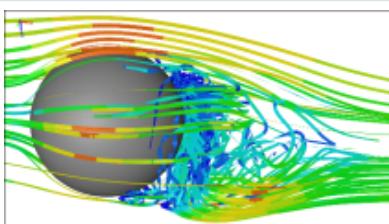
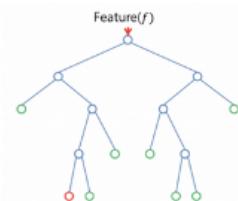


Unraveling Sensitivity and Ensuring Reliability in Reynolds Stress Predictions for Data-Driven RANS



PRESENTED BY: Uma Balakrishnan

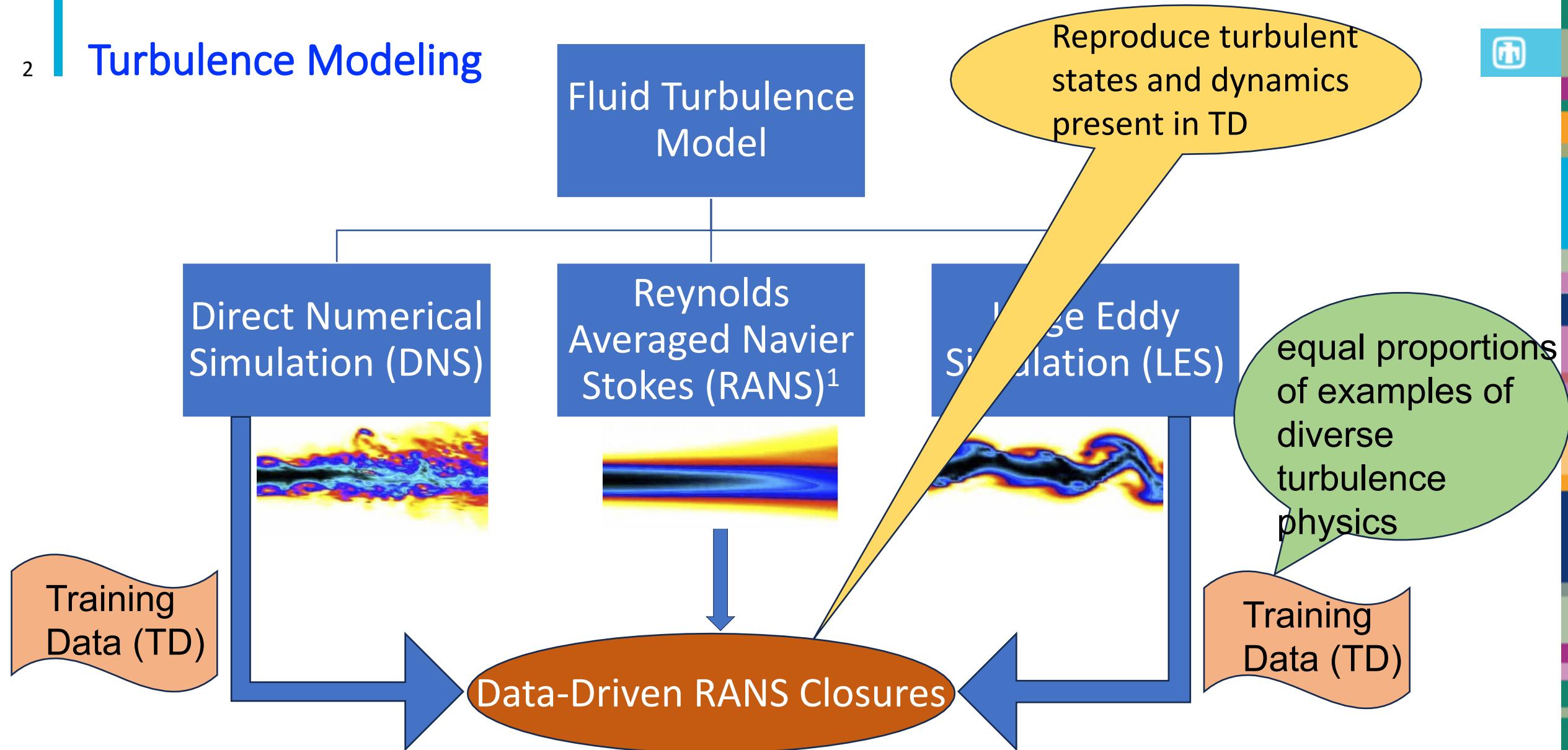
Collaborators: William J Rider, Matthew Barone, Eric J. Parish

Sandia National Laboratories

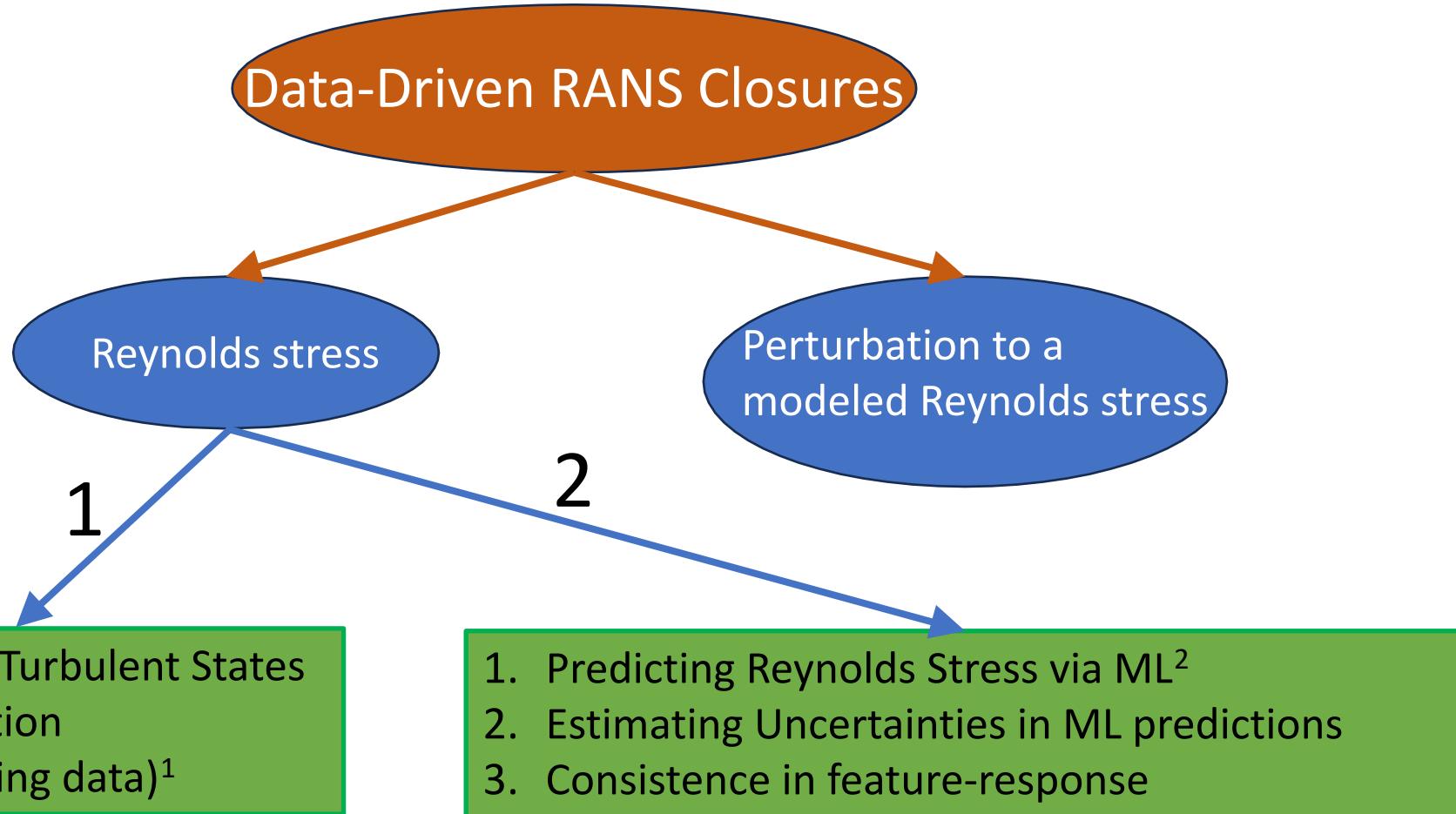
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2024-06089C

Turbulence Modeling



Feature Subset and Optimal Clusters



1. M.F.Barone, J.Ray, and S.Domino, [Feature Selection, Clustering, and Prototype Placement for Turbulence Datasets](#), AIAA Journal 2022 60:3, 1332-1346.
2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. ["Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks and extrapolation detection,"](#) AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023.

What is Credibility?

How do we demonstrate that **predictions** derived from computational simulations are **credible**?

Ex

Expert judgement, I have

I ran the highest fidelity

Although aspects of these assertions may lend a certain level of credibility to analyses, these assertions cannot stand alone as the only credibility evidence to support a computational simulation prediction, particularly in a high-consequence environment

today, so it better be

The computational simulation credibility process seeks to provide a documented, consistent, and repeatable process for assembling a comprehensive credibility evidence package to support computational simulation predictions

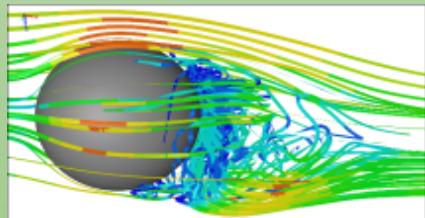
and plenty of margins
all of our calculations!

and never, never, never
have never been
wrong before!

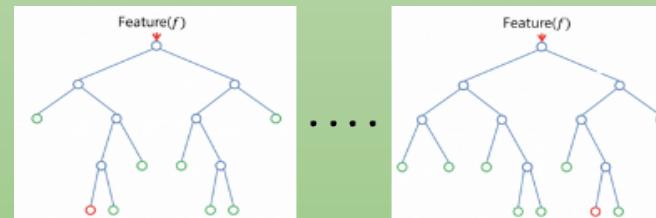
Motivating Credibility for Scientific Machine Learning (SciML)

Machine learned models are used in lieu of, complementary to, or as surrogates for science and engineering computational simulation models.

What does VV/UQ/Credibility Mean for Scientific Machine Learning?



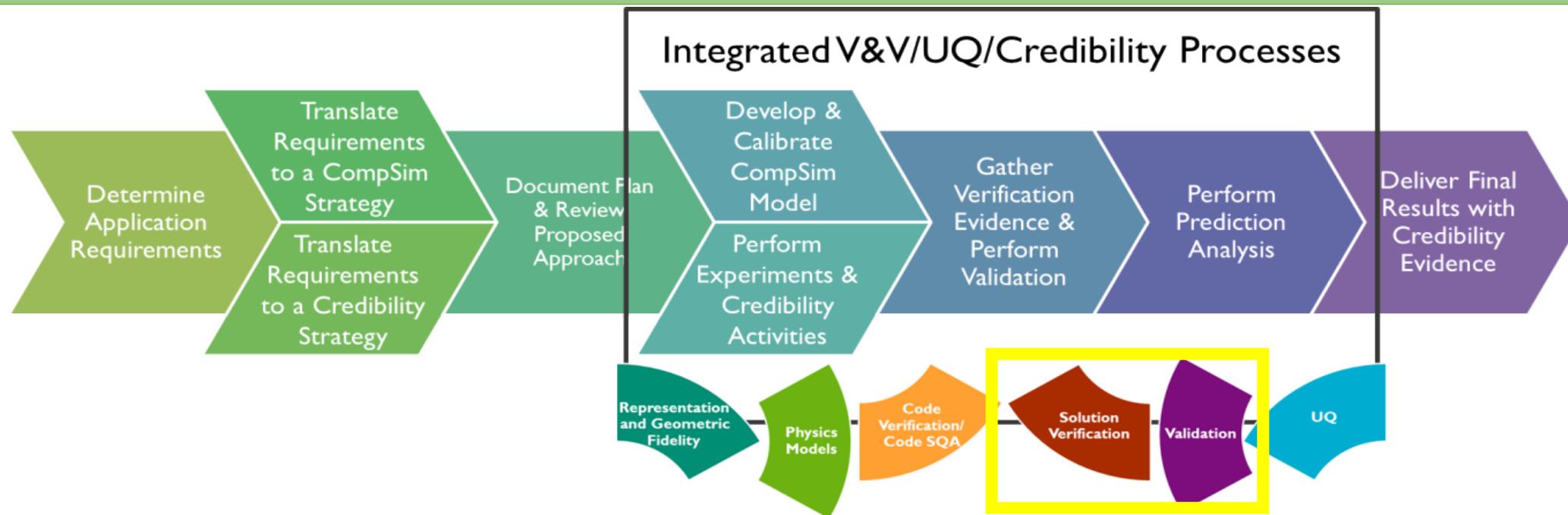
Scientific Computing



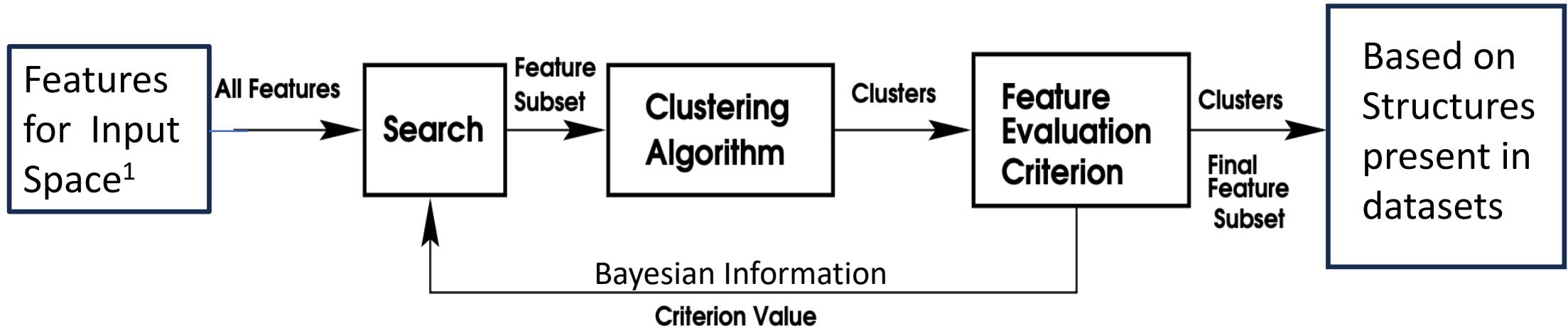
Machine Learning

Putting “correct” math methods and physics models into our codes.

Produce “correct” codes and models which leads to “correct” results.



Feature Subset and Optimal Clusters

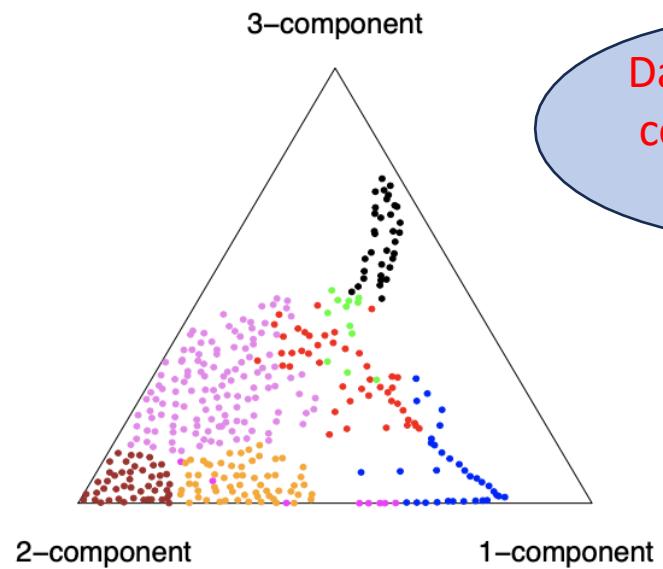


Wrapper³ approach to determine the best features and optimum number of clusters

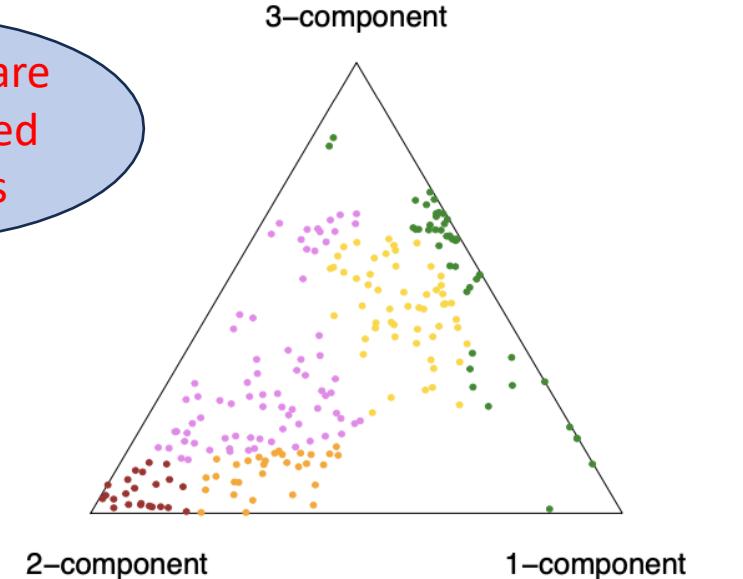
Why Clustering?

Automated partitioning of the training dataset into flow-field regions that reconcile with our human understanding of turbulent flow physics¹

Candidate features that are Galilean and rotational invariant



Wavy Wall Flow



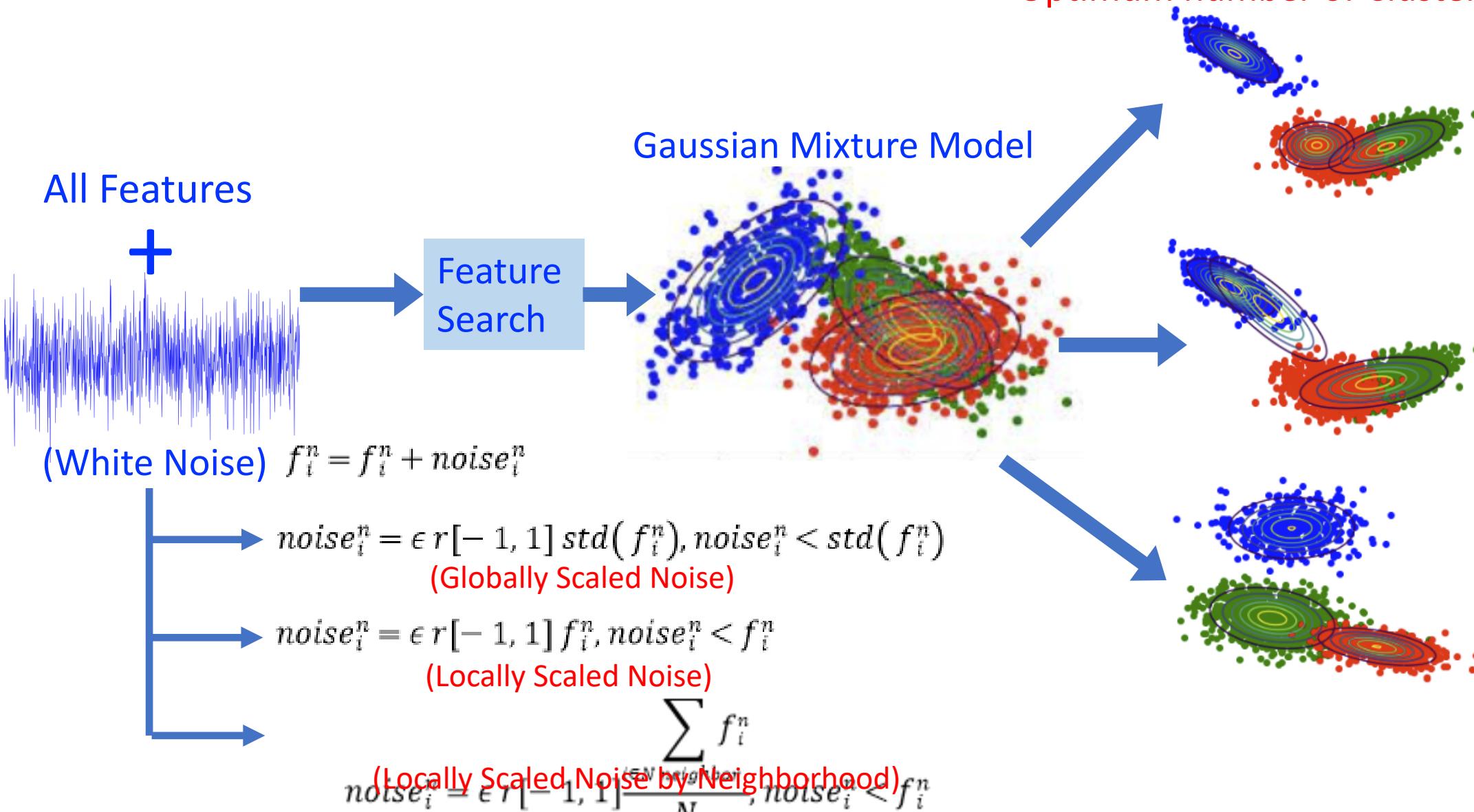
Square Cylinder in Cross-Flow

Is the training procedure for clustering algorithm credible?

Sensitivity Analysis to the Performance of Clustering Algorithm

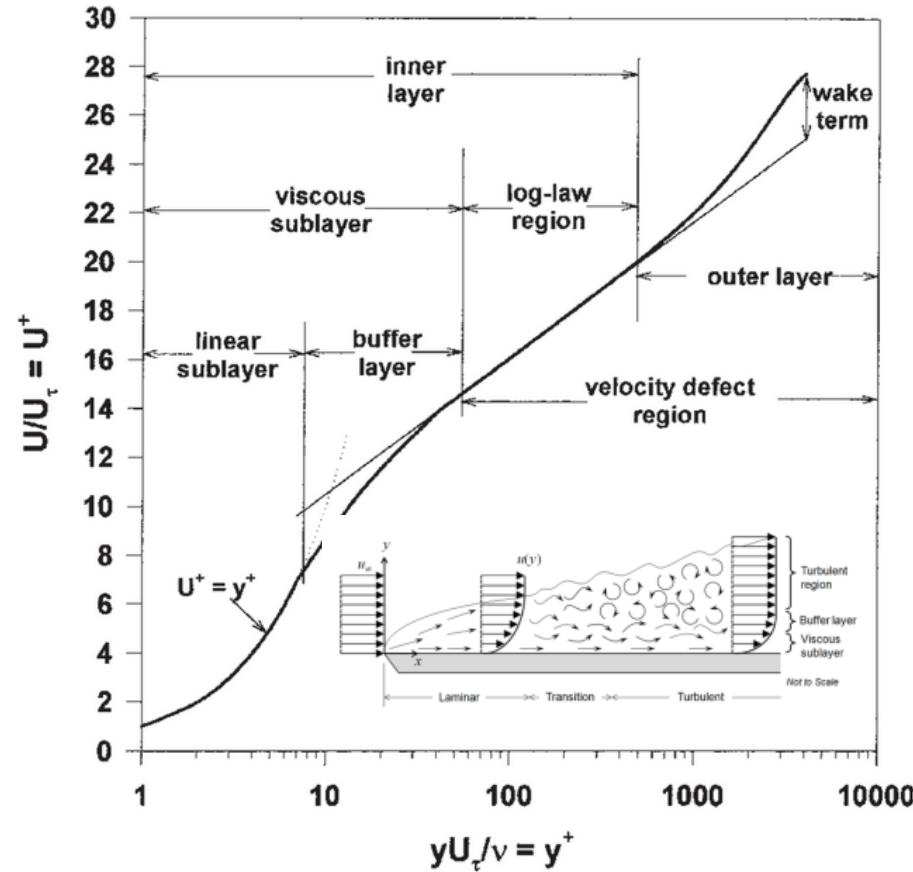
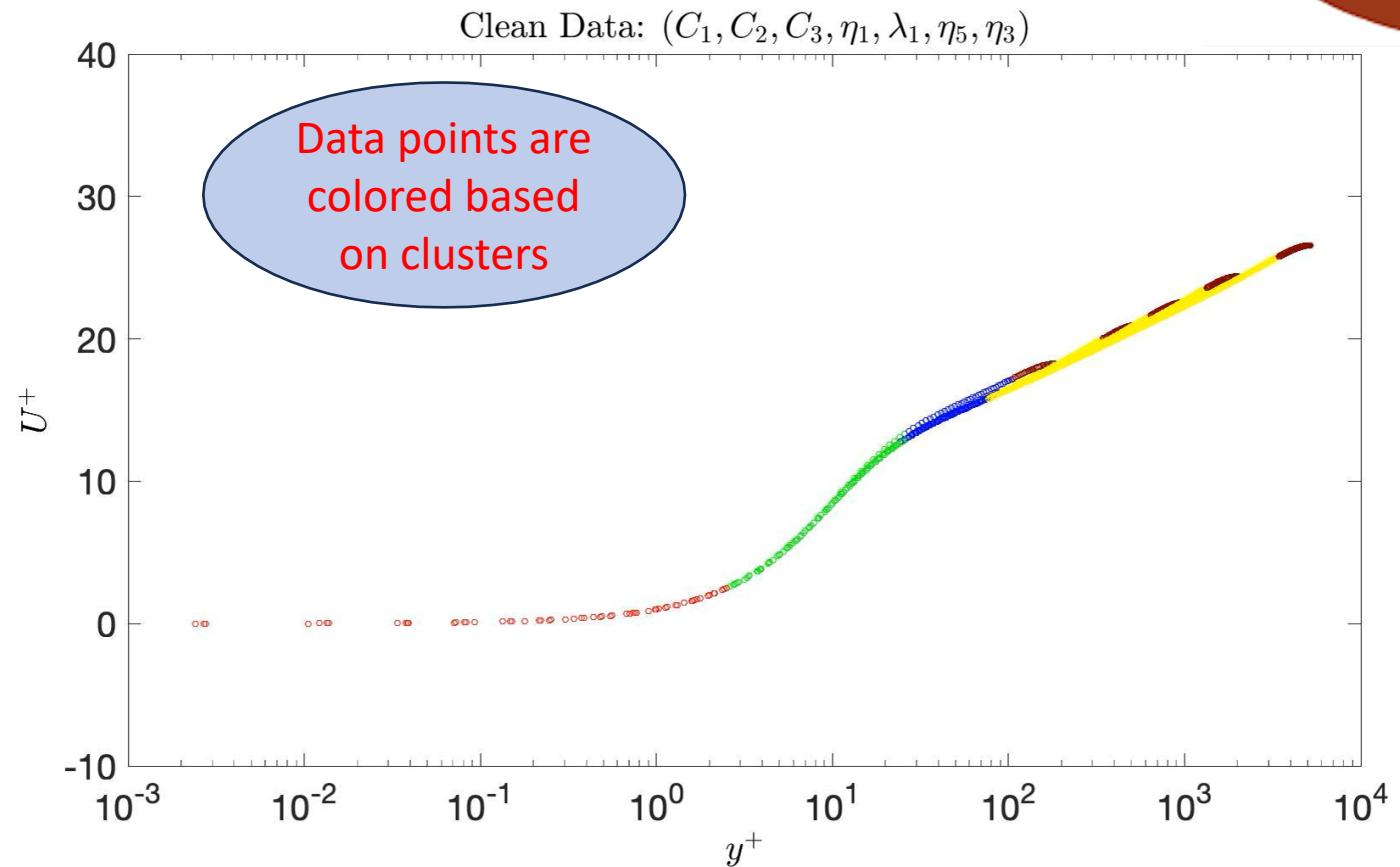
Solution
Verification

QoI: Best Features &
Optimum number of Clusters



Plane Channel Flow

Solution
Verification



- The clustering algorithm is sufficiently robust in identifying best features and number of optimal clusters for Plane Channel Flow.

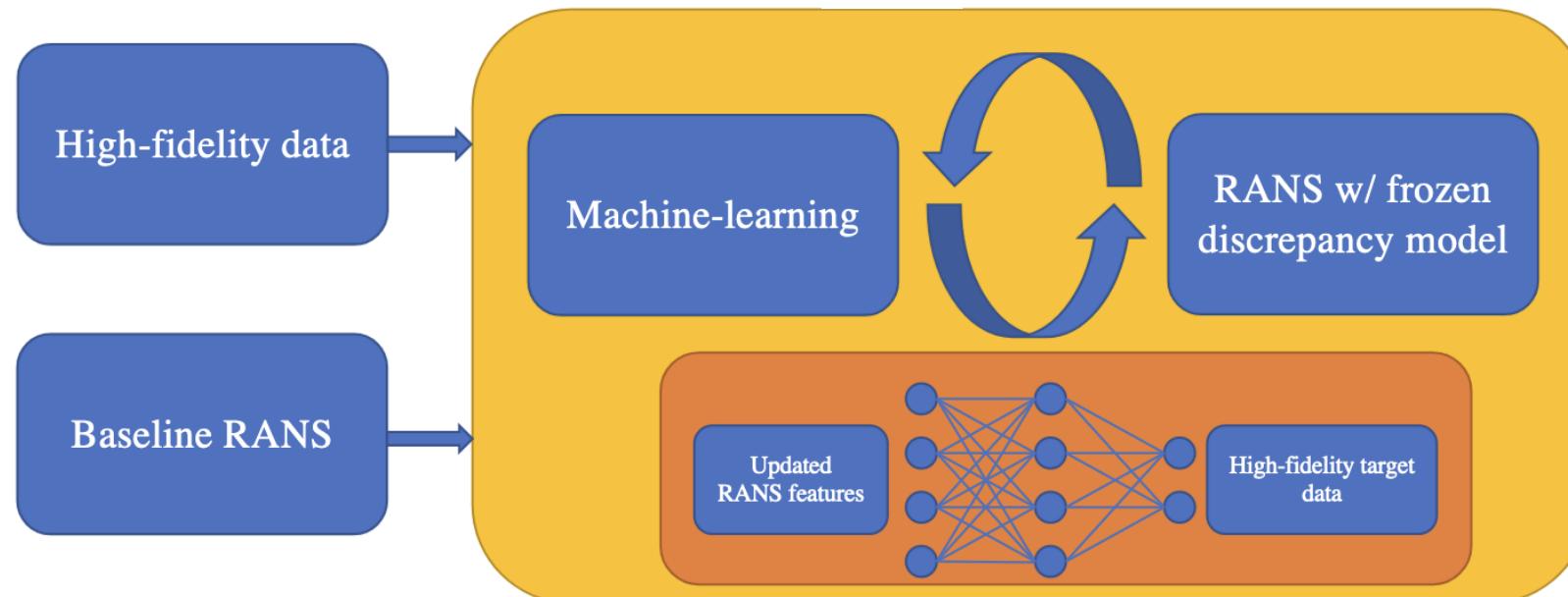
Data-Driven Turbulence Modeling

$$a_{ij} \approx a_{ij}^{\text{RANS}} + m_{ij}^{\text{ML}} \quad \text{Anisotropy-based discrepancy term}$$

Anisotropy tensor $a_{ij} = \frac{-\tau_{ij}}{\rho u''_k u''_k} - \frac{1}{3} \delta_{ij}$

$a_{ij}^{\text{RANS}} = \frac{\tau_{ij}^{\text{RANS}}}{2\bar{\rho}\tilde{k}} - \frac{1}{3} \delta_{ij}$ Anisotropy tensor predicted by a standard RANS

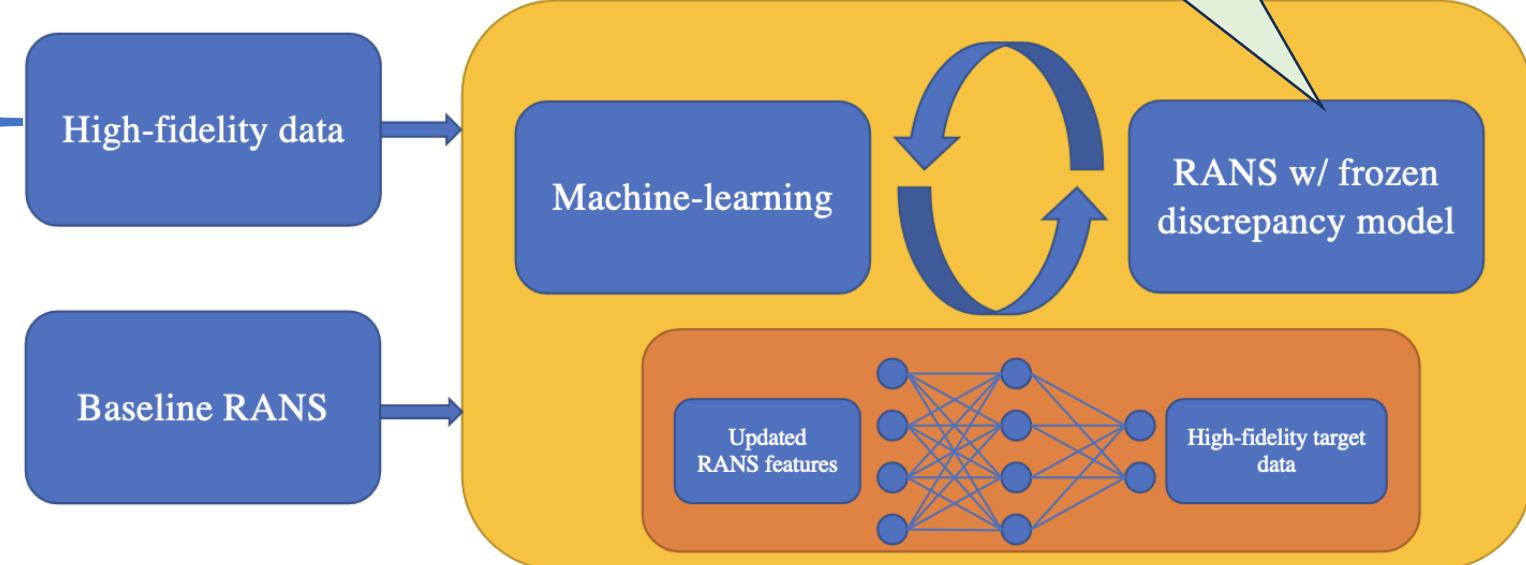
δ_{ij} is the Kronecker delta & m_{ij}^{ML} is an ML correction



Data-Driven Turbulence Modeling

High Fidelity Datasets for Training

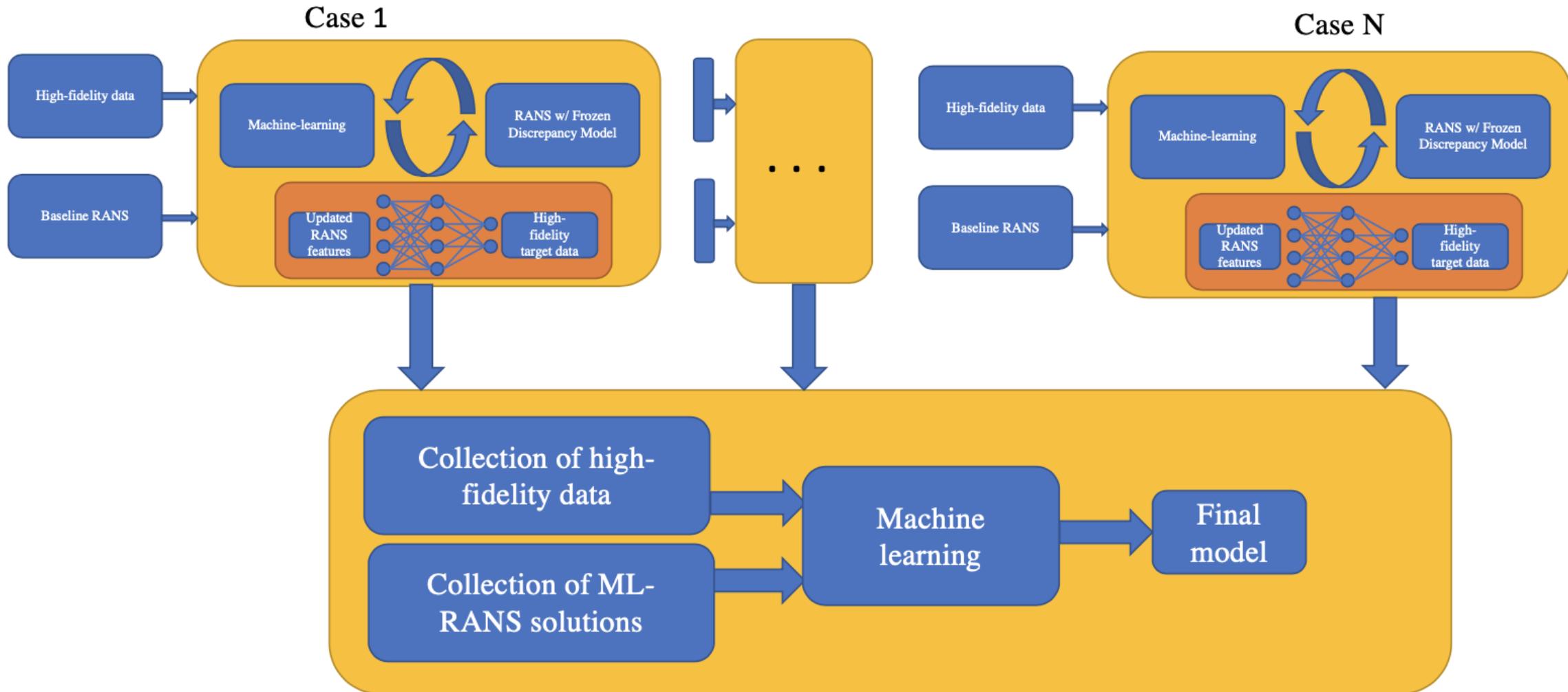
- A. Channel flow with $Re = 180$
- B. Channel flow with $Re = 395$
- C. Channel flow with $Re = 590$
- D. Duct flow at $Re = 3500$
- E. Flow over periodic hill
- F. HS BL at $M = 6, T_w/T_r = 0.25$
- G. HS BL at $M = 6, T_w/T_r = 0.76$
- H. HS BL at $M = 14, T_w/T_r = 0.18$



$$a_{ij} \approx a_{ij}^{\text{RANS}} + m_{ij}^{\text{ML}}$$

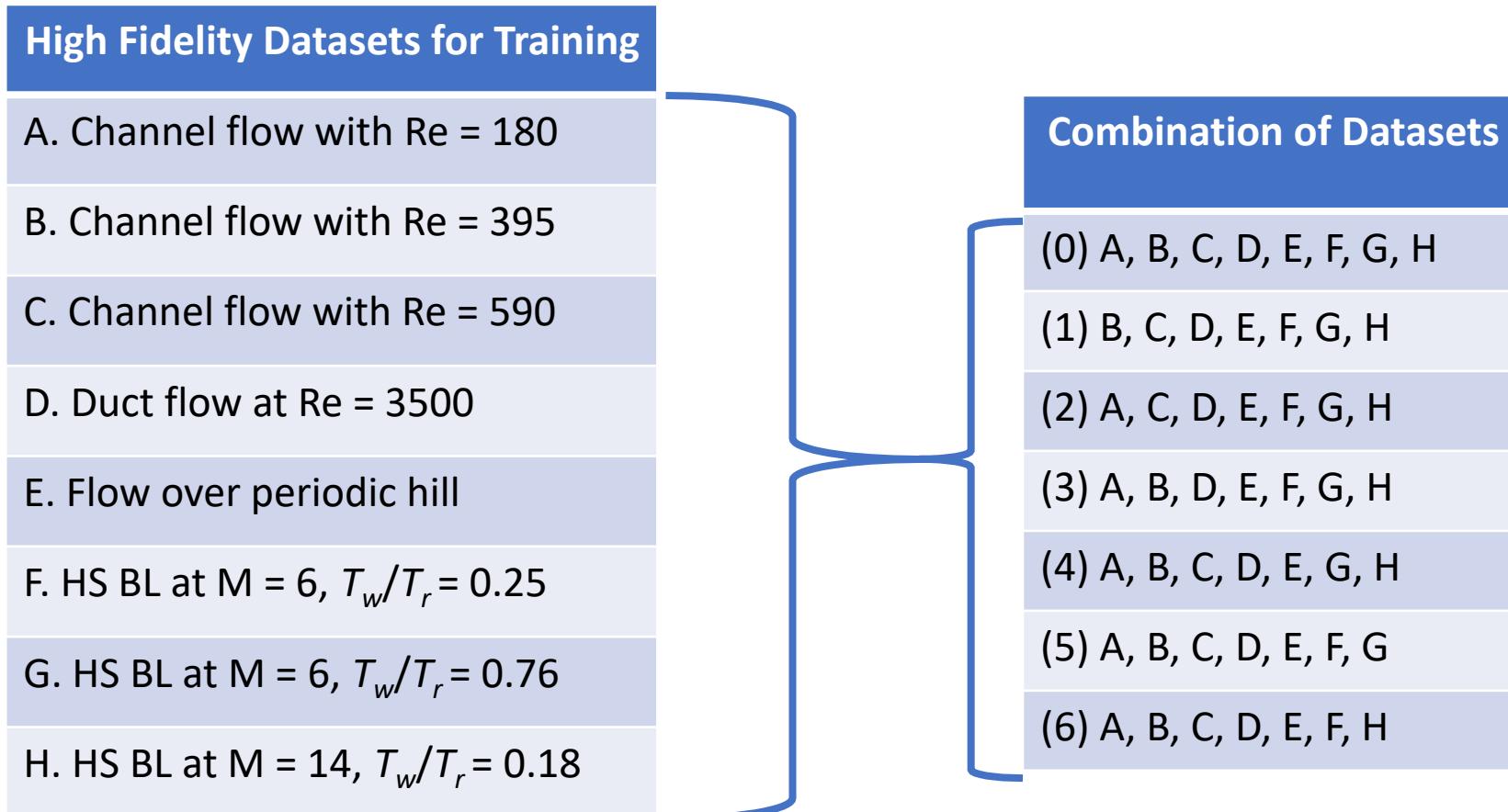
Discrepancy modes for an anisotropy tensor are implemented in Sandia's Parallel Aerodynamics Re-entry Code (SPARC) which supports various discretization

Global Training Process

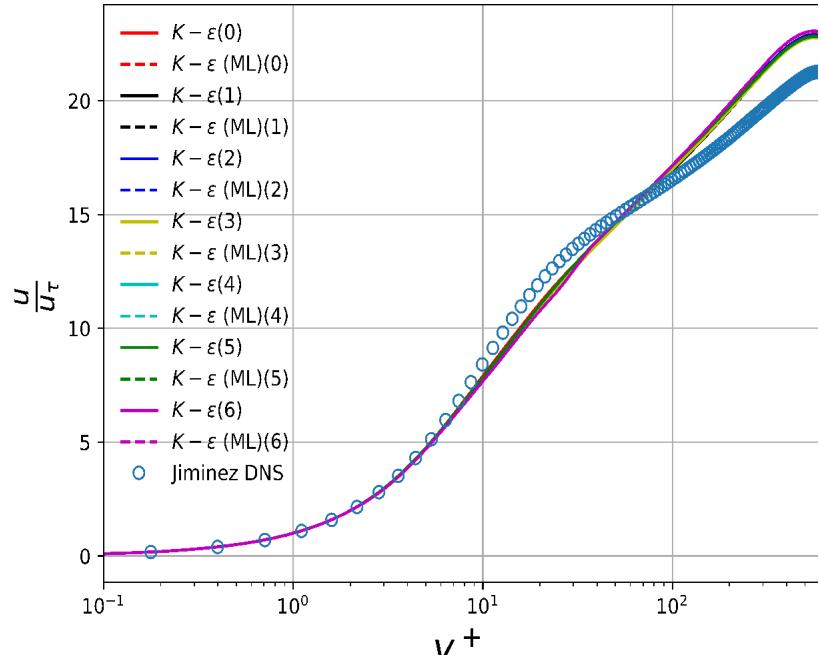


- Global iterative training procedure improves feature consistency.
- Complete consistency in response has not been achieved.
- The goal is to minimize overall inconsistency.
- ML models involve many hyperparameters.
- Considering various combinations of training datasets and testing hyperparameters might help validate and improve the overall response consistency.

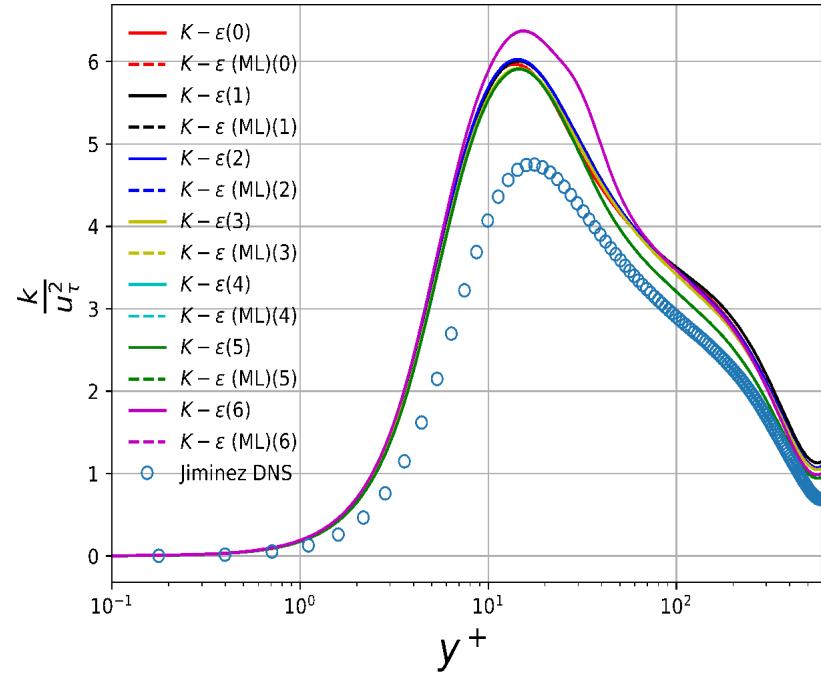
Various Combination of Training Datasets



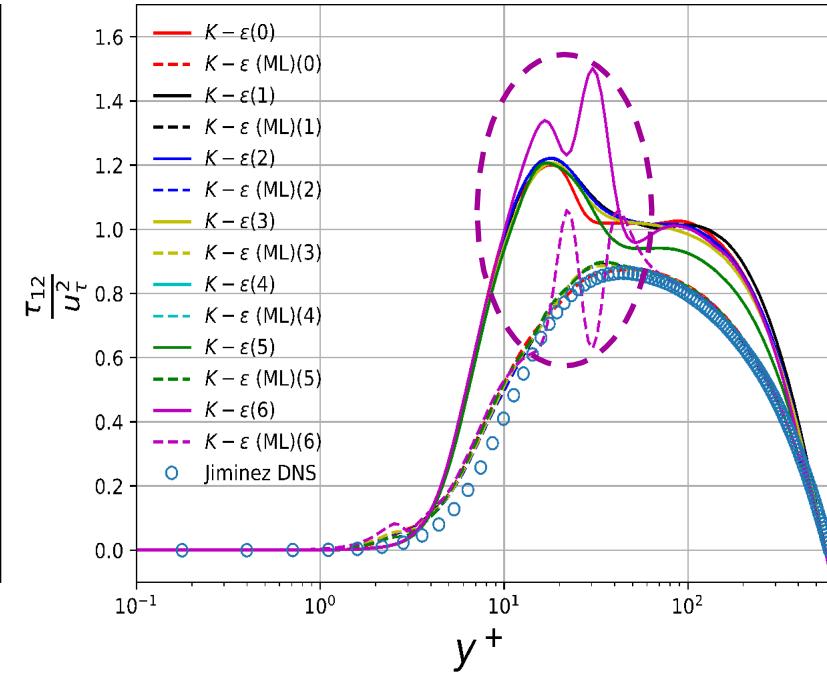
Validation of Training Datasets / Procedure & Testing



Velocity



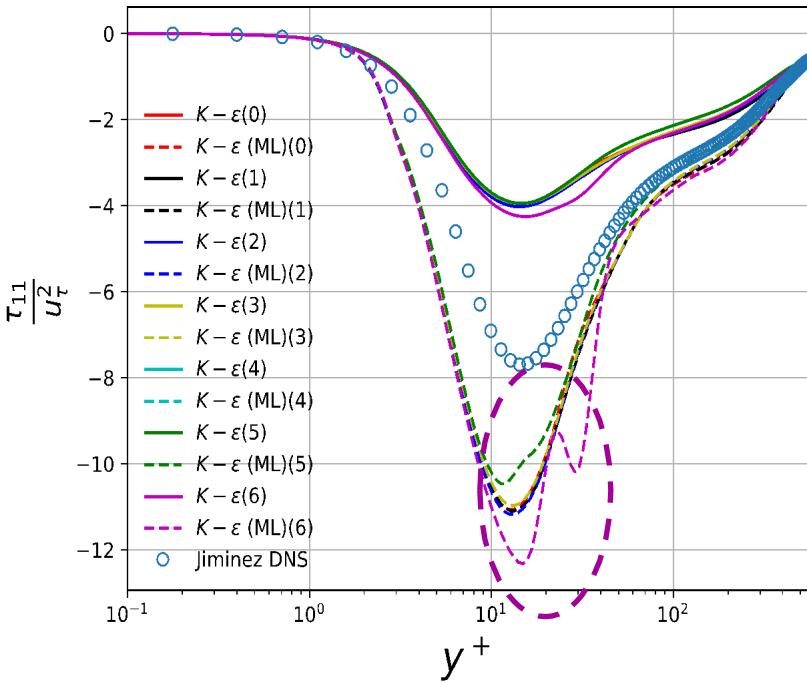
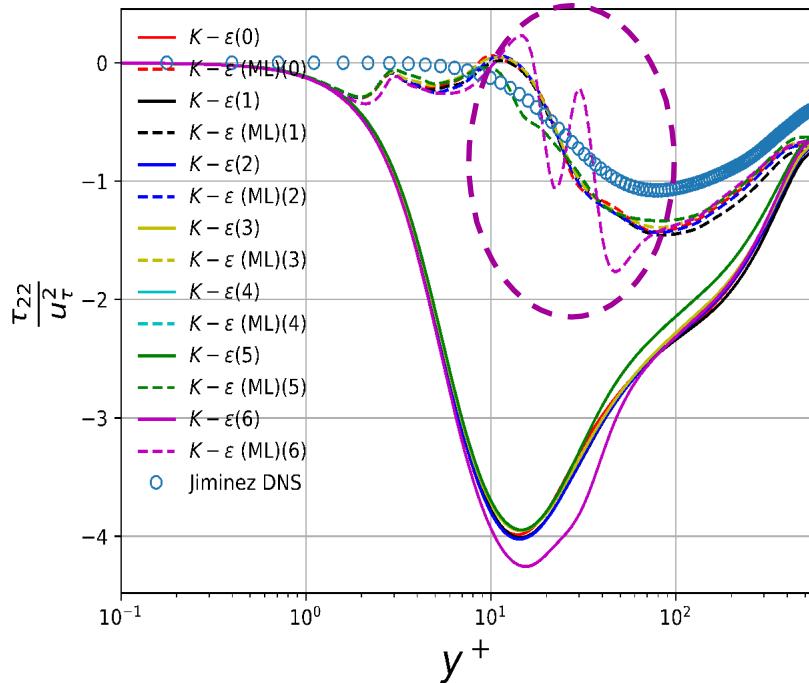
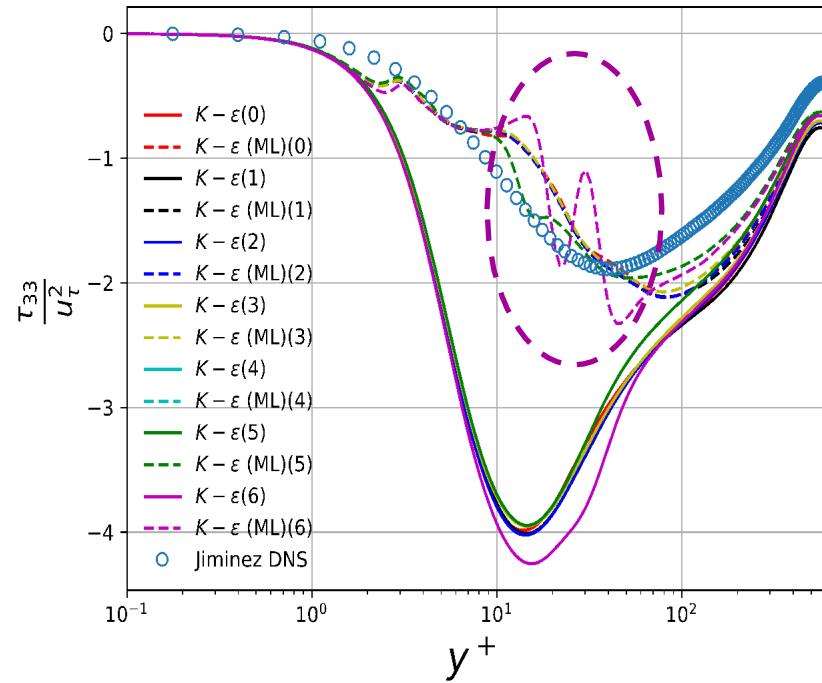
Turbulence Kinetic Energy



Reynolds Shear Stress

- The global iterative procedure was trained on various combinations of datasets as described in the previous slide (w/o changing any hyperparameters).
- It was then tested on the channel flow dataset with $Re = 590$.

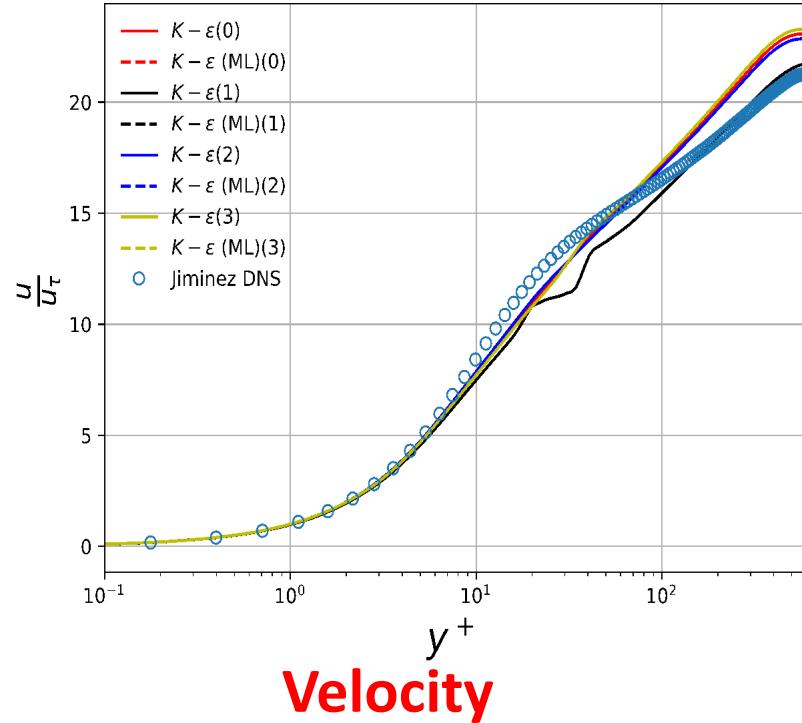
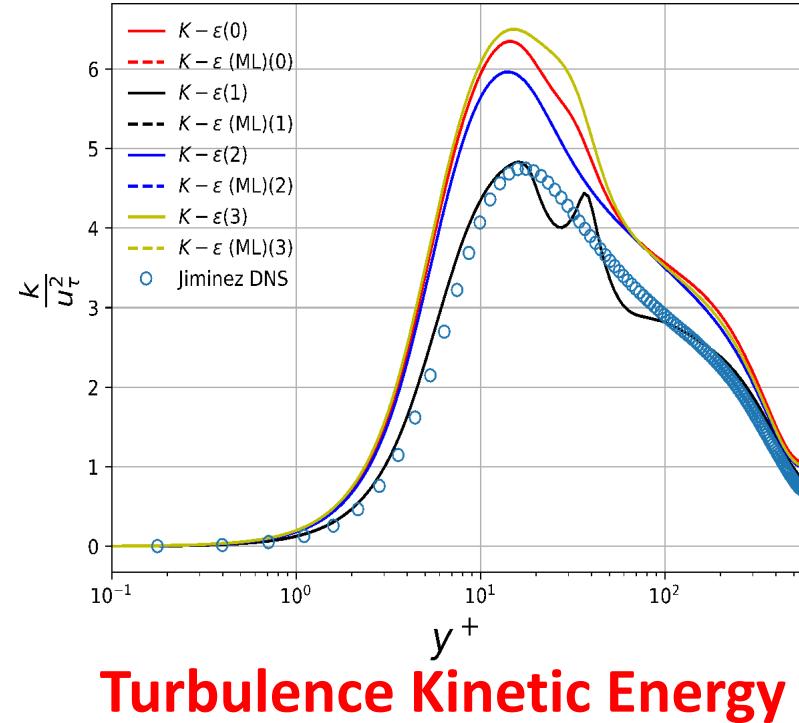
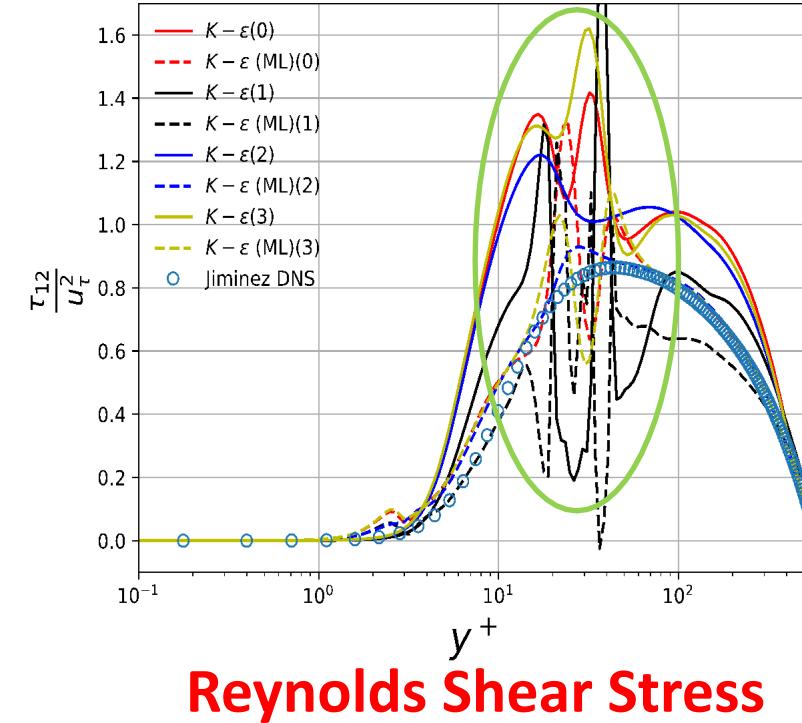
Validation of Training Datasets / Procedure & Testing



Normal Stress in x, y & z direction

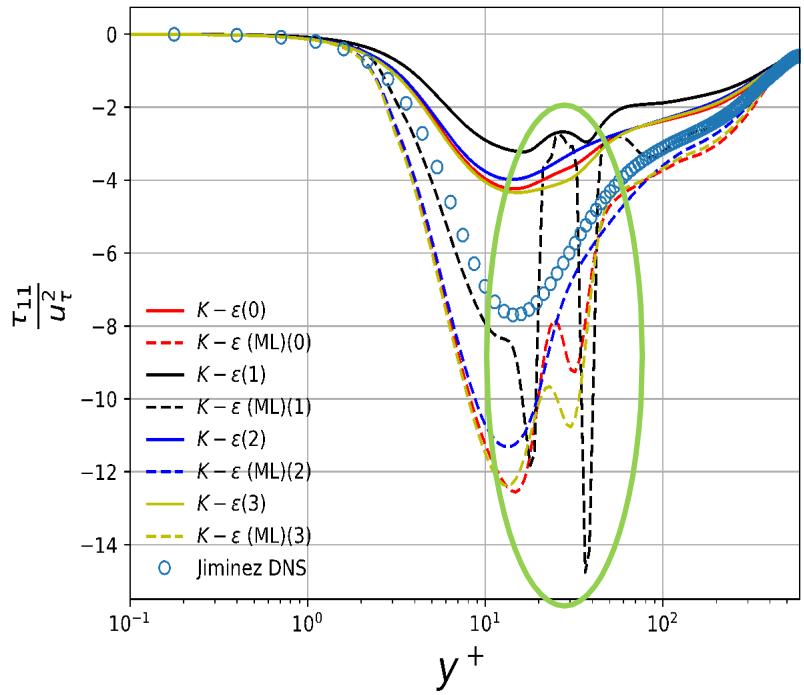
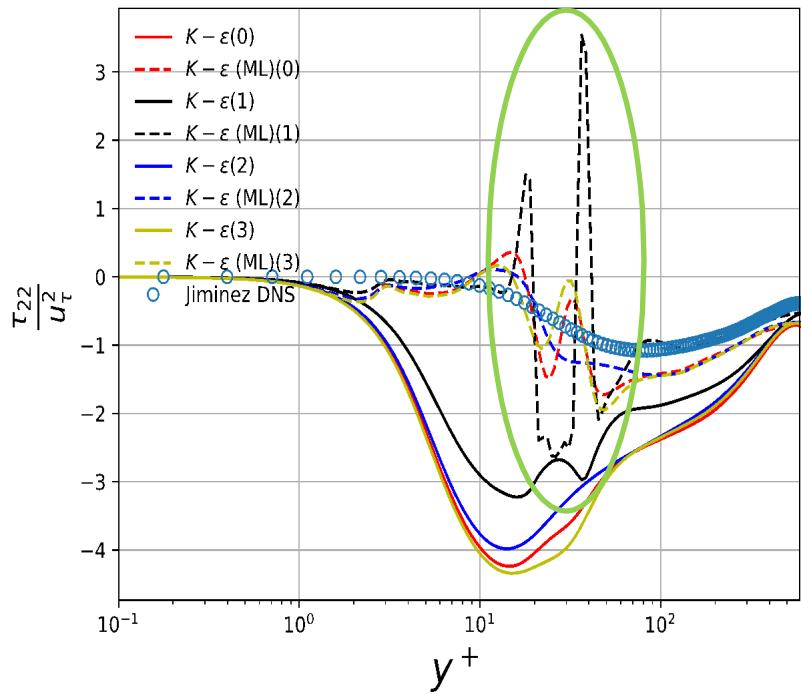
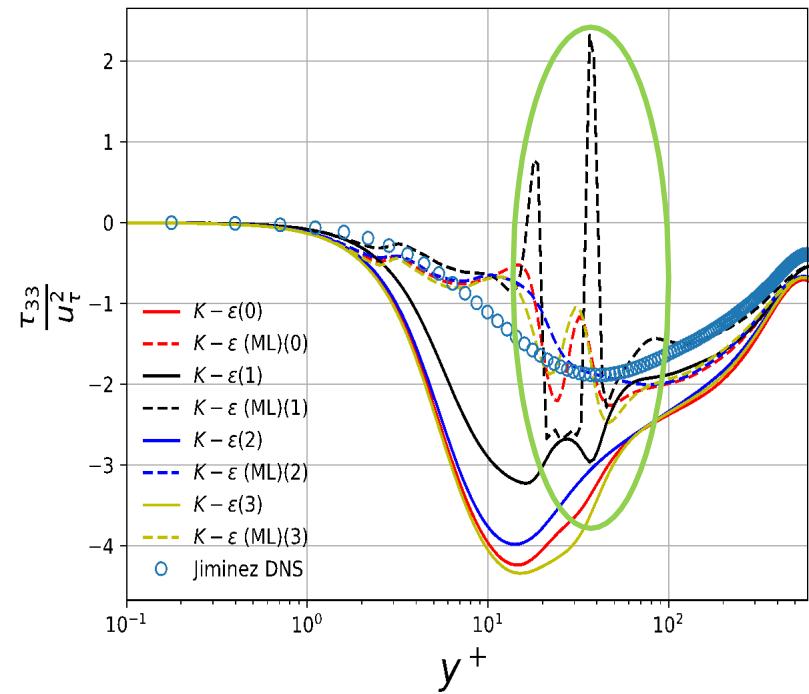
- Figures clearly show that the ML correction term follows the trend of the "true" (DNS) data. However, there is a deviation in the buffer layer, which is consistent across all combinations of training datasets.
- Dataset combination (6) exhibits clear oscillations.

Combination of Training Dataset (6)



- (0) No change in hyperparameters, (1) Number of epochs increased (overfitting),
- (2) Reduced depth of NN (better convergence), (3) Reduced width of NN.

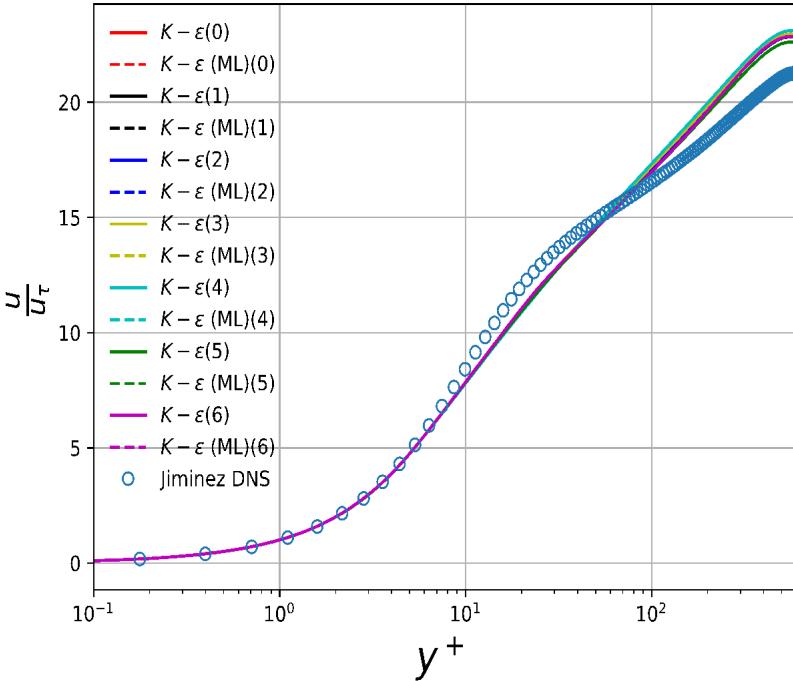
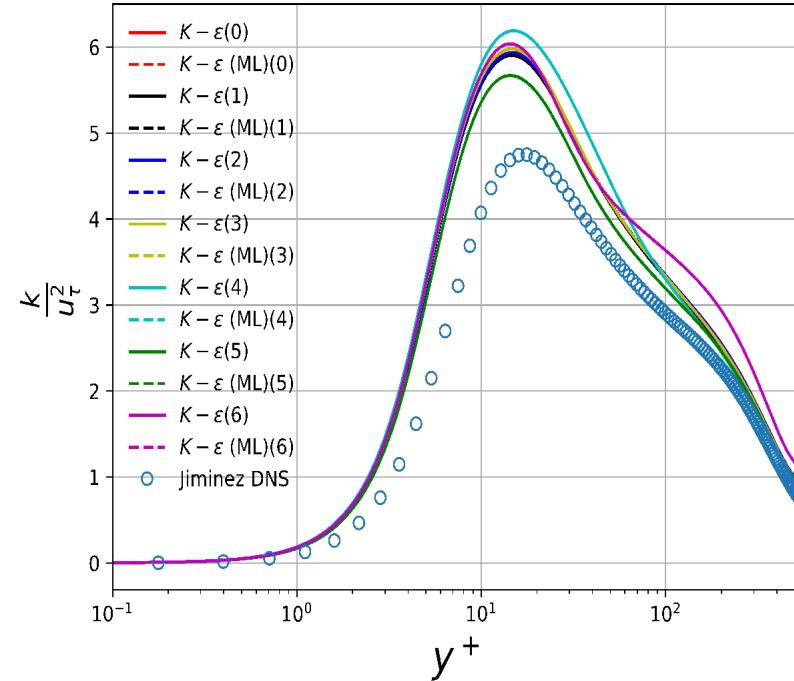
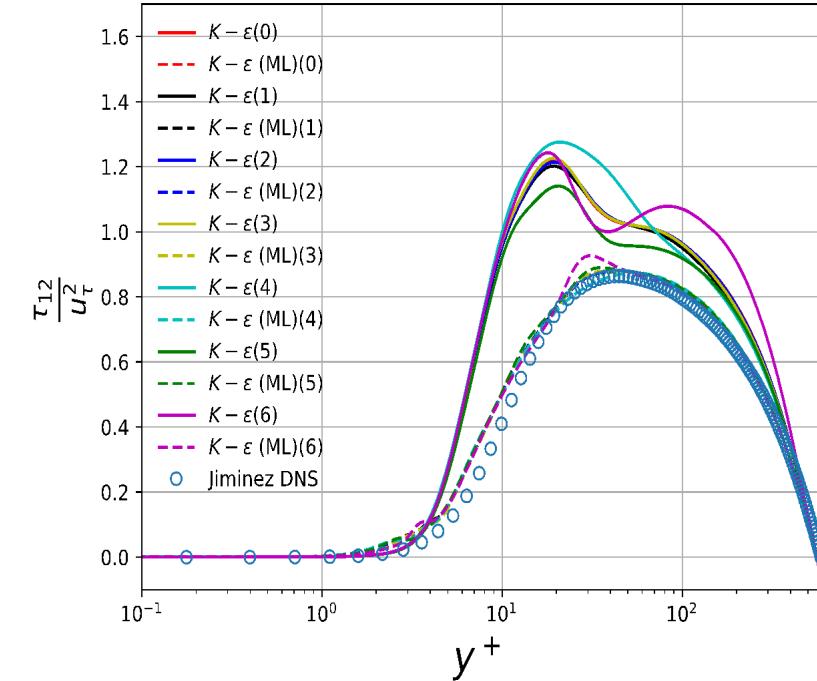
Combination of Training Dataset (6)



Normal Stress in x, y & z direction

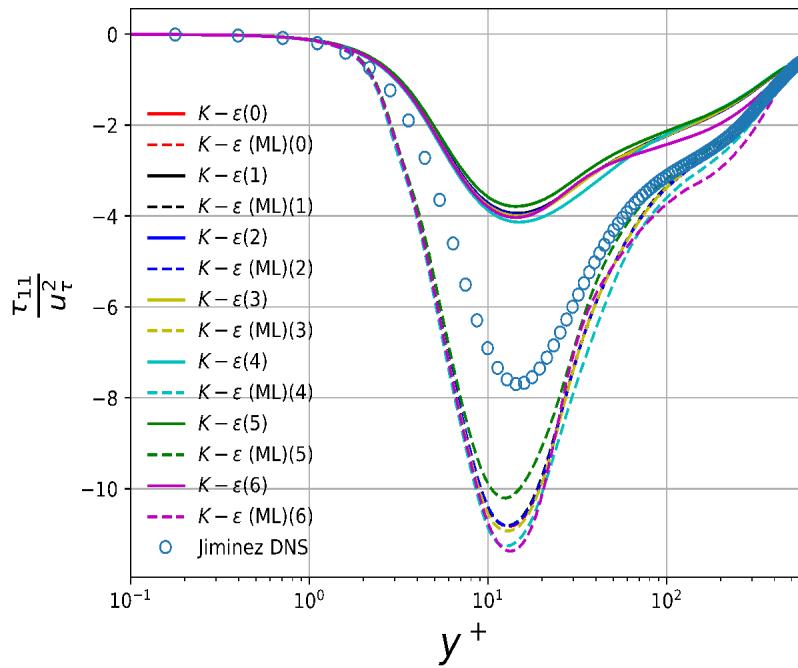
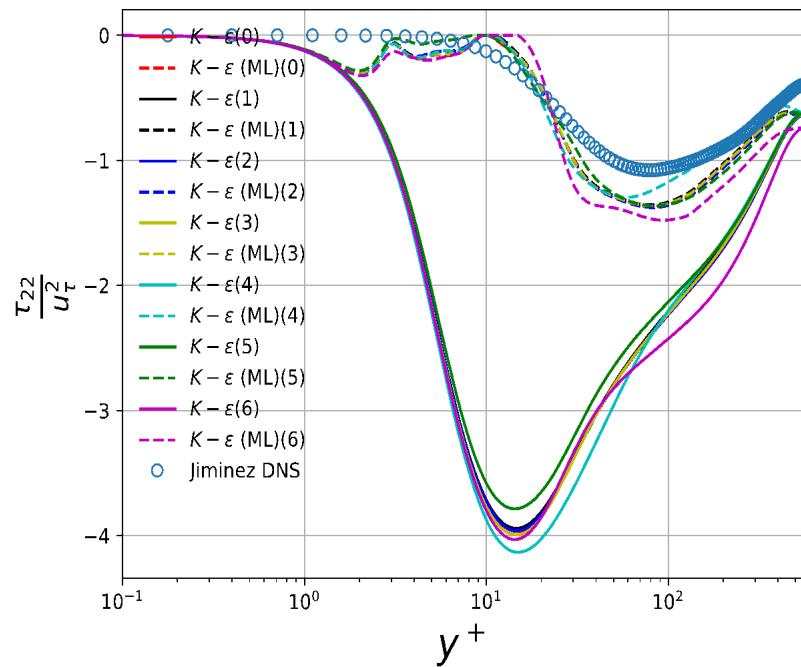
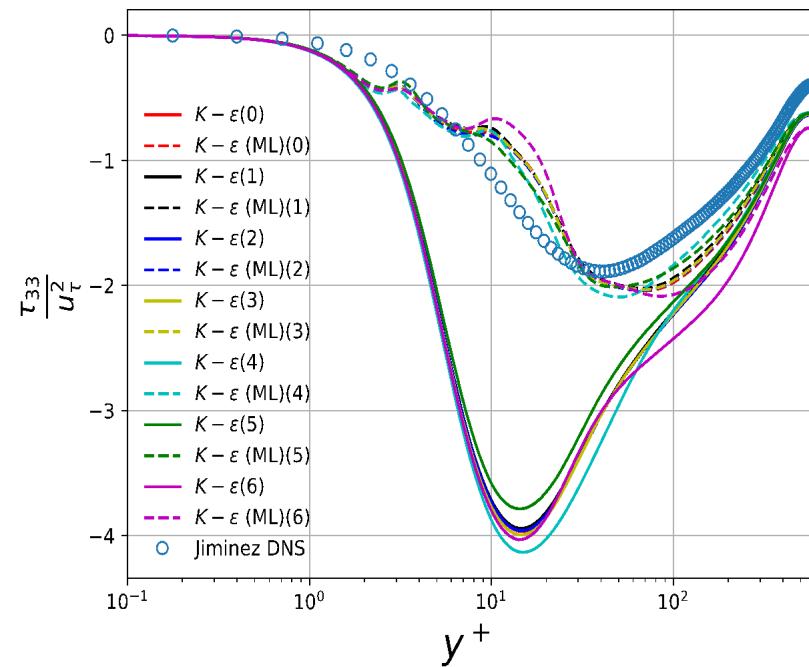
- (0) No change in hyperparameters, (1) Number of epochs increased (overfitting),
- (2) Reduced depth of NN (better convergence), (3) Reduced width of NN.

Reduced Depth & Width of Neural Network



- Reducing the depth and width of the neural network along with an optimum epochs clearly reduces the overfitting problem.

Reduced Depth & Width of Neural Network



Normal Stress in x, y & z direction

- Reducing the depth and width of the neural network along with an optimum epochs clearly reduces the oscillatory behavior.
- However, there is still a deviation in the buffer layer, which is consistent across all combinations of training datasets.

Conclusions and Future Work

- **Performance Consistency:** The training procedure demonstrates strong performance across various combinations of training datasets, aligning well with the trends of true datasets when tested on in-distribution datasets.
- **Hyperparameter Tuning:** Some combinations of training datasets highlight the need for hyperparameter tuning to reduce inconsistency in the anisotropy-based discrepancy term.
- **Network Depth Reduction:** Reducing the depth of the network effectively along with optimum epochs mitigates oscillation and overfitting, yet there remains inconsistent behavior in the anisotropy-based ML correction with "true" DNS data.
- **Future Testing Strategy:** Moving forward, we plan to conduct rigorous testing on a variety of in-distribution and out-of-distribution datasets using different combinations of training datasets.

Thank You for Your Time and Attention!

For questions or follow-up discussions:

Uma Balakrishnan, ubalakr@sandia.gov

William J.Rider, wjrider@sandia.gov

Matthew Barone, mbarone@sandia.gov

Eric J. Parish, ejparis@sandia.gov

