DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof. Reference herein to any social initiative (including but not
limited to Diversity, Equity, and Inclusion (DEI); Community Benefits
Plans (CBP); Justice 40; etc.) is made by the Author independent of
any current requirement by the United States Government and does
not constitute or imply endorsement, recommendation, or support by
the United States Government or any agency thereof.



SAND2025-05482R

Assessment of ESM Readiness Level for Exascale HPC

Interagency Council for Advancing Meteorological Services
Implementation Team - High Performance Computing

Jessie Carman, NOAA, jccarmanO@gmail.com,
Oliver Elbert, Geophysical Fluid Dynamics Laboratory, oliver.elbert@noaa.gov,
Frank Giraldo, Naval Postgraduate School, fxgirald@nps.edu,
Mark Govett, NOAA, markgovett@gmail.com,

Lucas Harris, NOAA/Geophysical Fluid Dynamics Laboratory, lucas.harris@noaa.gov,
Thomas Hauser, National Center for Atmospheric Research, thauser@ucar.edu,
Tsengdar Lee, NASA Headquarters, tsengdar.j.lee@nasa.gov,

Dave McCarren, OPNAV/Navy, dmccarr@gmail.com,

Joseph Mouallem,

Cooperative Institute for Modeling the Earth System, Princeton University,
joseph.mouallem@noaa.gov,

Mark A. Olsen, NOAA Weather Program Office, mark.olsen@noaa.gov,
Todd Ringler, todd.ringler@mac.com,

Sarat Sreepathi, Oak Ridge National Laboratory, sarat@ornl.gov,

Mark Taylor, Sandia National Laboratories, mataylo@sandia.gov

May 5, 2025

Executive Summary:

U.S. current and upcoming Exascale machines are GPU based.

Exascale readiness requires porting ESMs to GPUs, involving large efforts: either new
code or major refactoring of existing code.

No dominant programming model to date. Approaches include rewriting in Domain
Specific Languages, C++ with template based performance portability libraries and
refactoring existing Fortran code to support GPU directives.

Several atmosphere models are GPU-ready, with some progress on other components.
No full ESM is GPU-ready as of 2024.

Preliminary results from one of the first GCRMs to run on an exascale system show that
modern GPU nodes can be ~6x faster than modern CPU nodes, or ~3.5x faster per Watt.
We did not attempt to estimate GPU performance vs CPU performance on a per cost
basis.
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1. Introduction

Advancement of Earth System Models (ESMs) is becoming increasingly challenging due to a
confluence of factors including increasing model complexity — to more fully represent the earth
system, increasing spatial resolution - to achieve higher accuracy by resolving fine-scale
dynamical to physical, biological, and chemical processes and their interaction, increasing
ensemble size - to more accurately represent predictive uncertainty, and increased computing
requirements — to enable more accurate and timely weather predictions and climate
projections for societal benefit. The belief by many that computing will take care of itself is no
longer valid given the disruptive changes in HPC that are driving up the cost of computing,
increasing the difficulty of using emerging HPC effectively, and exposing limits in parallelism,
portability and scalability of the ESM applications themselves.

This report is intended to assess the ability of current U.S. ESMs to use emerging exascale
computing systems. ESMs broadly characterize the global models being developed for weather
and climate prediction and projections. Current development efforts are pushing toward Global
Cloud-Resolving Models (GCRM) for prediction out to decadal scales that more accurately
resolve fine-scale processes needed to improve predictions at all time scales. Next-generation
exascale computing is defined by an increasingly diverse, and rapidly changing landscape of
processors (CPU, GPU, hybrid CPU-GPU, FPGA, Al), memory, file systems, interconnect, and
other hardware that form the basis of very large, costly, ~hundreds of millions, systems with
millions to hundreds of millions of processing cores. Readiness refers to the ability to run
GCRMs (1 — 3km horizontal resolution) in production to support operational weather prediction
(8 minutes per forecast day, or 180 times real time) and timely seasonal to decadal projections
(1-5 simulated years per day, or 365 to 1,825 times real time) on future exascale class
computers expected to be deployed worldwide. The goal of this report is to determine the
current state of ESMs including performance, scalability, portability, and their ability to run at
fine spatial scales being targeted by leading atmospheric and Earth system modeling centers.

During the writing of this report, it became clear that exascale readiness can be thought of as
equivalent to GPU readiness. This is because current exascale HPC systems, as well as most of
the near-exascale HPC systems obtain most of their floating point capability from Graphics
Processing Units (GPUs). This is especially true in the U.S., where the Department of Energy
has deployed three exascale systems, Frontier at the Oak Ridge Leadership Computing Facility
(OLCF), Aurora, at the Argonne Leadership Computing Facility (ALCF), and El Capitan at the
Lawrence Livermore National Laboratory. Here we define exascale via the matrix algebra
benchmark used by the TOP500 list of the world’s fastest computers (http://top500.0rg).
Frontier and Aurora were the first exascale systems to make it into the TOP500 list, and as of
November 2024, El Capitan, Frontier and Aurora are ranked #1, #2, and #3 on this list,
respectively. The U.S. has a leadership role in HPC, as shown by the fact that 5 of the top 10
systems in the TOP500 are in the U.S. These 5 systems are all GPU based, and in fact 9 out of
the 10 top systems are GPU based.

Due to the dominance of GPU based exascale systems, in this report we focus on the GPU
readiness of the major U.S. ESMs. The primary audience is intended to be scientists, managers
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and leaders who may gain increased understanding of the approaches being taken by major
modeling centers to make use of GPU based systems in ESMs, and the potential capabilities of
GPU based exascale systems for Earth system modeling. We hope the report will lead to both
increased awareness and strengthened collaborations between agencies (under ICAMS),
academia, and industry in order to overcome challenges in computing, model development and
data handling that threaten continued improvements in U.S. Earth system prediction
capabilities.

2. GPU Computing

The programming model is the defining characteristic of ESM readiness for GPU systems.
Running today’s ESMs on GPU systems requires substantial effort in software development and
engineering, requiring new code or extensive refactoring and other code changes. This
situation is similar to the transition from scalar vector machines to distributed memory parallel
computers in the 1990s. This transition also required a fundamental change in the underlying
programming model. The transition to GPUs has proven even more challenging since modern
ESMs are far more sophisticated and involve much more code than climate and weather
prediction models used in the 1990s. The transition is also difficult due to the different
hardware instruction sets used by the major GPU vendors (NVIDIA, AMD and Intel), with each
vendor providing a different low level programming model. A goal of many modeling centers is
performance portability, where a single code base can run effectively on traditional CPU
systems and support a range of GPU systems.

Nearly all major ESMs are written in Fortran with the MPI message passing interface.
Transitioning these codes to GPUs largely preserves the MPI approach, but requires major
changes to the Fortran code, representing the execution model on each compute node.
Programming models being considered by U.S. modeling centers include Fortran+Directives
(OpenACC and OpenMP, R. Usha et al., IEEE High Performance Extreme Computing Conference
(HPEC), 2020), Domain Specific Languages (DSL), and C++/Kokkos (C.R. Trott et al., IEEE
Transactions on Parallel and Distributed Systems, 2022). In the Fortran+Directives approach,
existing Fortran code can be modified to make use of GPUs, making this an attractive approach
that would appear to be the least disruptive. However, obtaining good GPU performance for
this approach often requires substantial code refactoring. This approach also relies on vendor
support with their Fortran compilers, with widely different levels of support across OpenACC,
OpenMP, and GPUs from different vendors. For the DSL approach, the model components are
rewritten in a higher level language (as compared to Fortran) with language constructs designed
to support the type of operations found in ESMs, and the DSL has the capability to translate
these constructs into the various low level GPU programming languages (J. Dahm et al., Geosci.
Model Dev. 2023). In the C++/Kokkos approach, the model components have to be rewritten in
C++, using the Kokkos programming model to abstract the on-node parallel execution model.
Kokkos is not domain specific, but it is similar to a DSL in that it includes abstractions for
frequently used parallel computing patterns and policies that provide details for how these
patterns are to be applied. The C++/Kokkos approach is similar to the Fortran/Directives
approach, but has the advantage that it avoids relying on vendor support and instead uses



standard C++ template metaprogramming techniques to translate Kokkos operations into
vendor specific GPU code. As with OpenACC and OpenMP, there are several C++ programming
models similar to Kokkos, including SYCL (Howes and Rovatsou,
https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf) and YAKL (M. Norman et al.,
International Journal of Parallel Programming, 2022).

3. Earth System Prediction Models

Earth System Models couple together global models of the Earth’s atmosphere, oceans, land
surface and ice, in order to simulate the Earth’s weather as well as past, present and future
climate. ESMs apply physical laws to model the general circulation of the atmosphere, ocean
and sea ice as well as land processes and include numerous subgrid parameterizations
representing unresolved processes such as turbulence, cloud physics, radiation, aerosols and
chemistry. Each ESM component model (atmosphere, land, ocean and ice) represents
numerous multi-scale processes and is a parallel application in its own right, with its own
development history. Components often run on different grids, coupled together at their shared
boundaries.

State-of-the art ESMs have long been used for climate modeling, both for increasing our
understanding of the Earth system and for future climate projections. They are a key tool for
understanding how the availability of natural resources will change over time as well as respond
to external factors like greenhouse gas emissions and other human activity. They are
increasingly used for numerical weather prediction, where the feedbacks between atmosphere,
ocean, land and ice processes can improve short range forecasts and are critical for
sub-seasonal and seasonal forecasts. ESMs are also considered critical for the development of
Earth system digital twins, where they may play the role of a digital twin, or serve as the
backbone of a digital twin system, generating the massive data sets that can be made accessible
via machine learning and artificial intelligence approaches (P. Bauer et al., Nature Comput. Sci.,
2024, The Digital Twin Landscape, National Academies of Sciences, Engineering, and Medicine,
2024, doi: 10.17226/26894).

As mentioned in the introduction, this working group has been focused on the GPU readiness of
Global Cloud Resolving Models (GCRMs). GCRMs are a key component of any km-scale ESM.
They typically represent the most expensive model component within an ESM, in terms of both
resources required and time-to-solution. They are the most complex component, due to the
combination of dynamical motions requiring small time-steps to resolve, requirement to
transport large numbers of atmospheric constituents, and the extensive suite of unresolved
physical processes that must be parameterized. The multiphysics nature of GCRMs results in a
large number of numerical motifs, with the computational cost spread relatively evenly over
hundreds of different computational kernels, combined with the need for frequent internode
communication. As such, GCRM performance on GPU systems is a good indicator of the full
ESM performance, and the GPU acceleration obtained by a GCRM can be taken as a rough
estimate of the minimum speedups that can be attained by other ESM components.
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3.1 Survey of U.S. Developments

This subsection contains summaries contributed by several modeling centers, listed
alphabetically.

CESM Model The Community Earth System Model (CESM) is a hydrostatic global model that
contains a suite of horizontal discretization methods including spherical harmonics, finite
volumes, and spectral elements with a 2nd order finite difference Lorenz grid in the vertical. The
time-integration is based on the classical semi-implicit method which, for spherical harmonics
hydrostatic models, can be performed algebraically; for the FV variant a semi-Lagrangian
method is used whereas for the SE variant explicit time-integration is used. CESM uses MPI to
scale on CPU hardware. The default setting for IPCC-type simulations is the spectral element
horizontal discretization with a CSLAM semi-Lagrangian option for tracers. There is on-going
work in using both MPAS and FV3 as the dynamical core; the MPAS option offers a
nonhydrostatic model while the FV3 option would remain hydrostatic.

CLIMA Model CliMA is developing a new Earth system model that is performance portable
across hardware platforms with either CPUs or GPUs. CliMA has developed a nonhydrostatic
atmosphere model that uses spectral elements in the horizontal and finite differences in the
vertical (similar to E3SM). It incorporates new parameterizations for turbulence, cloud, and
convection that are based on physical laws but also contain machine-learned elements. CliMA
has also developed a new ocean model that seamlessly spans scales from large-eddy
simulations to global simulations and runs on GPUs; the results for the ocean component were
submitted to SC 23 for consideration for the Gordon Bell prize. A new land model, likewise
performance portable and sharing software infrastructure with the atmosphere, is also under
development. The Clima model will leverage exascale capabilities in multiple ways, such as rapid
calibration and uncertainty quantification using ensemble Kalman inversion, and using global
simulations coupled with localized high-resolution simulations to reduce uncertainty in climate
predictions.

References:
[1] https://clima.caltech.edu

Earthworks Earthworks is a US NSF-funded collaboration between NCAR and Colorado State
University (CSU) to build a global high-resolution Earth System Model with all components using
the same mesh. It is assembled from all MPAS components (MPAS-atmosphere from NCAR and
MPAS ocean and cryosphere from the E3SM effort) with the unstructured SCVT meshes and
coupled within the CESM framework. The individual components have been described above
and the uniqueness is developing a high-resolution model in which the model coupling is
simplified by utilizing the same mesh for all components. Readiness: While this effort is
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leveraging the efforts at NCAR and in E3SM for exascale, there is additional collaboration with
Nvidia for GPU porting and optimization, typically using OpenACC.

E3SM Model The Energy Exascale Earth System Model (E3SM) is a fully coupled
variable-resolution Earth System Model developed for the U. S. Department of Energy (DOE)
mission needs. The atmosphere is a non-hydrostatic global model that uses continuous Galerkin
(or spectral element) methods in the horizontal (3rd order polynomials within an A grid on
guadrilateral elements) and staggered (Lorenz grid) finite differences in the vertical with
Lagrangian vertical levels. It supports variable resolution meshes based on local refinements of
a cubed-sphere mesh. E3SM contains a suite of time-integrators but the methods of choice are
1D nonlinear HEVI methods. The governing equations are written in advective form and use
potential temperature as the thermodynamic variable. The ocean, sea-ice and land-ice
components are built on the Model for Prediction Across Scales (MPAS) and utilize
variable-resolution unstructured Spherical Centroidal Voronoi Tessellations (SCVT). A
comprehensive land model and river runoff scheme are also included and can use a finer scale
mesh than the atmosphere. To take advantage of newer architectures, the E3SM also supports a
Multiscale Modeling Framework (MMF) in which subgrid cloud-resolving models are used to
capture finer scale processes (sometimes referred to as superparameterization) Readiness:
Many parts of E3SM can already utilize GPUs through a combination of C++ frameworks like
Kokkos and YAKL in the atmosphere and directive-based approaches (OpenACC, OpenMP) in the
land, ocean, and sea-ice components. A significant effort continues to completely rewrite the
model in C++ using performance-portable frameworks like Kokkos that provide abstractions
with backend implementations supporting a variety of underlying hardware.

GALWEM The Global Air Land Weather Exploitation Model is the operational weather
prediction system of the U.S. Air Force. GALWEM is run 4 times per day out to 10 days using the
UKMO Unified Model (UM) [2] version 10.9 at 17 km grid resolution that is initialized with
conditions provided by the UKMO 4x daily; the UKMO uses hybrid incremental 4dvar for data
assimilation.

The UM atmospheric model is a unified regional and global model that uses the compressible
(nonhydrostatic) equations and solves them using semi-Lagrangian semi-implicit
time-integration with gridpoint numerics on a latitude-longitude grid (with rotated poles).
GALWEM has exploited this configuration to run regional windows of both 4 km and 1.5 km
horizontal resolutions for specific geographic areas. GALWEM is not exascale capable; however,
the U.K. Met Office’s next model (LFRic) [3] will be and is expected to replace GALWEM within
the next 3-4 years and is expected to be adopted by the USAF. LFRic relies on PSyclone to
produce the backend code for various parallel programming models [4]; however, USAF does
not have a projected need for exascale modeling at this time.

References:

[1] https://cpaess.ucar.edu/sites/default/files/meetings/2019/documents/McMillen.pdf
[2] https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model
[3] https://www.metoffice.gov.uk/research/approach/modelling-systems/Ifric
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[4] https://zenodo.org/record/6078561#.ZDq0aS-B1pQ

GEOS Model System Developed by the Global Modeling and Assimilation Office (GMAO) [1] at
NASA Goddard Space Flight Center (GSFC), the Global Earth Observing System (GEOS) [2]
provides a seamless modeling tool from climate to weather in support of NASA’s evolving
Earth-science missions and thereby enhancing national capabilities in Earth system modeling,
analysis, and prediction. GOES leverages the hierarchical nature of the Earth System Modeling
Framework [3] which enables flexibility in assembling diverse model configurations. The general
framework provided by the ESMF is extended by a custom software infrastructure layer,
Modeling Analysis and Prediction Layer (MAPL) [4], that connects the ESMF with each individual
science component. MAPL provides enhanced capabilities including the management of
connectivity and data exchanges between components, default component behaviors,
enforcement of GEOS consistency conventions, configurable asynchronous 1/0, timings,
memory, and performance profiling.

GEOS uses the following components to enable global Earth system predictions across a broad
range of spatiotemporal resolutions.

Atmospheric Dynamics: finite-volume dynamical core (FV3) [5]

Parameterized Convection: Grell and Freitas (GF) scheme

Atmosphere Boundary Layer: eddy-diffusivity mass-flux (EDMF) scheme

Cloud Microphysics: GEOS uses a suite of packages with varying degrees of complexity in
aerosol-cloud interactions, namely:

o For the current retrospective reanalysis, MERRA-2, GEOS uses a simplified
prognostic scheme, single moment (1M) for cloud liquid water and ice with a
PDF-based scheme for large-scale condensation and cloud cover.

o The model has been updated to use the GFDL scheme, which is an advanced 1M
scheme with a prognostic precipitation (rain, snow and graupel) capability.

® Aerosols: Emissions of aerosols and trace gasses in GEOS are managed via the following:
o HEMCO which includes user-selectable inventory, flow-dependent, and
interactive emissions.
O  GOCART provides a bulk estimate of aerosol mass.
o MAM estimates both particle mass and size distribution.
® Atmospheric Chemistry
o GEOS Chemistry-Climate Model
o Global Modeling Initiative troposphere-stratosphere chemistry module
o GEOS-Chem code
e Radiation: RRTMG codes
® Gravity Waves
o State-dependent non-orographic scheme
o Mountain blocking scheme including anisotropic effects of the subgrid orography
e Land Modeling: GMAO Catchment land model
e Coupled Model: Oceans and Sea-Ice
o Modular Ocean Model (MOM) version 5
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o Community Ice codE (CICE) version 4
e Ocean Biochemistry: NASA Ocean Biology Model (NOBM)

The GMAOQ'’s data assimilation development effort is driven by the diversity of NASA’s Earth
observations and therefore encompasses multiple components of the Earth system. The GMAO
is currently working to develop a Joint Effort for Data Assimilation Integration (JEDI) based
unified GEOS data assimilation system to achieve its science and production objectives in
weather analysis and prediction, reanalysis, composition forecasting and S2S prediction. JEDI
will provide a unified infrastructure for data assimilation that harnesses state-of-the-art
object-oriented design practices to build scientific software that is efficient, flexible, and easy to
use. This will also enable both GEOS and GFS models to interface with the assimilation code in
JEDI on the models’ native grids.

Towards an Exascale Hardware Accelerator GEOS The Computational Information and Science
Technology Office’s (CISTO) Advanced Software Technology Group (ASTG) in collaboration with
the GMAO is also undertaking an effort to develop a next-generation GEOS codebase.
Recognizing that accelerator-based HPC systems provide a promising platform to meet future
GEOS requirements, the ASTG is looking to leverage such systems by incorporating a
domain-specific language (DSL) into GEOS. DSL adoption brings an opportunity for code
portability of GEOS across multiple architectures, and importantly, will allow GEOS to leverage
GPU-accelerated computing systems. It also provides developers a higher-level language that
can improve development productivity by abstracting the details of the computing architecture.
To jump-start the DSL adoption, ASTG leveraged a GridTools for Python (GT4Py) DSL port of FV3
(gtFV3) developed by the Allen Institute for Al (Al2). The ASTG is developing an approach to
incorporate GTFV3 into GEOS and determine whether this approach makes it tractable to
achieve performance gains on accelerators over CPUs.

The ASTG is taking incremental steps to develop the accelerator-based GEOS codebase. The first
step involved the integration of gtFV3 into GEOS through an interface layer that connects the
Fortran-based GEOS codebase with the Python-based gtFV3 using the C Foreign Function
Interface (CFFI) for Python. This interface passes relevant data between gtFV3 and the GEOS
framework that communicates with other components. The second step involves computing the
physics parameterizations on the GPU, and for this part, the ASTG is leveraging OpenACC as the
programming model for physics due to its programming flexibility. Although OpenACC has been
mostly proprietary to NVIDIA GPUs, the ASTG believes that the OpenACC port can potentially
guide development of an OpenMP-offloading implementation if needed due to the relatively
similar feature set of both programming models.

ASTG targeted a simple demonstration model using gtFV3 and a simplified physics scheme
called Held-Suarez (HS). In creating the model, ASTG achieved the following:

. Ported the Held-Suarez physics scheme to OpenACC and validated the port.

. Developed an interface to integrate gtFV3 into the GEOS framework.

J Tested and validated the gtFV3 core with the GEOS framework.

. Successfully completed a GPU and CPU benchmark of the gtFV3 + HS scheme which

demonstrates performance parity between a single CPU socket and a single GPU.



Optimizations are currently underway for the gtFV3 + HS case. This includes modifications to the
MAPL framework for device memory management to reduce memory transfers between the
hardware accelerator and host, the integration and verification of a more performant GT4Py
backend called DaCe, and creation of single precision version of gtFV3. With these
modifications, it is expected that the gtFV3 + HS case will outperform the CPU implementation
when comparing parity between the number of nodes and number of GPUs used.

References:

[1] https://gmao.gsfc.nasa.gov/

[2] https://github.com/GEQS-ESM/GEQSgcm

[3] https://earthsystemmodeling.org/

[4] https://github.com/GEOS-ESM/MAPL

[5] Putman, Lin, Finite-Volume transport on various cubed-sphere grids, Journal of
Computational Physics, Volume 227, Issue 1, 10 November 2007, Pages 55-78,
https://doi.org/10.1016/j.jcp.2007.07.022

MPAS Model The Model for Prediction Across Scales (MPAS) is a nonhydrostatic global model
that uses finite difference/volume type differencing stencils of 2nd order on Voronoi cells using
a C grid. The split-explicit time-integrator based on the three-stage Runge-Kutta method is used
to evolve the equations forward in time. The governing equations are written in conservation
form with potential temperature as the thermodynamic variable. MPAS allows for the use of
variable grids using the spherical centroidal Voronoi tessellation (SCVT) approach. MPAS relies
on MPIl and OpenACC to run on CPU and Nvidia GPU hardware.

NEPTUNE Model The Navy’s Environmental Prediction sysTem Using a Nonhydrostatic Engine
(NEPTUNE) is the U.S. Navy’s future atmospheric prediction system. NEPTUNE is a deep
atmosphere nonhydrostatic unified model based on the NUMA dynamical core and is
configurable as either a global weather prediction model, a limited-area regional model, or a
500-km deep thermospheric prediction system. NEPTUNE is a fully compliant NUOPC
component and will eventually replace NAVGEM as the atmospheric component of the Earth
System Prediction Capability (ESPC). NEPTUNE is a Common Community Physics Package (CCPP)
compliant model and a wide range of physics suites are available for testing and evaluation.
Initial conditions for NEPTUNE are generated with a variational data assimilation approach
through the JEDI interface, as such a tangent linear approximation and adjoint model have been
developed for NEPTUNE. NEPTUNE uses an element based Galerkin spatial discretization and
Horizontally Explicit Vertically Implicit (HEVI) time integration method to solve the deep
atmosphere, non-hydrostatic equations on a hexahedral grid using local 4™-order polynomials
(5™"-order accurate). The governing dynamic equations are solved in advective form using a
continuous Galerkin approach while the transport scheme is formulated in flux form with a
discontinuous Galerkin discretization. NEPTUNE relies on MPl and OpenMP to scale on CPU
hardware.
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References:
[1] https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/349225

NUMA Model The Nonhydrostatic Unified Model of the Atmosphere (NUMA) is a unified global
and limited-area deep-atmosphere nonhydrostatic dynamical core that uses continuous and
discontinuous Galerkin methods of arbitrary order. All state variables are co-located (A grid).
NUMA contains a number of time-integration strategies including fully explicit, fully-implicit
(Jacobian-free Newton-Krylov), and implicit-explicit (IMEX). Within these choices of
time-integrators, there exist fully three-dimensional (3D) versions or one-dimensional (1D) that
can be used in a so-called horizontally explicit vertically implicit (HEVI) approach. For global
simulations, the fastest time-to-solutions are given by the 1D nonlinear HEVI and 3D linear IMEX
methods (with preconditioning). NUMA contains a number of different forms of the governing
equations including both advective and conservation forms, with formulations that are
space-weather capable. NUMA can use unstructured grids as long as each element is composed
of a hexahedron (cube). NUMA also has the capacity to use statically and dynamically adaptive
mesh refinement (AMR). Although NUMA is primarily a dynamical core, it also contains the
capability to run with warm rain or ice microphysics. NUMA relies on MPI and OCCA to scale on
both CPU and GPU hardware and, more recently, on OpenACC for GPUs. A light-weight version
of NUMA (called xNUMA) is also available which is used for experiments in multi-scale modeling
framework simulations.

References:

[1] https://frankgiraldo.wixsite.com/mysite/numa

[2] https://frankgiraldo.wixsite.com/mysite/publications
[3] https://frankgiraldo.wixsite.com/mysite/xnuma

SHIELD: The System for High-resolution prediction on Earth-to-Local Domains[1] is developed by
the FV3 team at Geophysical Fluid Dynamics Laboratory (GFDL/NOAA). SHIiELD uses FV3 as its
dynamical core and the Flexible Modeling System (FMS) as its infrastructure and computational
framework. FV3 [2,3] uses a multidimensional flux-form advection scheme, its horizontal
discretization employs the C-D grid system, allowing for exact diagnosis of cell-mean vorticity
and accurate calculation of fluxes. FV3 solves the non-hydrostatic compressible Euler equations
on a gnomonic cubed-sphere grid with a Lagrangian vertical coordinate. The algorithm is fully
explicit except for fast vertically propagating sound and gravity waves which are solved by a
semi-implicit method and the Lagrangian vertical advection. The dycore supports variable grid
resolution techniques such as grid stretching and multiple grid nesting.

SHIELD uses a physics package originally adopted from the Global Forecast System (GFS) and
heavily updated. SHIELD uses the in-line GFDL microphysics scheme, a Turbulent-Kinetic Energy
Eddy-Diffusivity Mass-flux (TKE-EDMF) boundary layer scheme, scale-aware simplified
Arakawa—Schubert (SAS) convection, the Rapid Radiative Transfer Model for GCMs (RRTMG),
the Noah land surface model and a mixed layer ocean.
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SHIELD development philosophy follows a “one code, one executable, one workflow” unified
modeling approach which led to four major configurations, all heavily tested and continuously
updated:

(a) SHIELD: global 13km with 91 vertical levels for medium-range global prediction; soon to be
upgraded to global 6.5 km for medium-range global extreme weather prediction;

(b) T-SHIELD: global 13km with 63 vertical layers (lowest mid-level at 15m and model top at
64Pa) with a static 3 km nest spanning the tropical North Atlantic for tropical cyclone forecasts
with 75 vertical layers (lowest mid-level at 10m and model top at 200Pa), emphasizing the
boundary layer;

(c) C-SHIELD: global 13km with a 3 km nest over the contiguous United States (CONUS) and 63
vertical layers (lowest mid-level at ~15 m, model top at 64 Pa) for severe weather prediction;
(d) X-SHiIELD: global 3km GCRM with 79 vertical layers.

There are other configurations under development as well, such as, S-SHIELD global 25-km with
91 vertical levels for subseasonal to seasonal prediction and Tele-SHiELD 13km global with
4.3km first nest, and a telescoping 1.4-km nest for Northeast Corridor areas. SHIELD can also
run in doubly-periodic mode for kilometer- and hectometer-scale process modeling, and as a
kilometer-scale regional climate model.

The FV3 team at GFDL is also developing Pace, which is a Python implementation of SHIELD that
uses the GridTools for Python (GT4Py) domain specific language and Data Centric parallel
programming framework (DaCe) to achieve performance portability across different computing
architectures, including GPUs and CPUs. The initial GT4py port of the FV3 Dynamical Core,
PyFV3, was completed by a team at the Allen Institute for Artificial Intelligence and is now
maintained by GFDL and co-developed with NASA GSFC’s Advanced Software Technology Group.
The SHIELD physics parameterizations are currently under development, and the full model will
be GPU-capable in FY25. GFDL is also working to integrate Pace into the Flexible Modeling
System (FMS) framework to allow it to couple to other GFDL models.
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SPEAR The Seamless System for Prediction and Earth System Research is a next generation GFDL
modeling system for seasonal to multi-decadal projections (i.e., climate model). As a complete
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climate system, it contains components for the atmosphere (AM4.0), land (LM4.0), ocean
(MOM®6), and sea ice (SIS2). The atmosphere model (AM4.0) is the same model used in GFDL’s
CM4 and leverages the hydrostatic FV3 dynamical core. SPEAR also uses the Flexible Modeling
System framework (FMS). All of these aspects are shared between GFDL’s Seamless Modeling
Suite (CM4, ESM4, SPEAR, and SHIELD), four configurations of FMS-, FV3-, and MOMG6-based
modeling framework.
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UFS Madel The Unified Forecast System (UFS) model is the operational weather prediction
system of NOAA. The UFS atmospheric component consists of FV3 as the dynamical core with
GFS physics and GFDL microphysics, has CCPP physics drivers and runs at C384 (~25km) with 64
vertical levels. The UFS ocean component consists of MOMG6 at % degree tripolar grid with 75
hybrid vertical levels. It also uses CICE5 and WaveWatch Ill. FV3 uses a flux-form
semi-Lagrangian method on a CD grid using a cubed-sphere mesh and solves the compressible
equations (nonhydrostatic) with Lagrangian vertical coordinates. FV3 can use stretched and
refined grids in the horizontal. UFS relies on MPI for running on CPU hardware.
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4. Assessment Criteria

In this section, we collect benchmark results as a step towards estimating the ability of ESMs to
run as fully configured weather or climate models on Exascale computers. As of this writing,
there are no full ESMs running on Exascale computers, but we have collected a variety of results
designed to shed light on GPU performance, CPU and GPU comparisons, programming models
and performance portability, as well as estimated energy consumption.

Since ESMs are composed of several major model components meant to model different parts
of the earth system, making assessments of these model components (e.g., dynamics,
chemistry, physics, ocean, etc.) will be helpful in understanding the degree of ESM readiness.
(For example, dynamics runs on GPUs but chemistry does not). The models typically run
multiple operations simultaneously (e.g., ocean and atmosphere components, communications
& computation, I/0 and compute, etc.) so there will be limitations in the diagnosis of these
performance assessments.

Note that the models represented here are quite different in terms of configuration, complexity
and maturity of GPU ports, so data in this report cannot be used for model intercomparison,
but is instead meant to show GPU potential and quantify GPU readiness.
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We currently have results from three efforts:

1. Afull GCRM from the E3SM project, running at 3.25 km global resolution on an Exascale
system. These results are used to evaluate E3SM’s GPU strategy (C++/Kokkos) across
CPU and multiple vendor GPU systems. They demonstrate that exascale systems can
achieve better than 1 SYPD on a 3.25 GCRM.

2. NUMA dynamical core benchmarks from NPS, evaluating the Fortran/OpenACC
approach to GPU porting. The recent results using OpenACC show that NUMA can
achieve results approaching those attained with the OCCA hardware-agnostic APl (10%
of peak versus 17% for the fastest kernels). Moreover, the GPU results show that codes
can run between 5-8x faster simulations on GPUs versus CPU for the same amount of
energy consumption. We also see that the increase in performance from the A100 to
H100 GPUs is quite substantial (1.4x).

3. GFDL SHiIELD Preliminary results with PyFV3 on NVIDIA GPUs

4.1 SCREAM: Simple Cloud Resolving E3SM Atmosphere Model

The E3SM project has a computational mission to run efficiently on DOE’s leadership computing
facilities. This includes Frontier installed at Oak Ridge National Laboratory and the Aurora
system at Argonne National Laboratory. Frontier is the first exascale system in the TOP500 list,
with 9472 nodes each with 4 AMD MI250 GPUs. Aurora is even larger with 63744 Intel Ponte
Vecchio GPUs. E3SM'’s GPU strategy is to rewrite the component models in C++ and make use
of the Kokkos and YAKL performance portability libraries. Kokkos and YAKL provide parallel for
loops as well as some hierarchical parallelism and abstract the on-node execution model. They
currently support all major CPU and GPU systems, with GPU backends based on the vendor’s
preferred language (e.g. CUDA, HIP, SYCL).

E3SM has recently completed the port to C++ of their global cloud resolving model SCREAM,
and has started work on porting their ocean model which will be called OMEGA.

In this report, E3SM has contributed GCRM benchmarks, taken from Taylor et al., 2023. The
benchmarks use the full SCREAM model, running with a nonhydrostatic dynamical core with 10
transported hydrometers. SCREAM uses P3 microphysics and SHOC turbulence and boundary
layer scheme and RRTMG++, a C++ port of the RTE+RRTMGP radiation parameterization which
computes gas optical properties and radiative fluxes. The benchmark uses the model as it was
run for SCREAM’s contribution to the DYnamics of the Atmospheric general circulation Modeled
On Nonhydrostatic Domains (DYAMOND) model intercomparison project (B. Stevens et al.,
Progress in Earth and Planetary Science, 2019). The benchmarks use prescribed sea surface
temperatures, and are coupled to an active land model and land model and sea ice model (but
with prescribed ice extent).
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Figure 4.1: Strong scalings of the SCREAM 3.25 km GCRM model running on the exascale
Frontier system and two pre-exascale systems.

The SCREAM GCRM results are presented in Figure 4.1. Strong scaling is shown on Frontier,
Summit, Perlmutter CPU, and Perlmutter GPU. Frontier is an exascale GPU system with 4 AMD
MI250 GPUs per node. Summit is an older GPU system with 6 NVIDIA V100 GPUs per node.
Perlmutter has both GPU nodes (1536, each with 4 NVIDIA A100 GPUs) and state-of-the-art CPU
nodes (3072 nodes, each with two 64 core AMD EPYC Milan 8863 CPUs). The thin black line
shows perfect scaling. Throughput without 1/0 is measured in simulated-days-per-day, plotted
as a function of compute nodes. The results show the performance portability of the
C++/Kokkos approach which allows the code to run on CPU systems, multiple NVIDIA GPU
systems and an AMD GPU system. On Perlmutter CPU and GPU, the 1536 node result gives a
direct comparison between GPU and CPU performance, where the state-of-the-art GPU node (4
A100s, obtaining 132 SDPD) is 5.8x faster than the state-of-the-art dual-socket CPU node
(obtaining 22.6 SDPD). In addition, power consumption measurements from the Perlmutter
benchmarks show that while the benchmark is running, the 1536 GPU nodes use 1150 W/node,
while the CPU nodes use 690 W/node. Thus on a per-Watt basis, the PerImutter GPU nodes are
3.5x more efficient than the CPU nodes.
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4.2 NUMA: Results on NVIDIA GPUs

The NUMA group has been experimenting with OpenACC to explore the best way to support
Fortran code with minimal changes while still gaining performance improvements on
GPUs—currently the only practical route to exascale computing in the U.S., as of this report.

In this study, we ported the entire dynamical core to the GPU but only describe the approach
for the CreateRhs routine which is representative of all routines used throughout the NUMA
code. We decompose CreateRhs into 4 kernels: the gradient (Grad), divergence (Div),
global-to-local copy (Glob2Loc) and local-to-global copy (Loc2Glob); these kernels are used for
both explicit and implicit time-integration. The copies refer from global gridpoint arrays to local
element-wise arrays typical of finite element methods. The kernels are shown in Figure 4.2.1.

function OpTimizeD RHS
'$ace kernels
1$aceloop gang vector collapse(5)

fore=1:Ne,k=1:N¢g,j=1:Ny,i=1:Ngm=1: Ny, do
I = intma(i, j, k,e)
ge(m, i, 4, k,€) = q(m, I Kernel 1: Global to Local
end for
'$ace end kernels
'$ace kernels
1$aceloop gang vector collapse(5)
fore=1:Ne,k=1:Ng,j=1:N,,i=1:Ne;m=1:Ny,, do Kernels 2 and 3: Gradient and Divergence
Compute local derivatives
end for

1$ace end kernels

'$ace kernels
1$accloop gang vector collapse(5)
fore=1:Ne,k=1:N¢e,j=1:Ny,i=1:Ng;m=1: Ny do
I =intmal(i, j, k, €)
rhs(m,I) = f(q(m,i,j,k)) Kernel 4: Local to Global
end for

State !$acc end kernels

end function

Figure 4.2.1: NUMA Kernels for the right-hand-side vector (rhs).

On the left panel of Fig. 4.2.2, we show the roofline model using an OpenACC implementation
on an A100 which has a peak performance of 9.7 teraflops per second (with maximum memory
of 80 GB). The blue squares and green diamonds represent the gradient and divergence kernels
for different polynomial degrees (N=4,5,6,7,8); we only show one result for the copies because
they give the same result regardless of polynomial degree. On the right panel, we show the
results using an OCCA APl implementation on the OLCF Titan (see [1]). The dots of the same
color represent the results for different polynomial degrees (N=3,4,5,6,7,8); as expected, the
higher the degree of the polynomial the better the performance. The best performance
achieved so far with OpenACC is around 12% of peak performance whereas for OCCA it sits near



17% (although this comparison includes different kernels and different hardware); however, the
OpenACC result achieves nearly twice the performance for the same arithmetic intensity
(compare the blue squares on left with the black squares on the right).
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Figure 4.2.2: NUMA Roofline models showing the performance of the main kernels. The left
panel shows the OpenACC results on a NVIDIA A100 and the right panel shows results using

OCCA on OLCF Titan (NVIDIA K20x).

We compared the energy consumption (in megajoules, MJ) versus problem size for various
NVIDIA GPUs including the V100, A100 and H100 cards. In Fig. 4.2.3, the energy consumption
reported represents a worst-case scenario where we assume that the hardware utilizes its
maximum power consumption.
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Figure 4.2.3: NUMA energy consumption for various problem sizes comparing a CPU (AMD
Epyc) implementation versus a GPU implementation on V100, A100, and H100 hardware.



Figure 4.2.3 compares the performance for each problem size (in gigabytes, GBytes) on an AMD
Epyc (Rome) CPU versus a specific NVIDIA GPU card. The red ovals illustrate the comparison for
the H100 showing that the CPU requires 8x more energy for the same problem size (~ 117
GBybtes). Another way of stating this is that the H100 is 8x faster than the CPU for the same
energy consumed. The yellow ovals denote the results for the A100 showing that the A100 is 5x
faster than the CPU. Note that the H100 is about 1.4x faster than the A100 which is an
encouraging result especially if a similar trend continues on future cards (we already expect this
with the Blackwell GPU).

As a final result, we show in Fig. 4.2.4 strong and weak scaling results for a tropical cyclone
simulation run on the NCSA’s Delta computer on NVIDIA A100 GPUs with 80 GB HBM2 RAM and
NVLink (ranked #256 on the top500 list as of the writing of this report).
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Figure 4.2.4: NUMA strong (left panel) and weak (right panel) scaling on NCSA’s Delta using
NVIDIA A100 GPUs. On the left panel, we maintain the problem size the same
(Ne*(N+1)~3*Nvar=663 million DOF, where Ne=641,400 is the number of hexahedral elements,
N =5 is the polynomial degree, and Nvar=5 is the number of variables in the Euler equations).
On the right panel we keep the problem size per GPU the same (41.5 million DOF per GPU, with
2.65 billion DOF for the largest problem shown). From ref. [4].

The left panel of Fig. 4.2.4 shows that the GPU code does not achieve perfect strong scaling due
to the GPUs not being fully saturated as we increase their number. In contrast, the right panel of
Fig. 4.2.4 shows that if we keep the GPUs fully saturated, then we can maintain near perfect
weak scaling by keeping the work per GPU constant as we increase their number.

In [4] we show that on Delta, to run the same simulation (per Joule) as one A100 GPU requires
154 AMD Milan cores ; therefore, to run a similar simulation as the 256 GPU runs shown in the
strong scaling plot would require 40,000 CPUs (6 times the CPU capability of NSF Delta).
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4.3 GFDL SHIiELD Preliminary results with PyFV3 on NVIDIA GPUs

Performance engineering of PyFV3 is ongoing through the Pace project. Figure 4.3.1 shows
initial weak-scaling performance of the PyFV3 dynamical core on the Piz Daint supercomputer
[1]; the Python code consistently achieves a nearly 4x speedup over the Fortran FV3
implementation and displays near-perfect weak scaling to the entire GPU partition of Piz Daint.
Figure 4.3.2 shows strong-scaling results from 6-node simulations on Piz Daint [2]. This
illustrates that the Python code scales better on the GPU than the Fortran code does on the CPU
once problem sizes are large enough to overcome the GPU launch overhead. The strong-scaling
advantage persists until the GPU’s memory is saturated, placing a limit on the domain sizes that
can be run efficiently on each chip. Piz Daint’s P100 GPUs each contain only 16GB of memory,
however; contemporary GPUs with 40-80 GB of memory relax this constraint significantly,
allowing for greater speedups over Fortran with more gridpoints per chip. An important note to
Figure 4.3.2 is that the CPU backends had not been exposed to the same level of performance
engineering at the time of publication, PyFV3 CPU performance is now much closer to the
Fortran FV3 code and further optimization will achieve runtimes within 10% on the CPU.
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Figure 4.3.1: Node-by-node weak-scaling comparison of the Fortran FV3 and PyFV3 dynamical
cores on the Piz Daint supercomputer (NVIDIA P100 and Intel Xeon) from [1]. Numbers below

the blue Python line indicates model resolution and numbers above the blue line show speedup
over the Fortran dycore.
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Figure 4.3.2: Runtimes for one invocation of the Fortran and Python dynamical cores run on six
Piz Daint nodes from [2]. The vertical lines indicate the problem sizes below which GPU launch
overhead dominates runtimes, and above which GPU memory limitations reduce strong scaling
of the model.
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