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• Importance of porous membrane supports

• Membrane fabrication via phase inversion
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➢  Chemical and thermal stabilities
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• Conclusions
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Gas Separation Often Relies on Thin Film Composite 
(TFC) Membranes
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Koros et al, Nature Materials, 2017, 16, 289.



Promising Porous Membrane Supports
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• High (effective) porosity (>10%) - to provide sufficient permeance 

• Small pore size (10-50 nm) - to ease pore penetration effect

• Chemical stability - to tolerate aggressive coating solvents

• Thermal stability - to withstand harsh drying conditions 
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Membrane Supports in the Market and Other Labs
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Materials

Glass 

Transition 

Temp.(°C)*

Solvent Resistance (R: Resistant/N: Not resistant )

Alcohol

(ethanol)

Ketone 

(acetone)

Aromatic

(toluene)

Cyclic ether

(tetrahydrofuran)

Halogenated 

(chloroform)

Polyacrylonitrile (PAN) 82 to 145 R R R R R

Polyethersulfone (PES) 158 to 228 R N N N N

Polysulfone (PSF) 179 to 194 R N N N N

Polyvinylidene fluoride (PVDF) -67 to 5 R N R N N

Polystyrene-block-poly(4-

vinylpyridine) (PS-b-P4VP)
100 to 148 R N N N N

Sepro ®  PAN Synder ® PAN

500 nm

IsoporousSepro ®  PES

* www. polymerdatabase.com, accessed on 10/20/2019; #Peinemann et al, Nature Materials, 2007, 6, 992.



Polybenzimidazole (PBI) as a Support Material
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• High glass transition temp.: 425 °C

• Dissolution in very few polar 

solvents under heat: 

dimethylacetamide (DMAc)

• Membrane applications: 

hydrogen separation, organic 

solvent nanofiltration

• PBI solution: commercially 

available

PBI powder PBI solution



Phase Inversion to Prepare PBI Supports
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Pore Morphology Determined by Solvent Exchange 
Process
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Phase inversion

Water

• Vigorous DMAc(solvent) - water exchange leads to pore formation

• PBI dope concentration (DMAc content) and water quench bath temperature 

significantly affect the solvent exchange process

Water 

DMAc

Supported PBI wet film

DMAc

Water 

quench 

bath

Water 

quench 

bath

Water 

PBI-rich phase

PBI-lean phase



Sample

PBI 

(wt.%)

DMAc 

(wt.%)

Quench Bath Temp. 

(°C) Alternative Name

PBI-S1 15 85 20 PBI-15%-20C

PBI-S2 15 85 40 PBI-15%-40C

PBI-S3 15 85 60 PBI-15%-60C

PBI-S4 12.5 87.5 60 PBI-12.5%-60C

PBI-S5 11 89 60 PBI-11%-60C

PBI-S6 10 90 60 PBI-10%-60C

PBI-S7 9 91 60 PBI-9%-60C

Varying Quench Bath Temp. and PBI Conc. to Achieve 
Different Pore Morphologies
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Effect of Bath Temp. on CO2 Permeance and Pore 
Structure
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Effect of PBI Conc. on CO2 Permeance and Pore 
Structure
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PBI Supports vs. Commercial PAN Supports
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500 nm

PBI-S6

500 nm

PAN-S1

PBI-S6 PAN-S1 (ULTURATM ) PAN-S2 (Synder®)

CO2 permeance1 (kGPU) 260 ± 20 138 ± 13 53 ± 1 

Pore size (dia, nm) 5 - 42 ≤ 20 ≤ 22

Surface porosity (%) 22 ± 2 6 ± 1 8 ± 1

PAN-S2

500 nm

1. Determined at a pressure drop of 1 bar and 22 °C.



Effect of Solvent Immersion on Gas Permeance
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Effect of Thermal Exposure on Gas Permeance
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PBI Supports vs. Commercial PAN Supports
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500 nm

PBI-S6

500 nm

PAN-S1

PBI-S6 PAN-S1 (ULTURATM ) PAN-S2 (Synder®)

CO2 permeance1 (kGPU) 260 ± 20 138 ± 13 53 ± 1 

Pore size (dia, nm) 5 - 42 ≤ 20 ≤ 22

Surface porosity (%) 22 ± 2 6 ± 1 8 ± 1

Operation temperature (°C) ≤ 200  ≤ 75 ≤ 75

Solvent resistance Excellent2 Good3 Good3

PAN-S2

500 nm

1. Determined at a pressure drop of 1 bar and 22 °C. 2. Neither dissolved or swollen in common thin film coating solvents like acetone, 
tetrahydrofuran (THF), and chloroform. 3. Not dissolved but swollen in common solvents.



Supporting Performance in Two-Layer Composite 
Membranes 
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Polydimethylsiloxane

(PDMS) knife-casting



Supporting Performance in Two-Layer Composite 
Membranes 
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Scale-Up Fabrication via a Roll-to-Roll Process
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2020: 40 cm2

2021: ~200 cm2

200 nm

2023: 30 cm-wide rolls



Conclusions
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• Developed scalable PBI supports with:

➢ High porosity (up to ~20%)

➢ Tunable pore size (13 to 42 nm)

➢ Excellent thermal stability and solvent resistance

➢ Demonstrated highly permeable and ultra-thin film coatings on PBI supports

➢ Minimum waste treatment cost: Our polymer dope only consists of PBI and DMAc, so 

the generated waste water (from quench bath) only contains DMAc contaminant.

• Scaled up PBI support fabrication from the bench-scale hand casting to roll-to-roll 

continuous production
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