
Rapid Constrained Object Motion Estimation based
on Centroid Localization of Semantically Labeled

Objects
Carol Young1, Calvin Stahoviak2, Raymond Kim1, Jonathon E. Slightam1

Abstract—Autonomous and semi-autonomous robot manipula-
tion systems require fast classification and localization of objects
in the world to realize online generation of motion plans and
manipulation waypoints in real-time. Furthermore, constraints
and estimated plausible motions of objects of interest in space
is paramount for autonomous manipulation tasks. For non-
grasping tasks like pushing a box or opening an unlatched door,
physical properties such as the center of mass and location of
constraints like hinges or bearings must be considered. This
paper presents a methodology for rapidly inferring constraints
and motion plans for objects of interest to be manipulated.
This approach is based on a combination of object detection,
instance segmentation, localization methods, and algebraically
relating different semantically labeled objects. These methods
for motion estimation are implemented on a color-depth camera
(RGB-D) and a 7 degree-of-freedom serial robot arm. The
algorithm’s performance is evaluated through different arm
poses, assessing both centroid accuracy and estimation speed,
and motion estimation performance. Algorithms are tested on an
exemplar problem consisting of a block constrained on a dual
linear rail system, i.e., constrained linear motion. Experimental
results showcase the scalability of this approach to multiple
classes with sublinear slowdowns and linear motion plan direction
errors as low as 1.23E−4 [rad]. The manuscript also outlines how
these methods for rapid constrained object motion estimation can
be leveraged for other applications.

I. INTRODUCTION

Constraint and motion estimation of objects in unstruc-
tured environments is a fundamental challenge in mobile au-
tonomous manipulation. Core to these estimation approaches
are the classification, segmentation, and localization of consti-
tutive components in mechanical systems. Centroid estimation
of semantically labeled objects provides information that can
be leveraged for manipulation applications. One manipulation
scenario involves determining the center of mass of an object,
which enables the manipulator to interact with the object in
ways that result in tipping, twisting, or translational motions.

This work was supported by Laboratory Directed Research and Develop-
ment program at Sandia National Laboratories. Sandia National Laboratories
is a multi-mission laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. This paper
describes objective technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.

1 Unmanned Systems & Autonomy R&D group at Sandia National
Laboratories, Albuquerque, NM 87185 USA. [emails: ccyoung@sandia.gov,
rkim@sandia.gov, jslight@sandia.gov]

2 Author Calvin Stahoviak is a student at University of New Mexico [email:
cstahoviak@unm.edu]

Fig. 1: Experimental setup for the rapid instance based multi-object centroid
estimation with detection, segmentation, and localization to determine per-
missible motions of a block on a slider. The highlighted section depicts the
RGB-D image with labeled objects.

Another scenario focuses on identifying the relative locations
of objects in relation to specific constraints, such as those
imposed by bearings or hinges. Understanding these physical
properties and constraints is essential for contact-rich manipu-
lation in unstructured environments. Inappropriate interactions
can cause damage to the object, the manipulator, or the
constraints themselves. This necessity drives the development
of a method for rapidly estimating constrained object motions
based on centroid localization and semantic labeling of objects.

II. BACKGROUND

We present background on segmentation, localization, and
model estimation methods and describe what the main contri-
butions of this work are in the following subsections.

1) Segmentation: Great effort has been taken to develop
3D segmentation algorithms for use in cluttered and unknown
environments.

Edge-based algorithms [1]–[5], begin by determining edges
using differences in depth, angle, and color of neighboring
pixels. Regions between edges are associated with surfaces
and further filtered. While this approach effectively achieves
real-time object segmentation with high accuracy under the
assumptions that one surface of an object is at the forefront [1],
[3] or objects are generally convex [2], it has limitations when
dealing with irregularly shaped or partially occluded objects.
Area-based algorithms determine surface patches on an image
by making comparisons on adjacent pixels in order to grow
regions of similarity. Overall, these approaches were found to
be less capable than their edge-based counterparts in direct
comparisons [5].

SAND2024-05968C

Depth
+ Color
Image

Object
Detection

Instance
Segmentation

Centroid
Estimation

Labeled
Centroids

Motion
Model

Calculation

Fig. 2: Flowchart of the proposed algorithm.

Graph-based algorithms [3], [6], [7] use graph theory to
group surfaces into object hypotheses. Typically, clustering
methods are concurrently employed, as clustering regions of
an image serves as an effective prerequisite to constructing
a graph. While this approach demonstrated efficiency in seg-
menting irregular shapes and occluded objects, running in real-
time, and occasionally outperforming learning-based counter-
parts, it exhibits weaknesses in handling complex scenes.

Model-based algorithms [4], [8] utilize object models to
match features or shapes identified after segmentation. Many
works employing model-based algorithms achieve segmenta-
tion and pose estimation simultaneously, as known models aid
the segmentation process while simplifying pose estimation.
On the other hand, learning-based algorithms [9], [10] leverage
a deep learning module to assist in segmentation. A significant
drawback of this approach is the considerable effort and data
required for effective model training. Recent advancements
have improved the efficiency of machine learning models
and reduced the work needed to build a large dataset [11].
However, due to the utilization of multiple learning models,
this approach is too slow for real-time applications.

2) Localization: Methods for localization of objects depend
on segmenting out the objects of interest from the background,
the available sensor data, and prior information. In cases when
depth information is unavailable, 2D bounding boxes can be
combined with a series of learning models to regress those
2D bounding boxes to 3D [12] but this does require large
training sets for the best results. When depth information is
available, 2D bounding boxes can be projected into 3D clouds,
and the 3D bounding box regression is done by training a
multi-layer perceptron (MLP) network. However, because the
use of multiple learning models, this method is too slow for
real-time applications [10]. When models are available, such
as when using model-based segmentation algorithms [4], [8],
the placed model can be leveraged to identify position and
pose. Finally, when a global point cloud is available, position
is able to come directly from it [1], [2].

3) Model Estimation: Understanding the motion model
parameters of an object, particularly the permissible motions,
is critical for optimizing interaction and motion strategies in
object manipulation. Previous studies have demonstrated the
feasibility of estimating object motion from sequential image
data using various techniques. Many of these works exploit
the information redundancy of pairwise motions in sequential
images to estimate the kinematic and inertial parameters of
the objects in motion. These information redundancies can
then be further processed with adaptive Kalman filters [13],
linearly fitting global models [14], recursive least-squares and

linear-quadratic tracking algorithms [15], [16], or nonlinear
methods [17]. In recent years, a time granularity-based visual
measurement and prediction framework has also been devel-
oped to forecast the uncertain trajectory of moving objects
for robotic manipulation. [18]. While considerable research
has focused on estimating the motion of moving objects
using image sequences, limited attention has been given to
estimating the permissible motion of static objects of interest.

4) Contributions: This work proposes a fast algorithm
for using RGB-D data to label, estimate, and combine the
centroids of objects to determine the motion model of an
object of interest. The key contributions of this paper are 1)
presenting an algorithm for rapid detection, segmentation, and
centroid estimation of objects using RGB-D, 2) experimen-
tally demonstrating the scalability of the approach, 3) and
illustrating how a motion model can be generated to identify
permissible motions on the desired object of interaction. This
proposed approach allows for a fast motion estimation of
constrained objects for autonomous manipulation applications.

III. MOTION MODEL ESTIMATION ALGORITHM

This section outlines the proposed algorithm, visualized
in Figure 2, and covers in detail the subsequent steps for
quickly estimating object motion models. The methodology
can be separated into detection, segmentation, estimation of
the volumetric centroid, and motion model calculation. The
entire process is divided into four different subsections to
allow for easy experimentation with various methodologies or
strategies. This structure supports targeted improvements in
processing speed where they are most impactful. For instance,
dedicating GPU resources specifically to segmentation and
detection can optimize performance by reducing the search
space required for segmentation.

A. Object Detection

Our algorithm utilizes the You Only Look Once version
3 (YOLOv3) convolutional neural network model to generate
bounding boxes for detected objects [19]. We employ Darknet
for training the YOLOv3 model, which performs detection
on color images captured by the manipulator. Specifically, the
model is trained to recognize three classes of objects—blocks,
bearings, and rods—which are critical for identifying both the
movable object and its constraints. An example of this detec-
tion output is illustrated in Figure 3. Using object detection as
the initial step allows us to minimize the image size needed for
subsequent segmentation, thereby enhancing the overall speed
of the algorithm.

B. Instance Segmentation

The instance segmentation algorithm, outlined in Algo-
rithm 1, is influenced by methods previously described in [1]
and [20]. This algorithm leverages the current depth map and
the bounding boxes output from object detection, which are
depicted from various angles in Figure 3. Additionally, the im-
plementation has been optimized for CUDA/GPU processing,
significantly enhancing the system’s overall speed.

Algorithm 1: Instance Segmentation
Data: Depth map D, Bounding box dimensions B
Result: Segmented Point Cloud P

1: Determine coordinate map, C ← D
2: Determine surface normal map, N ← C
3: Determine edge map, E ← N
4: Determine threshold-ed edge map, T ← E
5: Perform region growing on T to generate surface patch

map S
6: Perform surface grouping algorithm 2
7: Generate mask M as all points in all surfaces of R
8: Generate point cloud P by masking D with M

Fig. 3: Left: straight view of the block with classification labels of the block,
two rods, and two bearings. Right: negative isometric view of the block with
classification labels of the block, rod, and bearing.

The current depth map Dt, as seen in Figure 4, serves as the
starting point of our algorithm. Each pixel in Dt aligns with a
point in the vertex map Vt, which contains the 3D coordinates
of each depth point.

As shown in [1], we calculate a dot product at each point
to generate the surface normal map Nt composed of vectors n⃗
(Figure 5). a⃗, b⃗, and c⃗ represent vectors between three points
surrounding the point of interest.

n⃗ = (⃗b− a⃗) · (c⃗− a⃗) (1)

As shown in [1], we generate an edge map, Et, as depicted
in Figure 6. This involves using the normal vector, n⃗, at each
point to compute the dot products. These calculations are con-
ducted between the center pixel and its three nearest neighbors
in each cardinal direction, denoted as j = (N,E, S,W), and
labeled m⃗i,j where i = (1, 2, 3). After computing these dot
products, we average the results for each direction. The final

Fig. 4: Depth image Fig. 5: Surface Normal Map

Fig. 6: Edge Map Fig. 7: Resulting Surfaces

value e for each point in Et is determined by selecting the
minimum dot product value—which corresponds to the max-
imum angle difference—from these averages in each cardinal
direction.

e = argminj

(∑3
i=1 m⃗i,j · n⃗

3

)
(2)

Based on [2], we use a threshold-operator Φ on each point
e in Et to generate a binary edge map Tt.

Φ =

{
1, e> 0.5

0, otherwise
(3)

We then apply a surface growing algorithm to Tt to generate
a map of surface patches St (Figure 7). Pixels belonging to
the same surface share the same positive integer value, while
edges are denoted by −1. We accomplished this by using the
method outlined in [20].

Next, we apply the surface grouping algorithm described
in Algorithm 2. SumOriginal is an array of patches whose
index is its identifying integer and whose value is the area
within the bounding box B. SumExpanded is identical
except for utilizing B′ which is the bounding box B expanded
by 20%. By comparing these areas, we can determine which
surfaces were at least 90% within the original bounding box.
We associate those surfaces with the object.

Finally, we generate a point cloud by using the resulting
surface patches R to mask the depth image. This point cloud
P is then employed in the next module for centroid estimation.

C. Centroid Estimation

This module is broken into two sections. The instantaneous
centroid is computed during every iteration of the instance
segmentation, and the filtered centroid is computed at a
constant rate.

Algorithm 2: Surface Grouping
Data: Surface patch map S, Bounding box submap B
Result: Set R is the set of surfaces associated with the

object
SumOriginal← [];
SumExpanded← [];
for pixel p in B do

Increment SumOrignal[Sp]
end
Expand B by 20%;
for pixel p in B′ do

SumExpanded[Sp] += 1;
end
for element i in SumOriginal do

if SumOriginal[i] >= 0.9 ∗ SumExpanded[i]
then

R← i;
end

end

1) Instantaneous Centroid: The accuracy of centroid esti-
mation depends on the accuracy of the instance segmentation.
Precautions can be taken to address potential misidentifications
of object surfaces during instance segmentation. However,
if misidentified surfaces are not filtered out, the centroid
estimation could be severely affected.

Our initial method for rapidly estimating the centroid in-
volved calculating the average of all points associated with the
object. Although this approach is quick, it suffers from signif-
icant drawbacks. First, the inclusion of background surfaces
erroneously associated with the object can cause the centroid
to drift. Second, even when all visible surfaces are accurately
grouped, the estimated centroid tends to shift toward the
camera rather than aligning with the true centroid. This bias
occurs because of a higher density of points closer to the
camera and fewer points on the occluded sides of the object.
Fortunately, the modular design of our system enabled us to
swiftly replace this method with a more accurate approach to
overcome these challenges.

To counteract the centroid drift toward the camera, we
implemented a minimum-oriented bounding box around all
identified points. We estimate the centroid by calculating the
center of this box. However, it is important to note that
this method’s accuracy can be compromised if surfaces are
misidentified, potentially making it less precise than the pre-
viously described averaging approach. The minimum-oriented
bounding box around the segmented point cloud is illustrated
in Figure 8.

In the final step, we use the previous centroid estimates,
from ct−1 to ct−10, to mitigate the impact of outliers that
could cause drastic shifts in the object’s centroid within a
single frame. The steady centroid for the current time, ct, is
determined by averaging these last 10 positions, as outlined
in Equation 4, provided that they are available.

Fig. 8: The location of the centroid (large blue and red axes) and minimum
orientated bounding box (green) with the arm in a negative isometric pose,
as depicted in RViz.

ct =
1

10

10∑
n=1

ct−n (4)

2) Filtering: Once the instantaneous centroid is generated,
we apply a threshold to exclude centroids associated with
inappropriately sized bounding cubes. Specifically, centroids
enclosed within a minimum-oriented bounding box with any
side length exceeding 300mm are disregarded. Following this,
Kalman filtering is applied to refine the centroid estimations.
This filtering ensures that the centroids are maintained even
when the object is occluded or temporarily out of the frame.

Upon receiving a new centroid and an associated YOLO
label, the filtering process assesses whether this represents a
new object. It scans through all currently recognized objects
with the same label to identify the one closest to the new
centroid. If the closest object is beyond a specified threshold
distance (5m for a block, 0.3m for a bearing, and 0.5m for a
rod), a new object is instantiated. If the distance from the new
centroid to the nearest known object is below the threshold,
then the centroid’s position and velocity (assumed to be zero)
are used as inputs for the Kalman filter.

The Kalman filter uses three tuning parameters, the state
covariance matrix P, measurement covariance matrix R, and
process noise covariance matrix Q. The state covariance matrix
is designed such that all states have the same covariance, and
that each state is independent. The state covariance matrix is
shown in Equation 5.

P = 1000I6 (5)

The measurement covariance matrix is also designed such
that all measurements have the same covariance and such that
each measurement is independent. The measurement covari-
ance matrix is shown in Equation 6.

R = 0.252I3 (6)

Finally, the process noise covariance matrix is designed
to use the Discrete Constant White Noise model for a two
dimensional system with a variance of 1 and a timestep of
0.1. The output of this is shown in Equation 7. Currently,
there is no forgetting factor in the filtering.

Q = 10−4

[
0.25I3 5I3
5I3 100I3

]
(7)

Fig. 9: Visual representation of the motion model of our hardware setup. The
cube on the linear rail is restricted on all directions except the x axis. Motion
model represented as λ is shown on the top left. Note that λ is a diagonal
matrix, each representing the permissibility of motion from 0 to 1 in each
axes.

D. Motion Model

The motion model is represented by the diagonal matrix λ.
The first three values correspond to translation along the XY Z
axes, while the last three represent rotation around these axes.
The values in λ range from 0 to 1, where 0 indicates an axis
fully open to movement, and 1 indicates one that is completely
constrained. For example, a block on a rail system, as shown
in Figure 9, would have λ = diag(0, 1, 1, 1, 1, 1) since it can
move freely along the x-axis but is constrained in the y and
z axes by the rails and gravity, respectively.

Using centroid estimation and classification, we generate
a permissible motion model for each identified block. This
process utilizes the list of all bearings and rods identified
by the filter. Once at least one bearing and one rod are
detected, we generate a constraint ID. This ID operates under
the assumption that all bearings are associated with the block.
For systems involving multiple blocks or multiple objects of
interests, we could introduce a threshold to accurately assign
constraints to specific blocks/objects.

We encounter several edge cases in our model. When there
is only one bearing and one rod, the angle of motion is
determined by the line connecting the two. If there is one
bearing and multiple rods, the angle of motion is defined
by the line between the bearing and the first rod observed.
Conversely, if multiple bearings and only one rod are present,
the angle of motion is determined by averaging the lines
connecting the rod to each bearing.

The most common case consists of multiple bearings and
rods. In this case, we iterate through all possible combinations
of the two sets of unique bearing and rod pairs. Each bearing is
then assigned a rod so that the total angle difference between
all pairs is minimized as shown in Equation 8. The average
line for this assignment is found using Equation 9. This line
gives the angle of achievable motion of the block, it can also
be represented as a lambda constraint using Equation 10.

m = argmin
k∈S

n−1∑
i=1

n∑
j=i+1

arccos

(
(bki − rki) · (bkj − rkj)∣∣bki − rki

∣∣ ∣∣bkj − rkj
∣∣
)

(8)

v =
1

n

n∑
i=1

bmi − rmi (9)

λ = diag(1− |v1| , 1− |v2| , 1− |v3| , 1, 1, 1) (10)

IV. EXPERIMENTAL APPROACH

The experimental setup is illustrated in Figure 1. It features
a block positioned at (915, 0, 265)mm from the base of the
Kinova Gen3 7-DOF manipulator, alongside a linear rail that
allows motion along a 1D axis parallel to the x-axis of the
Kinova arm base. We tested our algorithmic centroid esti-
mation approach using multiple end-effector poses, including
a straight-on view and both positive and negative isometric
views of the block. The coordinates for each of these poses
are detailed in Table I. The manipulator arm sequentially
moved through these positions, beginning with the positive
isometric view and concluding with the negative isometric
view. It remained stationary for 4 seconds at each pose and
took 10 seconds to transition between poses. Images of the
straight and negative isometric views captured by the camera,
along with the YOLO output, are displayed in Figure 3.

During the experiment, we estimated the centroid using
YOLO-classified RGB-D images of the block. We measured
the error between the estimated centroid and the actual block
centroid, as well as the time required for centroid estimation.
The experiment was initially conducted using two YOLO
classification labels (block and rods) and subsequently re-
peated with three labels (block, rods, and bearings). This
iterative approach allowed us to assess how the algorithm
scales with an increasing number of classified objects, which
is crucial for accurately computing motion models. Finally, we
calculated the motion model of the block using results from
the three-class setup. This enabled us to compare the estimated
permissible motion of the block with the actual movement
along the linear rail hardware.

V. EXPERIMENTAL RESULTS

A. Centroid Estimation Accuracy

The complete statistics for the instantaneous and filtered
centroid estimation errors are presented in Tables II and III.
A comparison of these tables reveals that while applying the
filter did not markedly alter the average error, it did reduce
the standard deviation, thereby enhancing the system’s overall
precision. An exception to this trend was observed in the
positive isometric view with three classes on the z-axis, where
there was an increase in the average standard deviation.

The statistics for the filtered centroid estimations are illus-
trated in the whisker plots in Figures 10 and 11. The similarity
between these plots indicates that the presence of additional
classifiable objects does not significantly impact the error in
centroid estimation. These plots also highlight that the z-axis
error is the predominant source of error. Following this, the
x-axis error shows a unique trend: unlike the y and z-axis
errors, it increases when the arm transitions from the ‘Positive
Isometric’ to the Straight’ position.

The 3D error throughout the entire experiment is depicted
in Figure 12. This figure illustrates that significant fluctuations
in error occur when the arm moves between positions, specif-
ically from ‘Leave Pos Iso’ to ‘Arrive at Straight’, and from
‘Leave Straight’ to ‘Arrive at Neg Iso’. These large changes

in error during these transitions indicate a loss of centroid
placement precision.

The 2D error, which reflects the accuracy of the estimated
position on the table excluding height estimation, for all
identified objects is presented in Figure 13. For all objects,
a loss of precision is observed during transitions between
positions, and the accuracy varies depending on the object’s
orientation.

Fig. 10: Statistics, excluding outliers, for error in centroid estimation of the
block with one class active.

Fig. 11: Statistics, excluding outliers, for error in centroid estimation of the
block with three classes. No significant change from the one class results.

Fig. 12: 3D error of the centroid estimation over the runtime of the experiment
in the case of one, two, and three classes.

Fig. 13: Error of the centroid estimation on the XY plane of each instance
of each class over time.

B. Centroid Estimation Speed

Table IV displays the runtime statistics for both the instan-
taneous centroid and the rate-limited filtered centroid calcula-
tions. The average time for each step of the filtered centroid
estimation was consistently within 0.1ms of the target time
set in the software. The speed statistics for the instantaneous
centroid estimation are particularly noteworthy, as they are
influenced by the performance of instance segmentation and

object detection, as detailed in Figure 14. Notably, as the
number of classes increased, the average computation time
rose by 10.3ms when moving from one to two classes, and
by 3.0ms from two to three classes, indicating a sub-linear
growth rate.

Fig. 14: Computation time for a single measurement in the case of one, two,
and three classes over all three positions.

C. Motion Model Estimation Accuracy

The accuracy of the motion model is evaluated by compar-
ing the calculated angle of block motion to the ground truth
angle of the linear rail motion. The error of the angle of motion
with respect to time is shown in Figure 15. Note that the error
is minimal (1.23× 10−4 radians) when the manipulator is in
straight view pose. At this view, YOLO can clearly identify
both bearings and rods, as shown in Figure 3. However, this
accuracy is not consistent across other views. The highest
peaks of error occur when the arm is moving, shown during
times between ‘Leave’ and ‘Arrive’. In addition, the negative
isometric pose, or between ‘Arrive at Neg Iso’ and ‘Leave Neg
Iso’, has the maximum error of the stationary poses.

Fig. 15: Error of the angular representation of the available motion over time.

D. Correlation of Error

To identify the cause of motion model error, we correlated
the errors of the various labeled centroids. Figure 16 illustrates
the correlations at the time between ‘Arrive at Neg Iso’ and
‘Leave Neg Iso’. The results shown in the two figures indicate
that the errors are highly dependent on ‘Rod 1’, which was the
initial rod identified during the experiment. ‘Rod 1’, as shown
in Figure 3, did not have consistent YOLO identification in
the negative isometric view.

VI. DISCUSSION

This paper introduced an algorithm for estimating motion
models by identifying centroids using RGB-D data, coupled
with rapid detection and segmentation techniques. The experi-
mental results highlighted that the centroid detection algorithm
maintained high performance levels, with only a marginal
increase in runtime as additional classes were identified. This
suggests a sub-linear relationship in computational demand.

Fig. 16: Error correlations between each class for the Negative Isometric View.

The findings suggest that the algorithm can be expanded to
predict and estimate the motions of various other objects, such
as slides, hinges, and wheels.

The dominant factor contributing to the overall centroid
error was the Z error, which likely arose from positional
limitations that resulted in the loss of extreme points along
the z-axis. This issue became particularly noticeable when the
camera’s view was restricted. While this level of error was
manageable for determining the X and Y constraints of an
object sliding on a surface, additional viewing strategies would
be necessary to minimize z-axis point loss if other motion
modes, such as tipping or ramps, are considered. Similarly, the
X error became more pronounced when the block was viewed
head-on, potentially due to point loss along the x-axis caused
by camera positioning. Nonetheless, despite the increased data
noise during movement, the mean error of the block centroid
remained within acceptable limits.

Disappearing and incomplete objects are detrimental to the
performance of the motion model, and a challenge going for-
ward. A potential solution is to implement a tracking algorithm
that maintains better estimates of component locations.

VII. CONCLUSION

In this manuscript, we developed an algorithm for fast
constrained object motion estimation, achieving an average
end-to-end speed of 13.7Hz and directional motion estimate
errors as low as 1.23 × 10−4 radians. The algorithm ex-
hibits a sub-linear slowdown in centroid estimation speed
when additional identifiable classes are present, indicating
scalability. However, when the robot is unable to observe
all constraints from any given position, the performance of
the motion model estimation deteriorates, underscoring the
need for improved object tracking. This work demonstrates
that a motion model for identifying permissible motions can
be effectively generated through rapid centroid estimation of
semantically labeled objects.

REFERENCES

[1] A. Ückermann, C. Elbrechter, R. Haschke, and H. Ritter, “3d scene
segmentation for autonomous robot grasping,” in 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE, 2012,
pp. 1734–1740.

[2] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable incre-
mental segmentation on dense slam,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp.
4465–4472.

[3] A. Ückermann, R. Haschke, and H. Ritter, “Realtime 3d segmentation
for human-robot interaction,” in 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, 2013, pp. 2136–2143.

[4] D. Holz and S. Behnke, “Fast edge-based detection and localization of
transport boxes and pallets in rgb-d images for mobile robot bin picking,”
in Proceedings of ISR 2016: 47st International Symposium on Robotics.
VDE, 2016, pp. 1–8.

[5] A. Harati, S. Gächter, and R. Siegwart, “Fast range image segmentation
for indoor 3d-slam,” IFAC Proceedings Volumes, vol. 40, no. 15, pp.
475–480, 2007.

[6] M. Geetha and R. Rakendu, “An improved method for segmentation
of point cloud using minimum spanning tree,” in 2014 International
Conference on Communication and Signal Processing. IEEE, 2014,
pp. 833–837.

[7] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter, “Object par-
titioning using local convexity,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 304–311.

[8] A. Ahmed, A. Jalal, and K. Kim, “Rgb-d images for object segmentation,
localization and recognition in indoor scenes using feature descriptor
and hough voting,” in 2020 17th international Bhurban conference on
applied sciences and technology (IBCAST). IEEE, 2020, pp. 290–295.

[9] Z. Wang, Y. Xu, J. Yu, G. Xu, J. Fu, and T. Gu, “Instance segmentation
of point cloud captured by rgb-d sensor based on deep learning,”
International Journal of Computer Integrated Manufacturing, vol. 34,
no. 9, pp. 950–963, 2021.

[10] J. Lahoud and B. Ghanem, “2d-driven 3d object detection in rgb-
d images,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 4622–4630.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[12] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding
box estimation using deep learning and geometry,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, 2017,
pp. 7074–7082.

[13] F. Aghili and K. Parsa, “Motion and parameter estimation of space
objects using laser-vision data,” Journal of guidance, control, and
dynamics, vol. 32, no. 2, pp. 538–550, 2009.

[14] V. M. Govindu, “Combining two-view constraints for motion estima-
tion,” in Proceedings of the 2001 IEEE computer society conference on
computer vision and pattern recognition. CVPR 2001, vol. 2. IEEE,
2001, pp. II–II.

[15] R. J. Crinon and W. J. Kolodziej, “Adaptive model-based motion
estimation,” IEEE Transactions on Image Processing, vol. 3, no. 5, pp.
469–481, 1994.

[16] T. J. Broida and R. Chellappa, “Estimation of object motion parameters
from noisy images,” IEEE transactions on pattern analysis and machine
intelligence, no. 1, pp. 90–99, 1986.

[17] S. Soatto, R. Frezza, and P. Perona, “Motion estimation via dynamic
vision,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp.
393–413, 1996.

[18] C. Xia, C.-Y. Weng, Y. Zhang, and I.-M. Chen, “Vision-based measure-
ment and prediction of object trajectory for robotic manipulation in dy-
namic and uncertain scenarios,” IEEE Transactions on Instrumentation
and Measurement, vol. 69, no. 11, pp. 8939–8952, 2020.

[19] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[20] A. Parikh, M. W. Koch, T. J. Blada, and S. P. Buerger, “Rapid
autonomous semantic mapping,” in 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2020, pp. 6156–6163.

APPENDIX

TABLE I: End-Effector Positions for Hardware Experiment in m and rad

X Y Z Roll Pitch Yaw
Positive Isometric -0.1 0.25 0.13 0.232 0.7 -0.425
Straight -0.1 0.0 0.13 0.0 0.7 0.0
Negative Isometric -0.1 0.25 0.13 -0.232 0.7 0.425

TABLE II: Error statistics for the instantaneous centroid in mm

X Error Y Error Z Error
mean std min max mean std min max mean std min max

Filter Pos Iso 13.3 2.03 7.54 18.4 21.0 1.32 19.0 24.4 58.7 1.78 54.0 61.9
Block Straight 23.1 2.22 17.9 27.3 13.9 2.80 8.37 20.0 42.5 1.81 37.0 45.7

1 class Neg Iso 12.9 9.97 0.06 26.8 2.09 1.66 0.18 5.96 37.4 10.3 19.8 59.8
Filter Pos Iso 11.6 2.62 8.17 19.7 19.8 1.45 17.7 22.9 57.4 8.50 18.7 60.8
Block Straight 25.2 1.61 19.9 28.7 13.6 2.18 9.68 20.4 41.3 2.32 36.0 45.7

2 classes Neg Iso 21.6 7.45 0.12 30.2 1.97 1.55 0.02 6.27 36.1 8.24 19.2 59.5
Filter Pos Iso 11.9 1.92 7.91 14.5 20.7 1.45 17.9 22.7 58.4 1.12 56.4 60.5
Block Straight 23.6 5.66 0.84 27.5 15.0 2.86 9.54 27.4 39.2 9.00 5.06 45.7

3 classes Neg Iso 23.1 9.05 1.35 31.6 2.00 1.60 0.02 5.78 34.1 8.13 19.6 60.0
Combined 18.5 5.70 0.06 12.2 2.00 1.08 0.02 27.4 45.0 6.70 5.06 61.9

TABLE III: Error statistics for the filtered centroid in mm

X Error Y Error Z Error
mean std min max mean std min max mean std min max

Filter Pos Iso 13.0 1.66 6.67 16.1 21.1 1.03 19.1 23.0 59.2 1.17 56.1 61.4
Block Straight 23.0 1.30 20.4 25.2 13.7 1.74 10.0 17.0 42.7 1.20 39.7 44.8
1 class Neg Iso 13.3 5.15 1.18 25.4 1.33 1.11 0.07 4.45 36.5 6.07 23.4 50.1
Filter Pos Iso 12.4 1.79 10.2 16.7 19.9 0.77 18.4 21.1 56.7 5.63 41.6 61.5
Block Straight 25.3 0.82 23.6 27.3 13.6 1.50 10.8 16.2 41.5 1.35 38.6 44.3
2 classes Neg Iso 21.8 4.77 6.19 28.8 1.29 0.98 0.03 3.51 35.8 4.24 27.3 48.4
Filter Pos Iso 12.4 1.78 9.81 19.5 20.7 0.79 19.4 22.5 60.5 2.90 57.2 66.0
Block Straight 23.8 3.02 14.7 27.3 15.1 1.51 12.3 19.2 39.3 4.76 23.5 44.4
3 classes Neg Iso 24.0 4.60 7.20 30.3 1.45 1.08 0.10 4.82 33.2 5.42 19.6 44.0

Combined 18.7 3.10 1.18 30.3 12.0 1.20 0.03 23.0 45.0 4.10 19.6 66.0

TABLE IV: Instantaneous centroid and filtered centroid code runtime statistics in ms

Instantaneous Centroid Runtime Filtered Centroid Runtime
mean std min max mean std min max

Filter Pos Iso 67.6 20.0 43.1 127 99.9 1.34 97.0 105
Block Straight 61.9 23.7 30.5 127 100 1.65 95.6 104
1 class Neg Iso 66.2 25.7 36.6 130 100 1.45 96.4 104
Filter Pos Iso 79.8 25.8 44.5 146 100 0.80 96.4 102
Block Straight 66.5 26.2 29.8 135 100 0.87 97.5 104
2 classes Neg Iso 80.4 28.3 41.2 152 100 0.54 97.9 101
Filter Pos Iso 87.3 27.9 49.1 179 100 1.24 94.0 104
Block Straight 71.2 26.6 34.1 152 100 2.71 86.6 113
3 classes Neg Iso 77.0 23.9 41.5 157 100 1.83 94.4 106

