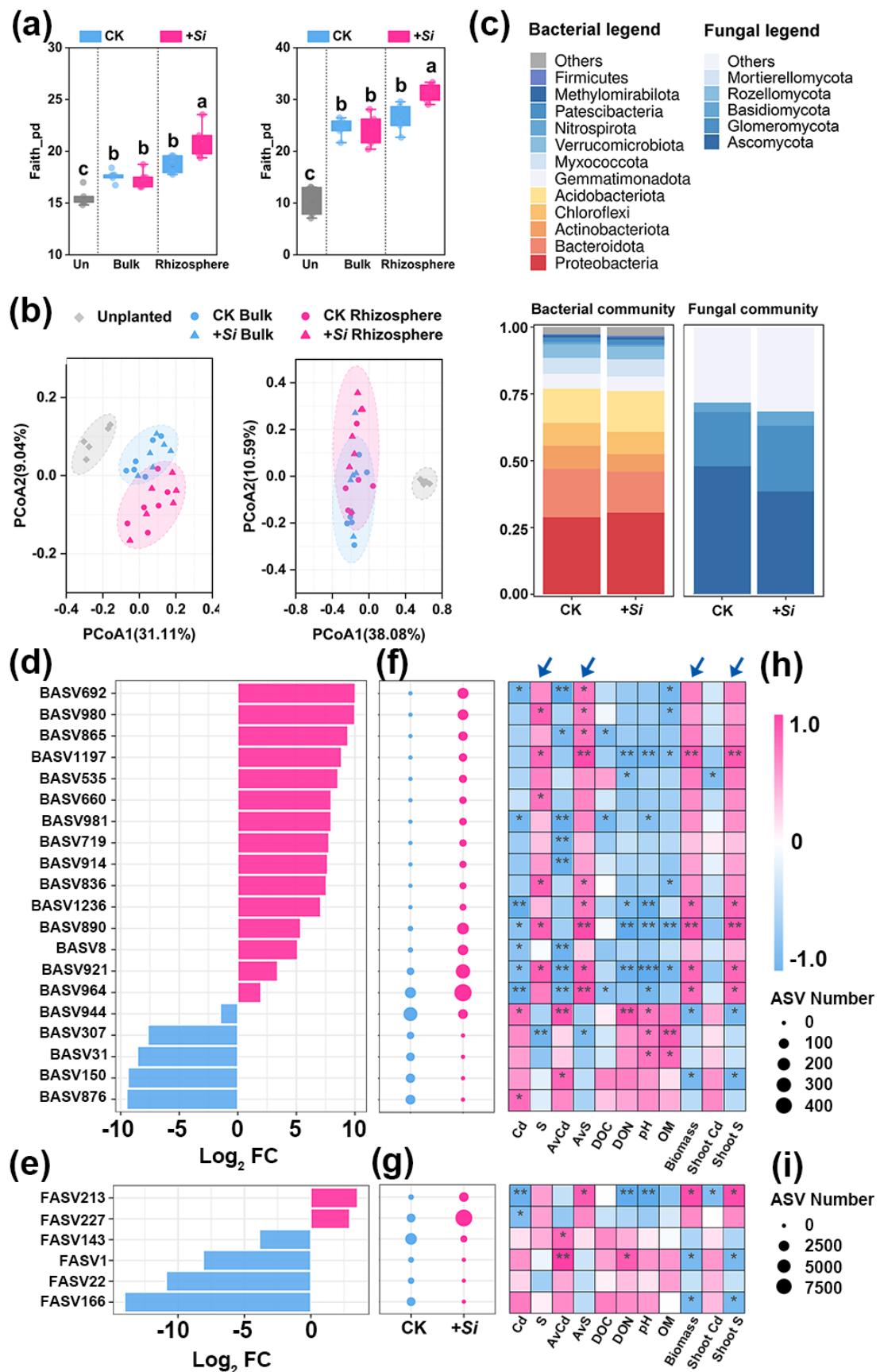

638 **Fig. 1** Schematic illustration of the experimental procedures. (a) The root bag system,
 639 containing the bulk and rhizosphere compartments; (b) Seedlings are transplanted into
 640 soil of the root bags; (c) Desired input *S. indica* is inoculated using a 1 mL pipette and
 641 pots are transferred to the greenhouse; (d) Sample collection and determination by
 642 high-throughput sequencing and Nano-XRF imaging.

643


644

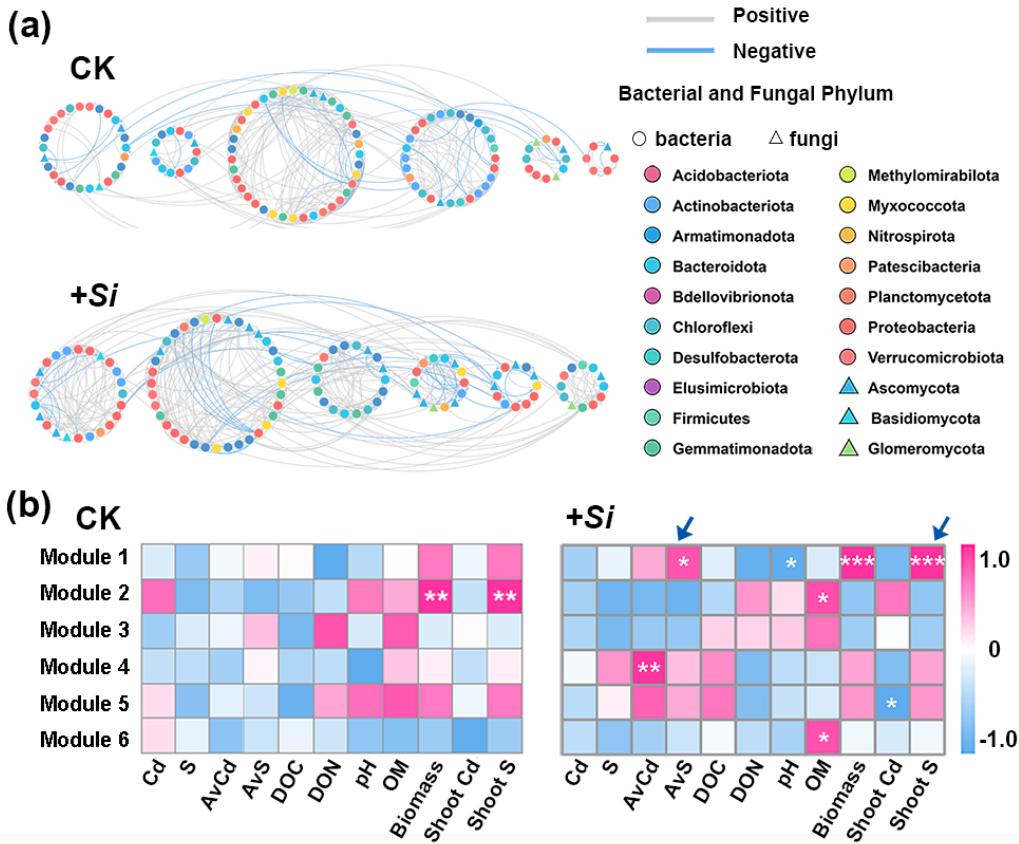
645 **Fig. 2** *S. indica* promotes plant growth in Cd contaminated soil. (a) Growth status of *S.*
646 *alfredii* planted in Cd contaminated soil without *S. indica* (CK) and with *S. indica*
647 inoculation treatment (+Si). Dry biomass (g·plant⁻¹) (b), Cd concentration (c), Cd
648 accumulation (d), Cd influx (e), translocation factors (f), bioaccumulation factors (g),
649 and Cd removal efficiency (h) in *S. alfredii*. The asterisks *, **, and *** represent
650 significant differences between CK and +Si treatment at $p < 0.05$, $p < 0.01$, and $p <$
651 0.001, respectively. Scale bars = 5 cm.

652


653 **Fig. 3** Nano-XRF mapping of elements (Cd, K, and S) in the cross-sections of
 654 root-soil interface collected from CK (a) and +Si (b) treatment. Pixel brightness is
 655 displayed in RGB. Fluorescence intensities ($\mu\text{g}\cdot\text{cm}^{-2}$) of elements Cd, K, and S were
 656 normalized and scaled between red (high) and blue (low) for each map. Bar = 200 μm .
 657 CK, without *S. indica* inoculation treatment; +Si, with *S. indica* inoculation treatment.

658

659 **Fig. 4** Drivers of variation in the rhizosphere microbiota. (a) Mantel analysis maps
660 showed the relationship between environmental physicochemical properties and the
661 composition of microbial communities under without *S. indica* (CK) and with *S.*
662 *indica* inoculation treatment (+Si). Soil sulfur concentration (b), soil available sulfur
663 concentration (c), and sulfur concentration in plant (d) are showed. Asterisks indicate
664 values that are significantly different from CK and +Si treatment (* $p < 0.05$, ** $p <$
665 0.01, *** $p < 0.001$). The letters a and b indicate significant differences between bulk
666 and rhizosphere at $p < 0.05$ under CK treatment. The letters a' and b' indicate


667 significant differences between bulk and rhizosphere at $p < 0.05$ under +*Si* treatment.
668 Cd: soil Cd concentration, S: soil sulfur concentration, AvCd: soil available Cd
669 concentration, AvS: soil available sulfur concentration, DOC: soil dissolved organic
670 carbon, DON: soil dissolved organic nitrogen, OM: soil organic matter. CK, without *S.*
671 *indica* inoculation treatment; +*Si*, with *S. indica* inoculation treatment.

672

673 **Fig. 5** Assembly of bacterial and fungal communities in the bulk and rhizosphere soil
 674 and spearman correlation analysis of keystone ASVs with rhizosphere soil and plant

675 properties. (a) Box plots for alpha-diversity indices, including the faith's phylogenetic
676 diversity of bacterial and fungal communities in rhizosphere and root under without *S.*
677 *indica* (CK) and with *S. indica* inoculation treatment (+*Si*). The asterisks *, **, and
678 *** represent significant differences between CK and *S. indica* inoculation treatment
679 at $p < 0.05$, $p < 0.01$, and $p < 0.001$, respectively. (b) Principal coordinate analysis
680 (PCoA) plots for visualizing the Bray-Curtis dissimilarity matrix among the bacterial
681 communities and fungal communities. (c) Relative abundances of bacterial and fungal
682 communities in rhizosphere soils of *S. alfredii* grown in Cd-contaminated soil without
683 *S. indica* (CK) and with *S. indica* inoculation treatment (+*Si*). Keystone ASVs used
684 for discriminating bacterial (d) and fungal (e) communities without *S. indica* (CK)
685 and with *S. indica* inoculation treatment (+*Si*) (detected by random forest model). The
686 assigned taxonomy of each taxon is displayed at the ASV level. The bubbles show the
687 ASVs numbers of bacteria (f) and fungi (g) without *S. indica* (CK) and with *S. indica*
688 inoculation treatment (+*Si*); the Spearman correlations between environmental
689 variables and the relative abundances of keystone ASVs are depicted in the right
690 heatmaps (h and i). Cd, soil Cd concentration; S, soil sulfur concentration; AvCd, soil
691 available Cd concentration; AvS, soil available sulfur concentration; DOC, soil
692 dissolved organic carbon; DON, soil dissolved organic nitrogen; OM, soil organic
693 matter. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

694

695 **Fig. 6** Microbial ecology networks and functional modules of *S. alfredii* rhizosphere
696 bacteria and fungi, and their relationships with environmental factors. (a) Networks
697 contained both bacterial and fungal taxa, showing a higher number of edges in the *S.*
698 *indica* inoculation treatment than those in CK networks. The nodes are colored
699 according to bacterial and fungal phylum. The edge color represents positive (blue)
700 and negative (purple) correlations. (b) Spearman's correlation analysis of modules
701 with rhizosphere soil and plant properties in CK and *S. indica* inoculation treatment.
702 Only significant correlations ($p < 0.05$) are shown. Cd, soil Cd concentration; S, soil
703 sulfur concentration; AvCd, soil available Cd concentration; AvS, soil available sulfur
704 concentration; DOC, soil dissolved organic carbon; DON, soil dissolved organic
705 nitrogen; OM, soil organic matter. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. CK, without *S.*
706 *indica* inoculation treatment; +Si, with *S. indica* inoculation treatment.

707 **Reference**

1. Clemens, S.; Ma, J. F., Toxic heavy metal and metalloid accumulation in crop plants and foods. *Annual Review of Plant Biology* **2016**, *67*, 489-512.
2. Yang, J.; Hu, R.; Zhao, C.; Wang, L.; Lei, M.; Guo, G.; Shi, H.; Liao, X.; Chen, T., Challenges and opportunities for improving the environmental quality of cadmium-contaminated soil in China. *Journal of Hazardous Materials* **2023**, *445*, 130560.
3. Jiang, X.; Dai, J.; Zhang, X.; Wu, H.; Tong, J.; Shi, J.; Fang, W., Enhanced Cd efflux capacity and physiological stress resistance: the beneficial modulations of *Metarhizium robertsii* on plants under cadmium stress. *Journal of Hazardous Materials* **2022**, *437*, 129429.
4. Horiguchi, H.; Teranishi, H.; Niiya, K.; Aoshima, K.; Katoh, T.; Sakuragawa, N.; Kasuya, M., Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. *Archives of Toxicology* **1994**, *68*, (10), 632-6.
5. Nordberg, G. F.; Nogawa, K.; Nordberg, M.; Friberg, L. T., Cadmium. In *Handbook on the Toxicology of Metals*, 2007; pp 445-486.
6. Pilon-Smits, E., Phytoremediation. *Annual Review of Plant Biology* **2005**, *56*, 15-39.
7. Jin, Y.; Wang, L.; Song, Y.; Zhu, J.; Qin, M.; Wu, L.; Hu, P.; Li, F.; Fang, L.; Chen, C.; Hou, D., Integrated life cycle assessment for sustainable remediation of contaminated agricultural soil in China. *Environmental Science & Technology* **2021**, *55*, (17), 12032-12042.
8. Wang, L.; Rinklebe, J.; Tack, F. M. G.; Hou, D., A review of green remediation strategies for heavy metal contaminated soil. *Soil Use and Management* **2021**, *37*, (4), 936-963.
9. Gavrilescu, M., Enhancing phytoremediation of soils polluted with heavy metals. *Current Opinion in Biotechnology* **2022**, *74*, 21-31.
10. Wood, J. L.; Tang, C.; Franks, A. E., Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. *Soil Biology and Biochemistry* **2016**, *103*, 131-137.
11. Yang, X.; Long, X.; Ye, H.; He, Z.; Calvert, D. V.; Stoffella, P. J., Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (*Sedum alfredii* Hance). *Plant and Soil* **2004**, *259*, (1/2), 181-189.
12. Cao, X.; Wang, X.; Lu, M.; Hamid, Y.; Lin, Q.; Liu, X.; Li, T.; Liu, G.; He, Z.; Yang, X., The Cd phytoextraction potential of hyperaccumulator *Sedum alfredii*-oilseed rape intercropping system under different soil types and comprehensive benefits evaluation under field conditions. *Environmental Pollution* **2021**, *285*, 117504.
13. Lu, L.; Tian, S.; Yang, X.; Wang, X.; Brown, P.; Li, T.; He, Z., Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of *Sedum alfredii*. *Journal of Experimental Botany* **2008**, *59*, (11), 3203-3213.
14. Tian, S.; Xie, R.; Wang, H.; Hu, Y.; Hou, D.; Liao, X.; Brown, P. H.; Yang, H.; Lin, X.; Labavitch, J. M.; Lu, L., Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species *Sedum alfredii*. *Journal of Experimental Botany* **2017**, *68*, (9), 2387-2398.
15. Rajkumar, M.; Ae, N.; Freitas, H., Endophytic bacteria and their potential to enhance heavy metal phytoextraction. *Chemosphere* **2009**, *77*, (2), 153-60.
16. Sessitsch, A.; Kuffner, M.; Kidd, P.; Vangronsveld, J.; Wenzel, W. W.; Fallmann, K.; Puschenreiter, M., The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. *Soil Biology and Biochemistry* **2013**,

751 60, 182-194.

752 17. Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; Wang, X., Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. *Journal of Hazardous Materials* **2021**, *402*, 123919.

753 18. Ma, Y.; Rajkumar, M.; Moreno, A.; Zhang, C.; Freitas, H., Serpentine endophytic bacterium *Pseudomonas azotoformans* ASS1 accelerates phytoremediation of soil metals under drought stress. *Chemosphere* **2017**, *185*, 75-85.

754 19. Dimkpa, C.; Weinand, T.; Asch, F., Plant-rhizobacteria interactions alleviate abiotic stress conditions. *Plant Cell And Environment* **2009**, *32*, (12), 1682-94.

755 20. Sarwar, N.; Imran, M.; Shaheen, M. R.; Ishaque, W.; Kamran, M. A.; Matloob, A.; Rehim, A.; Hussain, S., Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. *Chemosphere* **2017**, *171*, 710-721.

756 21. Ji, S. H.; Gururani, M. A.; Chun, S. C., Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. *Microbiological Research* **2014**, *169*, (1), 83-98.

757 22. Liu, C.; Lin, H.; Li, B.; Dong, Y.; Gueret Yadiberet Menzembere, E. R., Endophyte *Pseudomonas putida* enhanced *Trifolium repens* L. growth and heavy metal uptake: a promising in-situ non-soil cover phytoremediation method of nonferrous metallic tailing. *Chemosphere* **2021**, *272*, 129816.

758 23. Ma, Y.; Prasad, M. N.; Rajkumar, M.; Freitas, H., Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. *Biotechnology Advances* **2011**, *29*, (2), 248-58.

759 24. Wang, L.; Lin, H.; Dong, Y.; Li, B.; He, Y., Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (*Brassica juncea*) grown in vanadium-contaminated soil and its enhancement on phytoremediation. *Chemosphere* **2020**, *240*, 124891.

760 25. Sheng, X.; He, L.; Wang, Q.; Ye, H.; Jiang, C., Effects of inoculation of biosurfactant-producing *Bacillus* sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. *Journal of Hazardous Materials* **2008**, *155*, (1-2), 17-22.

761 26. Hou, D.; Wang, K.; Liu, T.; Wang, H.; Lin, Z.; Qian, J.; Lu, L.; Tian, S., Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant *Sedum alfredii*. *Environmental Science & Technology* **2017**, *51*, (10), 5675-5684.

762 27. Luo, J.; Liu, Y.; Tao, Q.; Hou, Q.; Wu, K.; Song, Y.; Liu, Y.; Guo, X.; Li, J.; Hashmi, M. L. U. R.; Liang, Y.; Li, T., Successive phytoextraction alters ammonia oxidation and associated microbial communities in heavy metal contaminated agricultural soils. *Science of the Total Environment* **2019**, *664*, 616-625.

763 28. Lu, L.; Tian, S.; Zhang, J.; Yang, X.; Labavitch, J. M.; Webb, S. M.; Latimer, M.; Brown, P. H., Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species *Sedum alfredii*. *New Phytologist* **2013**, *198*, (3), 721-731.

764 29. Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattacharai, A.; Aryal, N., Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. *Environmental Advances* **2022**, *8*, 100203.

795 30. Veerapagu, M.; Jeya, K. R.; Sankaranarayanan, A., Role of plant growth-promoting
796 microorganisms in phytoremediation efficiency. In *Plant-microbe interaction - recent*
797 *advances in molecular and biochemical approaches*, Swapnil, P.; Meena, M.; Harish; Marwal,
798 A.; Vijayalakshmi, S.; Zehra, A., Eds. Academic Press: 2023; pp 45-61.

799 31. Weiss, M.; Waller, F.; Zuccaro, A.; Selosse, M. A., Sebacinales - one thousand and one
800 interactions with land plants. *New Phytologist* **2016**, *211*, (1), 20-40.

801 32. Zuccaro, A.; Lahrmann, U.; Guldener, U.; Langen, G.; Pfiffi, S.; Biedenkopf, D.; Wong,
802 P.; Samans, B.; Grimm, C.; Basiewicz, M.; Murat, C.; Martin, F.; Kogel, K. H., Endophytic
803 life strategies decoded by genome and transcriptome analyses of the mutualistic root
804 symbiont *Piriformospora indica*. *PLoS Pathogens* **2011**, *7*, (10), e1002290.

805 33. Qiang, X.; Weiss, M.; Kogel, K. H.; Schaefer, P., *Piriformospora indica*-a mutualistic
806 basidiomycete with an exceptionally large plant host range. *Molecular Plant Pathology* **2012**,
807 *13*, (5), 508-518.

808 34. Varma, A.; Bakshi, M.; Lou, B.; Hartmann, A.; Oelmüller, R., *Piriformospora indica*: a
809 novel plant growth-promoting mycorrhizal fungus. *Agricultural Research* **2012**, *1*, (2),
810 117-131.

811 35. Zuccaro, A.; Basiewicz, M.; Zurawska, M.; Biedenkopf, D.; Kogel, K. H., Karyotype
812 analysis, genome organization, and stable genetic transformation of the root colonizing
813 fungus *Piriformospora indica*. *Fungal Genetics and Biology* **2009**, *46*, (8), 543-550.

814 36. Shahabivand, S.; Parvaneh, A.; Aliloo, A. A., Root endophytic fungus *Piriformospora*
815 *indica* affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower
816 under cadmium toxicity. *Ecotoxicology and Environmental Safety* **2017**, *145*, 496-502.

817 37. Rahman, S. u.; Khalid, M.; Hui, N.; Rehman, A.; Kayani, S.-I.; Fu, X.; Zheng, H.; Shao,
818 J.; Khan, A. A.; Ali, M.; Taheri, A.; Liu, H.; Yan, X.; Hu, X.; Qin, W.; Peng, B.; Li, M.; Yao,
819 X.; Zhang, Y.; Tang, K., *Piriformospora indica* alter root-associated microbiome structure to
820 enhance *Artemisia annua* L. tolerance to arsenic. *Journal of Hazardous Materials* **2023**, *457*,
821 131752.

822 38. Li, D.; Zheng, X.; Lin, L.; An, Q.; Jiao, Y.; Li, Q.; Li, Z.; Hong, Y.; Zhang, K.; Xie, C.;
823 Yin, J.; Zhang, H.; Wang, B.; Hu, Y.; Zhu, Z., Remediation of soils co-contaminated with
824 cadmium and dichlorodiphenyltrichloroethanes by king grass associated with *Piriformospora*
825 *indica*: insights into the regulation of root excretion and reshaping of rhizosphere microbial
826 community structure. *Journal of Hazardous Materials* **2021**, *422*, 126936.

827 39. Zhang, K.; Zhang, H.; Xie, C.; Zhu, Z.; Lin, L.; An, Q.; Zhang, X.; Wu, W.; Li, D.,
828 *Piriformospora indica* colonization enhances remediation of cadmium and chromium
829 co-contaminated soils by king grass through plant growth promotion and rhizosphere
830 microecological regulation. *Journal of Hazardous Materials* **2023**, *462*, 132728.

831 40. Narayan, O. P.; Verma, N.; Jogawat, A.; Dua, M.; Johri, A. K., Sulfur transfer from the
832 endophytic fungus *Serendipita indica* improves maize growth and requires the sulfate
833 transporter *SiSulT*. *Plant Cell* **2021**, *33*, (4), 1268-1285.

834 41. Saleem, S.; Sekara, A.; Pokluda, R., *Serendipita indica*-A review from agricultural point
835 of view. *Plants-Basel* **2022**, *11*, (24).

836 42. Hill, T. W.; Kafer, E., Improved protocols for *Aspergillus* minimal medium: trace element
837 and minimal medium salt stock solutions. *Fungal Genetics Reports* **2001**, *48*, (1), 20-21.

838 43. Jiang, W.; Pan, R.; Wu, C.; Xu, L.; Abdelaziz, M. E.; Oelmüller, R.; Zhang, W.,

839 *Piriformospora indica* enhances freezing tolerance and post-thaw recovery in *Arabidopsis* by
840 stimulating the expression of CBF genes. *Plant Signal Behav* **2020**, *15*, (4), 1745472.

841 44. Almario, J.; Jeena, G.; Wunder, J.; Langen, G.; Zuccaro, A.; Coupland, G.; Bucher, M.,
842 Root-associated fungal microbiota of nonmycorrhizal *Arabis alpina* and its contribution to
843 plant phosphorus nutrition. *Proceedings of the National Academy of Sciences of the United
844 States of America* **2017**, *114*, (44), E9403-E9412.

845 45. Tian, S.; Lu, L.; Yang, X.; Webb, S. M.; Du, Y.; Brown, P. H., Spatial imaging and
846 speciation of lead in the accumulator plant *Sedum alfredii* by microscopically focused
847 synchrotron X-ray investigation. *Environmental Science & Technology* **2010**, *44*, (15),
848 5920-6.

849 46. Cai, Z.; Lai, B.; Xiao, Y.; Xu, S., An X-ray diffraction microscope at the Advanced
850 Photon Source. *Journal de Physique IV (Proceedings)* **2003**, *104*, 17-20.

851 47. Xie, R.; Zhao, J.; Lu, L.; Jernstedt, J.; Guo, J.; Brown, P. H.; Tian, S., Spatial imaging
852 reveals the pathways of Zn transport and accumulation during reproductive growth stage in
853 almond plants. *Plant Cell And Environment* **2021**, *44*, (6), 1858-1868.

854 48. Vogt, S., MAPS : a set of software tools for analysis and visualization of 3D X-ray
855 fluorescence data sets. *Journal de Physique IV (Proceedings)* **2003**, *104*, 635-638.

856 49. Salas-González, I.; Reyt, G.; Flis, P.; Custódio, V.; Gopaulchan, D.; Bakhoun, N.; Dew,
857 T. P.; Suresh, K.; Franke, R. B.; Dangl, J. L.; Salt, D. E.; Castrillo, G., Coordination between
858 microbiota and root endodermis supports plant mineral nutrient homeostasis. *Science* **2021**,
859 *371*, (6525).

860 50. Caporaso, J. G.; Lauber, C. L.; Walters, W. A.; Berg-Lyons, D.; Lozupone, C. A.;
861 Turnbaugh, P. J.; Fierer, N.; Knight, R., Global patterns of 16S rRNA diversity at a depth of
862 millions of sequences per sample. *Proceedings of the National Academy of Sciences of the
863 United States of America* **2010**, *108*, (supplement_1), 4516-4522.

864 51. Bokulich, N. A.; Mills, D. A., Improved selection of internal transcribed spacer-specific
865 primers enables quantitative, ultra-high-throughput profiling of fungal communities. *Applied
866 and Environmental Microbiology* **2013**, *79*, (8), 2519-2526.

867 52. Dai, T.; Wen, D.; Bates, C. T.; Wu, L.; Guo, X.; Liu, S.; Su, Y.; Lei, J.; Zhou, J.; Yang, Y.,
868 Nutrient supply controls the linkage between species abundance and ecological interactions in
869 marine bacterial communities. *Nature Communications* **2022**, *13*, (1), 175.

870 53. Bolyen, E.; Rideout, J. R.; Dillon, M. R.; Bokulich, N. A.; Abnet, C. C.; Al-Ghalith, G.
871 A.; Alexander, H.; Alm, E. J.; Arumugam, M.; Asnicar, F.; Bai, Y.; Bisanz, J. E.; Bittinger, K.;
872 Brejnrod, A.; Brislawn, C. J.; Brown, C. T.; Callahan, B. J.; Caraballo-Rodríguez, A. M.;
873 Chase, J.; Cope, E. K.; Da Silva, R.; Diener, C.; Dorrestein, P. C.; Douglas, G. M.; Durall, D.
874 M.; Duvallet, C.; Edwardson, C. F.; Ernst, M.; Estaki, M.; Fouquier, J.; Gauglitz, J. M.;
875 Gibbons, S. M.; Gibson, D. L.; Gonzalez, A.; Gorlick, K.; Guo, J.; Hillmann, B.; Holmes, S.;
876 Holste, H.; Huttenhower, C.; Huttley, G. A.; Janssen, S.; Jarmusch, A. K.; Jiang, L.; Kaehler,
877 B. D.; Kang, K. B.; Keefe, C. R.; Keim, P.; Kelley, S. T.; Knights, D.; Koester, I.; Kosciolka,
878 T.; Kreps, J.; Langille, M. G. I.; Lee, J.; Ley, R.; Liu, Y.; Loftfield, E.; Lozupone, C.; Maher,
879 M.; Marotz, C.; Martin, B. D.; McDonald, D.; McIver, L. J.; Melnik, A. V.; Metcalf, J. L.;
880 Morgan, S. C.; Morton, J. T.; Naimey, A. T.; Navas-Molina, J. A.; Nothias, L. F.; Orchanian, S.
881 B.; Pearson, T.; Peoples, S. L.; Petras, D.; Preuss, M. L.; Pruesse, E.; Rasmussen, L. B.;
882 Rivers, A.; Robeson, M. S.; Rosenthal, P.; Segata, N.; Shaffer, M.; Shiffer, A.; Sinha, R.; Song,

883 S. J.; Spear, J. R.; Swafford, A. D.; Thompson, L. R.; Torres, P. J.; Trinh, P.; Tripathi, A.;
884 Turnbaugh, P. J.; Ul-Hasan, S.; van der Hooft, J. J. J.; Vargas, F.; Vázquez-Baeza, Y.;
885 Vogtmann, E.; von Hippel, M.; Walters, W.; Wan, Y.; Wang, M.; Warren, J.; Weber, K. C.;
886 Williamson, C. H. D.; Willis, A. D.; Xu, Z.; Zaneveld, J. R.; Zhang, Y.; Zhu, Q.; Knight, R.;
887 Caporaso, J. G., Reproducible, interactive, scalable and extensible microbiome data science
888 using QIIME 2. *Nature Biotechnology* **2019**, *37*, (8), 852-857.

889 54. Callahan, B. J.; McMurdie, P. J.; Rosen, M. J.; Han, A. W.; Johnson, A. J. A.; Holmes, S.
890 P., DADA2: high-resolution sample inference from Illumina amplicon data. *Nature Methods*
891 **2016**, *13*, (7), 581-3.

892 55. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner,
893 F. O., The SILVA ribosomal RNA gene database project: improved data processing and
894 web-based tools. *Nucleic Acids Research* **2012**, *41*, (D1), D590-D596.

895 56. Köljalg, U.; Larsson, K. H.; Abarenkov, K.; Nilsson, R. H.; Alexander, I. J.; Eberhardt,
896 U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; Pennanen, T.; Sen, R.; Taylor, A. F. S.;
897 Tedersoo, L.; Vrålstad, T.; Björn, M. U., UNITE: a database providing web-based methods for
898 the molecular identification of ectomycorrhizal fungi. *New Phytologist* **2005**, *166*, (3),
899 1063-1068.

900 57. Xu, J.; Zheng, L.; Xu, L.; Wang, X., Uptake and allocation of selected metals by
901 dominant vegetation in Poyang Lake wetland: from rhizosphere to plant tissues. *Catena* **2020**,
902 189.

903 58. Wang, Y.; Xu, Y.; Liang, X.; Wang, L.; Sun, Y.; Huang, Q.; Qin, X.; Zhao, L., Soil
904 application of manganese sulfate could reduce wheat Cd accumulation in Cd contaminated
905 soil by the modulation of the key tissues and ionomic of wheat. *Science of the Total
906 Environment* **2021**, *770*, 145328.

907 59. Lima-Mendez, G.; Faust, K.; Henry, N.; Decelle, J.; Colin, S.; Carcillo, F.; Chaffron, S.;
908 Ignacio-Espinosa, J. C.; Roux, S.; Vincent, F.; Bittner, L.; Darzi, Y.; Wang, J.; Audic, S.;
909 Berline, L.; Bontempi, G.; Cabello, A. M.; Coppola, L.; Cornejo-Castillo, F. M.; d'Ovidio, F.;
910 De Meester, L.; Ferrera, I.; Garet-Delmas, M. J.; Guidi, L.; Lara, E.; Pesant, S.; Royo-Llonch,
911 M.; Salazar, G.; Sanchez, P.; Sebastian, M.; Souffreau, C.; Dimier, C.; Picheral, M.; Searson,
912 S.; Kandels-Lewis, S.; Gorsky, G.; Not, F.; Ogata, H.; Speich, S.; Stemmann, L.; Weissenbach,
913 J.; Wincker, P.; Acinas, S. G.; Sunagawa, S.; Bork, P.; Sullivan, M. B.; Karsenti, E.; Bowler,
914 C.; de Vargas, C.; Raes, J., Determinants of community structure in the global plankton
915 interactome. *Science* **2015**, *348*, (6237), 1262073.

916 60. Noble, W. S., How does multiple testing correction work? *Nature Biotechnology* **2009**,
917 27, (12), 1135-7.

918 61. Luo, F.; Zhong, J.; Yang, Y.; Scheuermann, R. H.; Zhou, J., Application of random matrix
919 theory to biological networks. *Physics Letters A* **2006**, *357*, (6), 420-423.

920 62. Deng, Y.; Jiang, Y.; Yang, Y.; He, Z.; Luo, F.; Zhou, J., Molecular ecological network
921 analyses. *BMC Bioinformatics* **2012**, *13*, 113.

922 63. Kundu, A.; Mishra, S.; Kundu, P.; Jogawat, A.; Vadassery, J., *Piriformospora indica*
923 recruits host-derived putrescine for growth promotion in plants. *Plant Physiology* **2022**.

924 64. Cao, J.; He, W.; Zou, Y.; Wu, Q., An endophytic fungus, *Piriformospora indica*, enhances
925 drought tolerance of trifoliate orange by modulating the antioxidant defense system and
926 composition of fatty acids. *Tree Physiology* **2023**, *43*, (3), 452-466.

927 65. Sirrenberg, A.; Goebel, C.; Grond, S.; Czempinski, N.; Ratzinger, A.; Karlovsky, P.;
928 Santos, P.; Feussner, I.; Pawlowski, K., *Piriformospora indica* affects plant growth by auxin
929 production. *Physiologia Plantarum* **2007**, *131*, (4), 581-589.

930 66. Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.;
931 Huckelhoven, R.; Neumann, C.; von Wettstein, D.; Franken, P.; Kogel, K. H., The endophytic
932 fungus *Piriformospora indica* reprograms barley to salt-stress tolerance, disease resistance,
933 and higher yield. *Proceedings of the National Academy of Sciences of the United States of
934 America* **2005**, *102*, (38), 13386-91.

935 67. Gill, S. S.; Gill, R.; Trivedi, D. K.; Anjum, N. A.; Sharma, K. K.; Ansari, M. W.; Ansari,
936 A. A.; Johri, A. K.; Prasad, R.; Pereira, E.; Varma, A.; Tuteja, N., *Piriformospora indica*:
937 potential and significance in plant stress tolerance. *Frontiers in Microbiology* **2016**, *7*, 332.

938 68. Kundu, A.; Vadassery, J., Molecular mechanisms of *Piriformospora indica* mediated
939 growth promotion in plants. *Plant Signaling & Behavior* **2022**, *17*, (1), 2096785.

940 69. Hosseini, F.; Mosaddeghi, M. R.; Dexter, A. R.; Sepehri, M., Effect of endophytic fungus
941 *Piriformospora indica* and PEG-induced water stress on maximum root growth pressure and
942 elongation rate of maize. *Plant and Soil* **2018**, *435*, (1-2), 423-436.

943 70. Saleem, S.; Sekara, A.; Pokluda, R., *Serendipita indica*—a review from agricultural point
944 of view. *Plants* **2022**, *11*, (24), 3417.

945 71. Pedersen, B. P.; Kumar, H.; Waight, A. B.; Risenmay, A. J.; Roe-Zurz, Z.; Chau, B. H.;
946 Schlessinger, A.; Bonomi, M.; Harries, W.; Sali, A.; Johri, A. K.; Stroud, R. M., Crystal
947 structure of a eukaryotic phosphate transporter. *Nature* **2013**, *496*, (7446), 533-536.

948 72. Sun, S.; Chen, J.; Zhao, F., Regulatory mechanisms of sulfur metabolism affecting
949 tolerance and accumulation of toxic trace metals and metalloids in plants. *Journal of
950 Experimental Botany* **2023**, *74*, (11), 3286-3299.

951 73. Gill, S. S.; Tuteja, N., Cadmium stress tolerance in crop plants: probing the role of sulfur.
952 *Plant Signaling & Behavior* **2011**, *6*, (2), 215-22.

953 74. Yamaguchi, C.; Takimoto, Y.; Ohkama-Ohtsu, N.; Hokura, A.; Shinano, T.; Nakamura, T.;
954 Suyama, A.; Maruyama-Nakashita, A., Effects of Cadmium Treatment on the Uptake and
955 Translocation of Sulfate in *Arabidopsis thaliana*. *Plant And Cell Physiology* **2016**, *57*, (11),
956 2353-2366.

957 75. Baig, M. A.; Ahmad, J.; Ali, A. A.; Amna; Qureshi, M. I., Chapter 13 - Role of Sulfur
958 Metabolism in Cadmium Tolerance. In *Cadmium Tolerance in Plants*, Hasanuzzaman, M.;
959 Vara Prasad, M. N.; Nahar, K., Eds. Academic Press: 2019; pp 335-365.

960 76. Ashley, M. K.; Grant, M.; Grabov, A., Plant responses to potassium deficiencies: a role
961 for potassium transport proteins. *Journal of Experimental Botany* **2006**, *57*, (2), 425-36.

962 77. Conchillo, L. B.; Haro, R.; Benito, B., K⁺ Nutrition Exchange in the
963 *Serendipita-Arabidopsis* Symbiosis: Study of the Fungal K⁺ Transporters Involved. *Frontiers
964 in Ecology and Evolution* **2021**, *9*.

965 78. Liu, C.; Lin, H.; Dong, Y.; Li, B., Increase of P and Cd bioavailability in the rhizosphere
966 by endophytes promoted phytoremediation efficiency of *Phytolacca acinosa*. *Journal of
967 Hazardous Materials* **2022**, *431*, 128546.

968 79. Zhang, S.; Sun, G.; Yin, X.; Rensing, C.; Zhu, Y., Biomethylation and volatilization of
969 arsenic by the marine microalgae *Ostreococcus tauri*. *Chemosphere* **2013**, *93*, (1), 47-53.

970 80. Mohd, S.; Shukla, J.; Kushwaha, A. S.; Mandrah, K.; Shankar, J.; Arjaria, N.; Saxena, P.

971 N.; Narayan, R.; Roy, S. K.; Kumar, M., Endophytic fungi *Piriformospora indica* mediated
972 protection of host from arsenic toxicity. *Frontiers in Microbiology* **2017**, *8*, 754.

973 81. Zhao, F.; Jiang, R.; Dunham, S. J.; McGrath, S. P., Cadmium uptake, translocation and
974 tolerance in the hyperaccumulator *Arabidopsis halleri*. *New Phytologist* **2006**, *172*, (4),
975 646-54.

976 82. Shen, Z.; Zhao, F.; McGrath, S. P., Uptake and transport of zinc in the hyperaccumulator
977 *Thlaspi caerulescens* and the non-hyperaccumulator *Thlaspi ochroleucum*. *Plant, Cell and*
978 *Environment* **1997**, *20*, (7), 898-906.

979 83. Lasat, M. M.; Baker, A. J. M.; Kochian, L. V., Physiological characterization of root Zn²⁺
980 absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of
981 *Thlaspi*. *Plant Physiology* **1996**, *112*, (4), 1715-1722.

982 84. Zhu, Z.; Yang, X.; Wang, K.; Huang, H.; Zhang, X.; Fang, H.; Li, T.; Alva, A. K.; He, Z.,
983 Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator *Sedum*
984 *alfredii* and DDT-degrading microbes. *Journal of Hazardous Materials* **2012**, *235-236*,
985 144-51.

986 85. Ray, P.; Guo, Y.; Chi, M.-H.; Krom, N.; Boschiero, C.; Watson, B.; Huhman, D.; Zhao, P.;
987 Singan, V. R.; Lindquist, E. A.; Yan, J.; Adam, C.; Craven, K. D., *Serendipita fungi* modulate
988 the switchgrass root transcriptome to circumvent host defenses and establish a symbiotic
989 relationship. *Molecular Plant-Microbe Interactions* **2021**, *34*, (10), 1128-1142.

990 86. Wu, C.; Wei, Q.; Deng, J.; Zhang, W., Changes in gas exchange, root growth, and
991 biomass accumulation of *Platycladus orientalis* seedlings colonized by *Serendipita indica*.
992 *Journal of Forestry Research* **2018**, *30*, (4), 1199-1207.

993 87. Loha, A.; Kashyap, A. K.; Sharma, P., A putative cyclin, *SiPHO80* from root endophytic
994 fungus *Serendipita indica* regulates phosphate homeostasis, salinity and heavy metal toxicity
995 tolerance. *Biochemical and Biophysical Research Communications* **2018**, *507*, (1-4), 414-419.

996 88. Varma, A.; Kost, G.; Oelmüller, R., *Piriformospora indica*. Springer Berlin, Heidelberg:
997 **2013**.

998 89. Chen, T.; Liu, X.; Zhang, X.; Chen, X.; Tao, K.; Hu, X., Effect of alkyl polyglucoside
999 and nitrilotriacetic acid combined application on lead/pyrene bioavailability and
1000 dehydrogenase activity in co-contaminated soils. *Chemosphere* **2016**, *154*, 515-520.

1001 90. Jiang, W.; He, J.; Babla, M.; Wu, T.; Tong, T.; Riaz, A.; Zeng, F.; Qin, Y.; Chen, G.; Deng,
1002 F.; Chen, Z.H., Molecular evolution and interaction of 14-3-3 proteins with H⁺-ATPases in
1003 plant abiotic stresses. *Journal of Experimental Botany* **2023**, erad414.

1004 91. Whiting, S. N.; de Souza, M. P.; Terry, N., Rhizosphere bacteria mobilize Zn for
1005 hyperaccumulation by *Thlaspi caerulescens*. *Environmental Science & Technology* **2001**, *35*,
1006 (15), 3144-50.

1007 92. Fomina, M. A.; Alexander, I. J.; Colpaert, J. V.; Gadd, G. M., Solubilization of toxic
1008 metal minerals and metal tolerance of mycorrhizal fungi. *Soil Biology and Biochemistry* **2005**,
1009 37, (5), 851-866.

1010 93. Li, X.; Yu, H.; Sun, X.; Yang, J.; Wang, D.; Shen, L.; Pan, Y.; Wu, Y.; Wang, Q.; Zhao, Y.,
1011 Effects of sulfur application on cadmium bioaccumulation in tobacco and its possible
1012 mechanisms of rhizospheric microorganisms. *Journal of Hazardous Materials* **2019**, *368*,
1013 308-315.

1014 94. Wang, S.; Niu, X.; Di, D.; Huang, D., Nitrogen and sulfur fertilizers promote the

1015 absorption of lead and cadmium with *Salix integra* Thunb. by increasing the bioavailability of
1016 heavy metals and regulating rhizosphere microbes. *Frontiers in Microbiology* **2022**, *13*.

1017 95. Netherway, T.; Bengtsson, J.; Buegger, F.; Fritscher, J.; Oja, J.; Pritsch, K.; Hildebrand,
1018 F.; Krab, E. J.; Bahram, M., Pervasive associations between dark septate endophytic fungi
1019 with tree root and soil microbiomes across Europe. *Nature Communications* **2024**, *15*, (1),
1020 159.

1021 96. Meyer, B.; Imhoff, J. F.; Kuever, J., Molecular analysis of the distribution and phylogeny
1022 of the *soxB* gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation
1023 enzyme system. *Environmental Microbiology* **2007**, *9*, (12), 2957-77.

1024 97. Li, X.; Sato, T.; Ooiwa, Y.; Kusumi, A.; Gu, J.; Katayama, Y., Oxidation of elemental
1025 sulfur by *Fusarium solani* strain THIF01 harboring endobacterium *Bradyrhizobium* sp.
1026 *Microbial Ecology* **2010**, *60*, (1), 96-104.

1027 98. Kumar, R.; Verma, H.; Haider, S.; Bajaj, A.; Sood, U.; Ponnusamy, K.; Nagar, S.;
1028 Shakarad, M. N.; Negi, R. K.; Singh, Y.; Khurana, J. P.; Gilbert, J. A.; Lal, R., Comparative
1029 genomic analysis reveals habitat-specific genes and regulatory hubs within the genus
1030 *Novosphingobium*. *mSystems* **2017**, *2*, (3), e00020-17.

1031 99. Santana, M. M.; Dias, T.; Gonzalez, J. M.; Cruz, C., Transformation of organic and
1032 inorganic sulfur-adding perspectives to new players in soil and rhizosphere. *Soil Biology and*
1033 *Biochemistry* **2021**, *160*, 108306.

1034 100. Schmalenberger, A.; Hodge, S.; Bryant, A.; Hawkesford, M. J.; Singh, B. K.; Kertesz, M.
1035 A., The role of *Variovorax* and other *Comamonadaceae* in sulfur transformations by microbial
1036 wheat rhizosphere communities exposed to different sulfur fertilization regimes.
1037 *Environmental Microbiology* **2008**, *10*, (6), 1486-500.

1038 101. Ni, C.; Horton, D. J.; Rui, J.; Henson, M. W.; Jiang, Y.; Huang, X.; Learman, D. R., High
1039 concentrations of bioavailable heavy metals impact freshwater sediment microbial
1040 communities. *Annals of Microbiology* **2015**, *66*, (3), 1003-1012.

1041 102. Yuan, Q.; Wang, P.; Wang, X.; Hu, B.; Tao, L., Phytoremediation of
1042 cadmium-contaminated sediment using *Hydrilla verticillata* and *Elodea canadensis* harbor
1043 two same keystone rhizobacteria *Pedosphaeraceae* and *Parasegetibacter*. *Chemosphere* **2022**,
1044 286, (Pt 1), 131648.

1045 103. Chaintreuil, C.; Giraud, E.; Prin, Y.; Lorquin, J.; Ba, A. M.; Gillis, M.; de Lajudie, P.;
1046 Dreyfus, B., Photosynthetic bradyrhizobia are natural endophytes of the African wild rice
1047 *Oryza breviligulata*. *Applied and Environmental Microbiology* **2000**, *66*, (12), 5437-47.

1048 104. Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I., Soil beneficial bacteria and their
1049 role in plant growth promotion: a review. *Annals of Microbiology* **2010**, *60*, (4), 579-598.

1050 105. Deng, Y.; Fu, S.; Sarkodie, E. K.; Zhang, S.; Jiang, L.; Liang, Y.; Yin, H.; Bai, L.; Liu, X.;
1051 Liu, H.; Jiang, H., Ecological responses of bacterial assembly and functions to steep Cd
1052 gradient in a typical Cd-contaminated farmland ecosystem. *Ecotoxicology and Environmental*
1053 *Safety* **2022**, 229, 113067.

1054 106. Luo, J.; Gu, S.; Guo, X.; Liu, Y.; Tao, Q.; Zhao, H.; Liang, Y.; Banerjee, S.; Li, T., Core
1055 microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant
1056 performance. *Environmental Science & Technology* **2022**, *56*, (18), 12975-12987.

1057 107. Trivedi, P.; Leach, J. E.; Tringe, S. G.; Sa, T.; Singh, B. K., Plant-microbiome
1058 interactions: from community assembly to plant health. *Nature Reviews Microbiology* **2020**,

1059 18, (11), 607-621.

1060 108. Toju, H.; Peay, K. G.; Yamamichi, M.; Narisawa, K.; Hiruma, K.; Naito, K.; Fukuda, S.;
1061 Ushio, M.; Nakaoka, S.; Onoda, Y.; Yoshida, K.; Schlaeppi, K.; Bai, Y.; Sugiura, R.; Ichihashi,
1062 Y.; Minamisawa, K.; Kiers, E. T., Core microbiomes for sustainable agroecosystems. *Nature
1063 Plants* **2018**, *4*, (5), 247-257.

1064 109. Newman, M. E. J., Fast algorithm for detecting community structure in networks.
1065 *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics* **2004**, *69*, (6 Pt 2),
1066 066133.

1067 110. Newman, M. E. J., Modularity and community structure in networks. *Proceedings of the
1068 National Academy of Sciences of the United States of America* **2006**, *103*, (23), 8577-82.

1069 111. Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P. B.; Banerjee, S.; van der Heijden, M. G. A.;
1070 Sadowsky, M. J.; Ishii, S.; Jia, X.; Shao, M.; Liu, B.; Jiao, H.; Li, H.; Wei, X., Erosion
1071 reduces soil microbial diversity, network complexity and multifunctionality. *ISME Journal*
1072 **2021**, *15*, (8), 2474-2489.

1073 112. Fesel, P. H.; Zuccaro, A., Dissecting endophytic lifestyle along the parasitism/mutualism
1074 continuum in *Arabidopsis*. *Current Opinion in Microbiology* **2016**, *32*, 103-112.

1075 113. Fields, B.; Friman, V. P., Microbial eco-evolutionary dynamics in the plant rhizosphere.
1076 *Current Opinion in Microbiology* **2022**, *68*, 102153.

1077 114. Agler, M. T.; Ruhe, J.; Kroll, S.; Morhenn, C.; Kim, S. T.; Weigel, D.; Kemen, E. M.,
1078 Microbial hub taxa link host and abiotic factors to plant microbiome variation. *PLOS Biology*
1079 **2016**, *14*, (1), e1002352.

1080 115. de Vries, F. T.; Griffiths, R. I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H. S.; Hallin,
1081 S.; Kaisermann, A.; Keith, A. M.; Kretzschmar, M.; Lemanceau, P.; Lumini, E.; Mason, K. E.;
1082 Oliver, A.; Ostle, N.; Prosser, J. I.; Thion, C.; Thomson, B.; Bardgett, R. D., Soil bacterial
1083 networks are less stable under drought than fungal networks. *Nature Communications* **2018**, *9*,
1084 (1), 3033.

1085 116. Chen, Y.; Ding, Q.; Chao, Y.; Wei, X.; Wang, S.; Qiu, R., Structural development and
1086 assembly patterns of the root-associated microbiomes during phytoremediation. *Science of the
1087 Total Environment* **2018**, *644*, 1591-1601.

1088 117. Wen, T.; Yuan, J.; He, X.; Lin, Y.; Huang, Q.; Shen, Q., Enrichment of beneficial
1089 cucumber rhizosphere microbes mediated by organic acid secretion. *Horticulture Research*
1090 **2020**, *7*, 154.

1091 118. Belimov, A. A.; Hontzeas, N.; Safranova, V. I.; Demchinskaya, S. V.; Piluzza, G.; Bullitta,
1092 S.; Glick, B. R., Cadmium-tolerant plant growth-promoting bacteria associated with the roots
1093 of Indian mustard (*Brassica juncea* L. Czern.). *Soil Biology and Biochemistry* **2005**, *37*, (2),
1094 241-250.

1095 119. Bal, H. B.; Das, S.; Dangar, T. K.; Adhya, T. K., ACC deaminase and IAA producing
1096 growth promoting bacteria from the rhizosphere soil of tropical rice plants. *Journal of Basic
1097 Microbiology* **2013**, *53*, (12), 972-84.

1098