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2 Turbulence Modeling
Fluid Turbulence 

Model

Direct Numerical 
Simulation (DNS)

Reynolds 
Averaged Navier 
Stokes (RANS)1

Large Eddy 
Simulation (LES)

Data-Driven RANS Closures

Training 
Data (TD)

Training 
Data (TD)

1. J. Ling, J. Templeton, and A. Kurzawski, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, JFM, Vol 807, 2016, 155-166.

Reproduce turbulent 
states and dynamics 
present in TD

equal proportions 
of examples of 
diverse 
turbulence 
physics 
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Data-Driven RANS Closures

Reynolds stress Perturbation to a 
modeled Reynolds stress

Feature Subset and Optimal Clusters

1. M.F.Barone, J.Ray, and S.Domino, Feature Selection, Clustering, and Prototype Placement for Turbulence Datasets , AIAA Journal 2022 60:3, 1332-1346.

2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. "Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks and 
extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023. 

1. Predicting Reynolds Stress via ML2

2. Estimating Uncertainties in ML predictions
3. Consistence in feature-response

Classification of Turbulent States 
& Feature Selection 
(Clustering training data)1

1 2

https://arc.aiaa.org/doi/abs/10.2514/1.J060919
https://arc.aiaa.org/doi/10.2514/6.2023-2126
https://arc.aiaa.org/doi/10.2514/6.2023-2126


What is Credibility?4

 How do we demonstrate that predictions derived from computational simulations are credible?

Expert judgement, I have 
been doing this for 50 

years!

The deliverable is due 
today, so it better be 

credible!

Expert judgement, I have 
been doing this for 50 

years!
I ran the highest fidelity 

simulation on the best and 
biggest computer out 

there!
The deliverable is due 
today, so it better be 

credible!

We used the same 
process we have 
always used, we 
have never been 

wrong before!

We built conservatism 
and plenty of margin into 

all of our calculations!

Although aspects of these assertions may lend a certain level of credibility to analyses,
these assertions cannot stand alone as the only credibility evidence to support a computational 
simulation prediction, particularly in a high-consequence environment

The computational simulation credibility process seeks to provide a documented, consistent, and 
repeatable process for assembling a comprehensive credibility evidence package to support 
computational simulation predictions
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Motivating Credibility for Scientific Machine Learning (SciML)

Machine learned models are used in lieu of, complementary to, or as surrogates for 
science and engineering computational simulation models. 

What does VV/UQ/Credibility Mean for Scientific Machine Learning?

Scientific Computing Machine Learning

Putting “correct” math methods and 
physics models into our codes.

Produce “correct” codes and models 
which leads to “correct” results.



Based on 
Structures 
present in 
datasets 

Features 
for  Input 
Space1

Bayesian Information

6

3. Dy,J.G., and Brodley,C.E., “Feature Selection for Unsupervised Learning,” J. of Machine Learning Research, Vol.5, 2004, pp. 845–889. 

Feature Subset and Optimal Clusters

Wrapper3 approach to determine the best features and optimum number of clusters 



Wavy Wall Flow          Square Cylinder in Cross-Flow

7 Why Clustering?

Candidate 
features that 
are Galilean 
and rotational 
invariant

1. M.F.Barone, J.Ray, and S.Domino, Feature Selection, Clustering, and Prototype Placement for Turbulence Datasets , AIAA Journal 2022 60:3, 1332-1346.

Is the training procedure for clustering algorithm credible?

Data points are 
colored based 

on clusters

Automated partitioning of the training dataset into flow-field regions that 
reconcile with our human understanding of turbulent flow physics1 

https://arc.aiaa.org/doi/abs/10.2514/1.J060919


8
Sensitivity Analysis to the Performance of Clustering Algorithm

All Features

+

(White Noise)

Feature 
Search

Gaussian Mixture Model

QoI: Best Features & 
Optimum number of Clusters

(Globally Scaled Noise)

(Locally Scaled Noise)

(Locally Scaled Noise by Neighborhood)



9 Plane Channel Flow

Ø The clustering algorithm is sufficiently robust in identifying best features and number of optimal 
clusters for Plane Channel Flow. 

Data points are 
colored based 

on clusters



10 Data-Driven Turbulence Modeling

is an ML correction&

Anisotropy-based discrepancy term

Anisotropy tensor predicted 
by a standard RANS

Anisotropy 
tensor

2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. "Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks and 
extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023. 

00

https://arc.aiaa.org/doi/10.2514/6.2023-2126
https://arc.aiaa.org/doi/10.2514/6.2023-2126


11 Data-Driven Turbulence Modeling

2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. "Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks 
and extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023. 

High Fidelity Datasets for Training

A. Channel flow with Re = 180

B. Channel flow with Re = 395

C. Channel flow with Re = 590

D. Duct flow at Re = 3500

E. Flow over periodic hill

F. HS BL at M = 6, Tw/Tr = 0.25

G. HS BL at M = 6, Tw/Tr = 0.76

H. HS BL at M = 14, Tw/Tr = 0.18

Discrepancy modes for an anisotropy tensor are 
implemented in Sandia’s Parallel Aerodynamics Re-entry 
Code (SPARC) which supports various discretization

https://arc.aiaa.org/doi/10.2514/6.2023-2126
https://arc.aiaa.org/doi/10.2514/6.2023-2126


12 Global Training Process



13 Data-Driven Turbulence Modeling

Ø Global iterative training procedure improves feature consistency.

Ø Complete consistency in response has not been achieved.

Ø The goal is to minimize overall inconsistency.

Ø ML models involve many hyperparameters.

Ø Considering various combinations of training datasets and testing hyperparameters 
might help validate and improve the overall response  consistency.



14 Various Combination of Training Datasets

High Fidelity Datasets for Training

A. Channel flow with Re = 180

B. Channel flow with Re = 395

C. Channel flow with Re = 590

D. Duct flow at Re = 3500

E. Flow over periodic hill

F. HS BL at M = 6, Tw/Tr = 0.25

G. HS BL at M = 6, Tw/Tr = 0.76

H. HS BL at M = 14, Tw/Tr = 0.18

Combination of Datasets

(0) A, B, C, D, E, F, G, H

(1) B, C, D, E, F, G, H

(2) A, C, D, E, F, G, H

(3) A, B, D, E, F, G, H

(4) A, B, C, D, E, G, H

(5) A, B, C, D, E, F, G

(6) A, B, C, D, E, F, H



15 Validation of Training Datasets / Procedure & Testing

Velocity                 Turbulence Kinetic Energy            Reynolds Shear Stress

Ø The global iterative procedure was trained on various combinations of datasets 
as described in the previous slide (w/o changing any hyperparameters).

Ø It was then tested on the channel flow dataset with Re = 590.



16 Validation of Training Datasets / Procedure & Testing

Ø Figures clearly show that the ML correction term follows the trend of the 
"true" (DNS) data. However, there is a deviation in the buffer layer, which 
is consistent across all combinations of training datasets.

Ø Dataset combination (6) exhibits clear oscillations.

Normal Stress in x, y & z direction



17 Combination of Training Dataset (6)

Velocity                  Turbulence Kinetic Energy              Reynolds Shear Stress

(0) No change in hyperparameters, (1) Number of epochs increased (overfitting), 
(2) Reduced depth of NN (better convergence), (3) Reduced width of NN. 
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Normal Stress in x, y & z direction

(0) No change in hyperparameters, (1) Number of epochs increased (overfitting), 
(2) Reduced depth of NN (better convergence), (3) Reduced width of NN. 

Combination of Training Dataset (6)



19 Reduced Depth & Width of Neural Network

Velocity                   Turbulence Kinetic Energy            Reynolds Shear Stress

Ø Reducing the depth and width of the neural network along with an optimum 
epochs clearly reduces the overfitting problem.



20 Reduced Depth & Width of Neural Network

Normal Stress in x, y & z direction

Ø Reducing the depth and width of the neural network along with an optimum 
epochs clearly reduces the oscillatory behavior.

Ø However, there is still a deviation in the buffer layer, which is consistent across 
all combinations of training datasets.



21 Conclusions and Future Work

Ø Performance Consistency: The training procedure demonstrates strong performance 
across various combinations of training datasets, aligning well with the trends of true 
datasets when tested on in-distribution datasets.

Ø Hyperparameter Tuning: Some combinations of training datasets highlight the need for 
hyperparameter tuning to reduce inconsistency in the anisotropy-based discrepancy term.

Ø Network Depth Reduction: Reducing the depth of the network effectively along with 
optimum epochs mitigates oscillation and overfitting, yet there remains inconsistent 
behavior in the anisotropy-based ML correction with "true" DNS data.

Ø Future Testing Strategy: Moving forward, we plan to conduct rigorous testing on a variety 
of in-distribution and out-of-distribution datasets using different combinations of training 
datasets.
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Thank You for Your Time and Attention!

For questions or follow-up discussions:

Uma Balakrishnan, ubalakr@sandia.gov 
William J.Rider, wjrider@sandia.gov

Matthew Barone, mbarone@sandia.gov
Eric J. Parish, ejparis@sandia.gov 

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a 
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract 
DE-NA0003525. 

mailto:eacques@sandia.gov
mailto:wjrider@sandia.gov
mailto:mbarone@sandia.gov
mailto:ejparis@sandia.gov
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