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3 ‘ Feature Subset and Optimal Clusters

Data-Driven RANS Closures

Reynolds stress Perturbation to a
modeled Reynolds stress
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What is Credibility?

How do we demonstrate that predictions derived from computational simulations are credible?

Expert judgement, | have

Although aspects of these assertions may lend a certain level of credibility to analyses,
these assertions cannot stand alone as the only credibility evidence to support a computational

simulation prediction, particularly in a high-consequence environment
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The computational simulation credibility process seeks to provide a documented, consistent, and
repeatable process for assembling a comprehensive credibility evidence package to support

computational simulation predictions
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. | Motivating Credibility for Scientific Machine Learning (SciML)

Machine learned models are used in lieu of, complementary to, or as surrogates for
science and engineering computational simulation models.

Integrated V&V/UQ/Credibility Processes
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« | Feature Subset and Optimal Clusters Solution
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Wrapper? approach to determine the best features and optimum number of clusters

3. Dy,J.G., and Brodley,C.E., “Feature Selection for Unsupervised Learning,” J. of Machine Learning Research, Vol.5, 2004, pp. 845—-889.



- | Why Clustering? Solution

Verification

Automated partitioning of the training dataset into flow-field regions that
reconcile with our human understanding of turbulent flow physics?

3-component

3-component
Data points are
colored based
on clusters

Candidate
features that

are Galilean
and rotational
invariant

2-component 1-component 2-component 1-component
Wavy Wall Flow Square Cylinder in Cross-Flow

Is the training procedure for clustering algorithm credible?

1. M.F.Barone, J.Ray, and S.Domino, Feature Selection, Clustering, and Prototype Placement for Turbulence Datasets, AIAA Journal 2022 60:3, 1332-1346.
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Sensitivity Analysis to the Performance of Clustering Algorithm
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Plane Channel Flow
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» The clustering algorithm is sufficiently robust in identifying best features and number of optimal

clusters for Plane Channel Flow.

U+

Clean Data: (Cy,C5,Cs,m1, A1,75,M3)
! ! ! T T T | !

Solution

Verification

40 : -
Data points are
30 - colored based .
on clusters -
r
-~

20 - .
10 - .

0 * oo coo oo soo o000 DO DD@’”@‘ECWEO@ e |
-10 ‘ Ll il . Ll i W EROT . E 2 1 ¢ i A | ‘

1073 1072 107" 10° 10" 102 10° 104



0 | Data-Driven Turbulence Modeling
::-:.+ m?;ﬂ‘ Anisotropy-based discrepancy term

Anisotropy a;; = —Tj 1 8ij RANS TS . Anisotropy tensor predicted
tensor pulu; 3 @ = 5r 39 by a standard RANS

. ML . .
0;; 1s the Kronecker delta & M;; ~ 1s an ML correction
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Machine-learning
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2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. "Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks and
extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023.
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11 ‘ Data-Driven Turbulence Modeling

Discrepancy modes for an anisotropy tensor are
implemented in Sandia’s Parallel Aerodynamics Re-entry
Code (SPARC) which supports various discretization

High Fidelity Datasets for Training

A. Channel flow with Re = 180
B. Channel flow with Re = 395

C. Channel flow with Re = 590

D. Duct flow at Re = 3500
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2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. "Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks
and extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023.
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1 ‘ Global Training Process
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13 | Data-Driven Turbulence Modeling

» Global iterative training procedure improves feature consistency.
» Complete consistency in response has not been achieved.

» The goal is to minimize overall inconsistency.

» ML models involve many hyperparameters.

» Considering various combinations of training datasets and testing hyperparameters
might help validate and improve the overall response consistency.



14 ‘ Various Combination of Training Datasets

High Fidelity Datasets for Training
——
A. Channel flow with Re = 180 Combination of Datasets

B. Channel flow with Re = 395 — (0)A,B,C,D,E,F G,H
C. Channel flow with Re =590 (1)B,C, D, E, F, G, H
D. Duct flow at Re = 3500 (2)A,C,D,E, F G, H
E. Flow over periodic hill (3)A,B,D,E,FG,H
F.HSBLatM =6, T,/T.=0.25 (4)A,B,C, D, E G, H

G.HSBLatM =6, T,/T,=0.76 (5)A,B,C,D,EFG

(6)A,B,C D, EFH

H.HSBLatM =14, T, /T.=0.18 _




s | Validation of Training Datasets / Procedure & Testing
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» The global iterative procedure was trained on various combinations of datasets
as described in the previous slide (w/o changing any hyperparameters).

]
|
» It was then tested on the channel flow dataset with Re = 590. ‘
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» Figures clearly show that the ML correction term follows the trend of the
"true” (DNS) data. However, there is a deviation in the buffer layer, which
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IS consistent across all combinations of training datasets.

» Dataset combination (6) exhibits clear oscillations.



17 | Combination of Training Dataset (6)
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(0) No change in hyperparameters, (1) Number of epochs increased (overfitting),
(2) Reduced depth of NN (better convergence), (3) Reduced width of NN.
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(0) No change in hyperparameters, (1) Number of epochs increased (overfitting),
(2) Reduced depth of NN (better convergence), (3) Reduced width of NN.



19 ‘ Reduced Depth & Width of Neural Network
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» Reducing the depth and width of the neural network along with an optimum
epochs clearly reduces the overfitting problem.
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» Reducing the depth and width of the neural network along with an optimum
epochs clearly reduces the oscillatory behavior.

» However, there is still a deviation in the buffer layer, which is consistent across
all combinations of training datasets.



1 1 Conclusions and Future Work

>

Performance Consistency: The training procedure demonstrates strong performance
across various combinations of training datasets, aligning well with the trends of true
datasets when tested on in-distribution datasets.

Hyperparameter Tuning: Some combinations of training datasets highlight the need for
hyperparameter tuning to reduce inconsistency in the anisotropy-based discrepancy term.

Network Depth Reduction: Reducing the depth of the network effectively along with
optimum epochs mitigates oscillation and overfitting, yet there remains inconsistent
behavior in the anisotropy-based ML correction with "true” DNS data.

Future Testing Strategy: Moving forward, we plan to conduct rigorous testing on a variety
of in-distribution and out-of-distribution datasets using different combinations of training
datasets.
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Thank You for Your Time and Attention!

For questions or follow-up discussions:

Uma Balakrishnan, ubalakr@sandia.gov
William J.Rider, wjrider@sandia.gov
Matthew Barone, mbarone@sandia.gov
Eric J. Parish, ejparis@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
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