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modeling fracture of ductile materials poses open challenges in the field of computational mechan

hysics nature of their failure processes. Integrating the interplay between thermodynamics and da

cture models is vital for predicting critical failure modes. In this paper, we develop a versatile phase-

for modeling ductile fracture, taking into account finite-strain elasto-plasticity. The framework ste

l formulation of constitutive relations for generalized standard materials (GSMs), whose response is

holtz free energy and a dissipation pseudo-potential. Its variational structure is based on a minimum

tional that expresses the sum of power densities for reversible and irreversible processes. By m

onal with a constraint on a von Mises yield function, we derive the evolution equation for the e

ain and an associative flow rule. This constrained optimization problem is analytically solved f

ermo-viscoplasticity models. The key innovations of the current work include (i) a cubic plastic de

at accounts for a non-vanishing damage-dependent yield stress, (ii) closed-form expressions of the H

and dissipation pseudo-potential for three thermo-viscoplasticity models, (iii) an extended John

model with a nonlinear hardening law, and (iv) a plastic work heat source that depends on t

n function and a variable Taylor-Quinney (TQ) coefficient. The capabilities of the proposed fram

the aid of four ductile fracture problems, including the Sandia Fracture Challenge. In each of these

e the evolution of relevant field variables such as the PF order parameter, the equivalent plastic s

re, and the internal power dissipation density, in addition to the overall structural response qua

isplacement curve. These numerical studies demonstrate that the proposed framework effectively r

cture, yielding computational results that exhibit good agreement with experimental data.

Ductile fracture, Phase-field modeling, Generalized standard materials, Thermo-viscoplasticity

uction

ty is an important mechanical property of materials in applications where metallic structures are sub

mpact loading. Extensive plastic deformation may be a desirable mechanical response in many app

onding author
ddress: Lampros.Svolos@uvm.edu (Lampros Svolos)
mitted to Journal of the Mechanics and Physics of Solids (LA-UR-24-29912) April 14, 2025
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ergy absorbers and protective barriers, as it helps reduce internal forces transferred within a stru

rupt failure. The need to reliably adopt ductile materials in design standards motivates efforts

predictive models capable of capturing their inelastic and failure behaviors. Despite considerab

ducted over the past few decades, accurately modeling ductile fracture continues to pose open cha

f solid mechanics [1–3].

astic behavior of ductile materials typically depends on state variables such as temperature, as well a

and history. These dependencies play a critical role in determining the behavior of such materials,

eme loading conditions. In addition, in such materials there is a two-way coupling between mecha

ects. For example, temperature rise typically leads to thermal softening, i.e. a decrease in the pl

is also widely accepted that a significant portion of the plastic work, ∼ 90% as quantified by th

TQ) coefficient, is converted into heat during the inelastic deformation of metallic materials [4,

, it is clear that accurately representing the dynamic plastic response of metals requires the dev

tive relations that account for thermomechanical coupling, and various material models [6–10] cap

mechanistic or (semi-)empirical expressions for the plastic flow stress σy.

ncept of generalized standard materials (GSM) was first introduced by Halphen and Nguyen [11] t

evolution equations (e.g., changes in hardening parameters over time) based on the variation o

. This variational framework facilitates the development of thermodynamically consistent constituti

e-strain elastoplasticity theory [12, 13]. In this framework, the response of GSMs in solids is des

tz free energy and a dissipation pseudo-potential [14], expressed as functions of state variables.

e model is recast into an optimization problem using the aforementioned energies. This approach

lution equations for the internal variables and provides a generic formulation of flow laws [15,

l treatment of constitutive modeling plays a critical role in the area of phenomenological material

circumvents oft-encountered problems in finite-strain elastoplasticity related to the arbitrarines

and flow rules [17]. More recently, it has been applied to coupled thermomechanical dissipativ

undation of the field of fracture mechanics can be traced back to the seminal work of Griffith [2

terials. Interpreting crack propagation as a competition between the surface energy due to crack

near elastic energy stored in brittle materials was revolutionary, leading to an energy-based desc

th [23]. However, the non-physical assumption of linear elastic mechanical behavior (e.g., resulting

crack tips) was originally highlighted by Irwin [24], as experimental observations confirmed the o

deformation at crack fronts (even in materials considered as brittle) [25, 26]. Hence, the surface

heory was modified to account for the plastic work as dissipative energy in ductile materials.

field (PF) modeling of fracture offers a comprehensive framework for simulating crack initiation and

terials. The PF approach to fracture was first introduced by Bourdin et al. [27] as a numerical appro

iational model of crack evolution aligned with Griffith’s theory [28]. Within this framework, th

re problem is determined by minimizing the total potential energy of a solid body, which is th

bulk elastic energy and crack surface energy. To obtain a regularized representation of cracks, P
2
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an auxiliary field, denoted herein by d, and its gradient. Higher-order spatial derivatives can p

d, which were treated by continuous-discontinuous Galerkin methods in [29]. These models are re

gradient-enhanced continuum damage models [30], which were also treated by continuous-disc

ethods [31, 32].

ecent decades, the PF fracture approach has gained significant attention in the computational m

y due to its effectiveness in capturing complex fracture patterns (e.g., crack merging and branchin

d challenging to finite element methods based on discontinuity-resolving formulations [33]. Miehe

a pivotal PF framework for modeling brittle fracture based on gradient-damage theory and therm

This framework was extended to address dynamic brittle fracture in [35, 36]. Additional developme

ch successfully represented cohesive fracture, as demonstrated in [37–39]. Furthermore, thermody

PF frameworks were presented in [40–42] to represent ductile fracture by coupling plasticity with

ince the Griffith-type variational theory that describes the brittle fracture process does not appl

tile case [43]. It is also generally recognized that the ability to accurately predict the behavior

at/near failure requires an adequate representation of the interplay between thermomechanics and

ure is ultimately observed in ductile materials after (sometimes extensive) plastic deformation. It is

to note that, when coupled with viscoplastic constitutive laws, thermodynamically consistent P

shown to capture shear band formation—a precursor to ductile fracture, e.g. see [44, 45]. Mo

fforts also explored the interaction between damage and heat transfer in both brittle [46, 47] an

[48, 49].

present paper, we develop a phase-field framework for modeling ductile fracture within finite-stra

using the variational formulation of constitutive relations for generalized standard materials. In

f Ortiz and Stainier [12], we adopt a minimum principle for a functional that expresses the sum

By applying the second law of thermodynamics and minimizing this functional with a constrai

yield function, we find the evolution equation for the equivalent plastic strain and the standard a

le. This constrained optimization problem is analytically solved for a broad class of thermo-visco

h flow-stress expressions that can be decomposed multiplicatively. The latter approach is novel and

framework to couple PF fracture with such models (e.g., Johnson-Cook and a modified Zerilli-A

n addition, we propose (i) a cubic plastic degradation function to account for the non-vanishing

e-dependent yield stress, (ii) an extended Johnson-Cook (XJC) plasticity model with a nonlinear h

iii) a plastic work heat source that depends on the plastic degradation function and a variable TQ c

ling capabilities of the proposed phase-field (PF) framework are tested with the aid of benchmark

fracture using different thermo-viscoplasticity models. Its performance is assessed by comparing

inst experimental data from the Sandia Fracture Challenge [1].

mainder of this paper is organized as follows. In Section 2, we briefly present kinematic relation

on laws required for the derivation of the governing equations used to determine the unknown field

cement, temperature, and phase field. The variational formulation of constitutive relations for ge

aterials is described in detail in Section 3. This includes the statement of the minimum principle
3
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l dissipation density, the imposition of the second law of thermodynamics in the form of the Clausiu

and the derivation of the flow rule from the aforementioned constrained optimization problem. In

e a versatile PF framework for ductile fracture, which can be used with a broad class of thermo-visco

d we specify the different terms appearing in the Helmholtz free energy expression. Numerical

our benchmark problems of ductile fracture are presented in Section 5 to assess the modeling and

s of the proposed framework. Notably, we compare our numerical results to experimental data

cture Challenge, and present sensitivity analyses examining the influence of the plastic degradation

d-bearing capacity of the structures under consideration. Finally, a summary and conclusions are

6.

ion: Symbols and operations

work, tensors and vectors are denoted by italicized boldface letters, while fourth-order tensors a

a blackboard bold typeface style (e.g., the elasticity tensor CCC). The dot product of two vectors v

·w = viwi, where the summation is implied over repeated indices (i.e., the Einstein summation con

e contraction between two second-order tensors A and B is defined as A : B = AijBij , where th

llow the Einstein summation convention. The dot operator is omitted for scalar products unless

e of clarity. The symbol
.
x (i.e., over-dot) denotes the time derivative of the quantity x (scalar o

contraction of second-order tensors is denoted by (AB)ij = AikBkj (similar to matrix multiplicat

er identity tensor is given by Iij = δij , where δij is the Kronecker delta. The second-order zero

0.

ing the standard algebraic definitions, the inverse and transpose of a tensor A are denoted by

tively. Using this notation, the symmetric and antisymmetric (also called skew-symmetric) parts

ted by sym (A) = 1
2

(
A+AT

)
and skew (A) = 1

2

(
A−AT

)
respectively. The trace and determ

re denoted by tr (A) and det (A) respectively. Using this notation, the deviator of the tensor A is de

) = A− tr(A)
3 I. Finally, the Euclidean norm of the tensor is given by ∥A∥ =

√
A : A.

-strain elastoplasticity theory: Kinematics and conservation laws

atics

section, we summarize basic kinematic relationships required for the development of the prop

ical model of ductile fracture. Consider a body with a placement Ω at time t ∈ R+ that can under

n. The motion of this body is described by a function φ that maps a material point X of the

ion Ω0 into a point x ∈ Ω of the spatial (or current) configuration as follows

x = φ(X, t) .

nce between its current position and its reference position defines the unknown displacement vect

u(X, t) = x−X = φ(X, t)−X .
4
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ation gradient, which relates tangent vectors of reference and current configurations, is defined a

F = ∇0φ =
∂φ

∂X
,

denotes the gradient operator with respect to the reference configuration.

pt a local multiplicative decomposition of the total deformation gradient [50], expressed by

F = F eF p ,

c and plastic components (F e and F p respectively). This decomposition introduces three configu

ig. 1 (namely, reference, intermediate, and spatial configurations) [51]. For the sake of clarity, a ca

d to denote quantities of the intermediate configuration. The deformation gradient maps a point

onfiguration to X in the intermediate configuration by F p, and then to x in the spatial configura

ntermediate configuration is local and incompatible in the sense that continuity of its neighborho

unless the deformation of the body is homogeneous [52].

X Ω0
x

Ω

X
F p

F

F e

igure 1: Multiplicative decomposition of the deformation gradient and definition of the intermediate configuration.

mulate the necessary constitutive laws, we need to define kinematic and stress measures in th

ions. In particular, the spatial velocity gradient is expressed by

l =
.
FF -1 .

) rate of deformation tensor d and the spin tensor ŵ are defined as the symmetric and skew-symme

ial velocity gradient tensor as follows

dα = sym (lα)

ŵα = skew (lα)



 .

nitions hold for the total quantities (superscript α is omitted), as well as for their elastic (α = e) a

rts; see Appendix A.1 for details.

ing that ŵp = 0 and isochoric plastic response, the J2 flow rule is expressed in terms of the plast

n tensor as follows

dp =
.
εp n

p ,
5
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s the equivalent viscoplastic strain and np denotes the direction of viscoplastic flow, represented as

or. Further elaboration on the imposed constraints in J2 flow theory is provided in Appendix A.2

ervation laws

section, we briefly present the differential equations that describe the conservation laws of the

chanical system. Interested readers are referred to [53] for more details on the derivation.

nce of linear momentum:

∇0 · P + ρ0B = ρ0
..
u ,

e P denotes the first Piola-Kirchhoff stress (see Appendix A.3 for details relating to different st

), ρ0 is the density in reference configuration, ρ0B expresses the volume force, and∇0· denotes the d
ator with respect to the reference configuration.

nce of microforces: To derive the phase-field equation, we assume the existence of micro-forces. Sp

d fi ∈ R denote the external and internal micro-forces respectively, while Ξ is a micro-force tracti

54].

∇0 ·Ξ+ fe − fi = 0 .

law of thermodynamics: We also express the balance law which postulates the conservation of

omechanical processes. Let e denote the internal energy (per unit mass) and consider the mechan

change the aforementioned energy (elasto-plastic deformation and fracture). We assume that ∇0

.
d

ower conjugate quantities to micro-force traction vector and micro-forces respectively. Hence, th

f conservation of energy reads [55]

ρ0
.
e = P :

.
F +Ξ · ∇0

.
d+ fi

.
d−∇0 ·Q ,

e Q is the heat-flux vector at the reference configuration.

lation of constitutive relations: Minimum principle and Clausius–Duhem inequality

section, we derive a visco-plastic flow rule using a variational formulation of thermomechanical co

nd the second law of thermodynamics for generalized standard materials (GSMs). After defining

nd energy-related functions for GSMs, we express the minimum principle, similar to [12, 20]. F

e second law of thermodynanics (in the form of the Clausius-Duhem inequality) to arrive at the e

rnal power dissipation density which plays a critical role in the minimization problem. By an

he minimum principle, we determine the evolution equations of the internal variables expressed as a

plastic flow rule in this work.
6
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tional formulation: A minimum principle in generalized standard materials

sake of compact notation, we group the state variables as follows: (i) M = {Ce, d,∇0d} charact

l state (Ce denotes the elastic right Cauchy-Green tensor), (ii) Z = {εp} are internal-state variab

issipative phenomena, and (iii) E = {e, η, T} are thermodynamic variables, including the specific

solute temperature T .

ng the concept of GSMs [11, 14], we postulate the existence of a Helmholtz free energy (per u

, T,Z) and a dissipation pseudo-potential (per unit mass) ϕ = ϕ(
.
M,

.
Z;M, T,Z). Note that the d

tential does not depend on the temperature rate
.
T . The Helmholtz free energy is defined as follow

ψ = e− Tη ,

efinition of specific entropy reads as follows

η = −∂ψ
∂T

.

rmore, we assume that the state variables are known and fixed while
.
M and

.
E are calculated from th

njunction with the definitions in Eqs. (11) and (12) and the second law of thermodynamics. To

of the internal variables Z, the following minimum principle is postulated [12, 20]

inf
np,
.
Z

D(
.
S;S) ,

state variables are expressed by S = {M,E,Z} and the functional D is introduced as follows

D = ρ0
.
e− ρ0T

.
η + ρ0ϕ .

ional is the summation of three components, each representing a power per unit volume for both

rsible processes. By solving the optimization problem, we can determine the equivalent viscoplastic

irection np. Assuming that the thermomechanical system under consideration is governed by a si

ture, the absolute temperature T (i.e., “equilibrium” and absolute temperatures are approximat

in [18]), we can substitute Eq. (11) into Eq. (14) and arrive at the variational formulation express

as follows

D = ρ0
.
ψ + ρ0ϕ+ ρ0

.
Tη .

following sections, we will derive the evolution equations of the internal variables by minimizing

thermodynamic quantity.

d law of thermodynamics: Coleman-Noll procedure and plastic dissipation

section, we formulate constitutive relations that adhere to the second law of thermodynamics, whi

py production is always greater than zero. The Clausius-Duhem form of this law can be recast

nequality

D = Dint + Dcon ≥ 0 ,
7
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dissipation arising from heat conduction Dcon and internal power dissipation density Dint are defi

Dcon = − 1

T
Q · ∇0T

Dint = ρ0T
.
η +∇0 ·Q




.

the Coleman-Noll procedure presented in Appendix B, we arrive at the relations

τ = 2ρ0F
e ∂ψ

∂CeF
eT

Ξ = ρ0
∂ψ

∂∇0d

fi = ρ0
∂ψ

∂d





,

equality related to the internal power dissipation density

Dint = Dp − Y p
s

.
εp = (τ : np − Y p

s )
.
εp ≥ 0 ,

term Dp denotes the plastic dissipation, and the generalized “thermodynamic forces” associated wi

n, P p (power conjugate to F p) and Y p
s (power conjugate to

.
εp), are defined as follows

P p = ρ0
∂ψ

∂F p

Y p
s = ρ0

∂ψ

∂εp




.

ation of the flow rule from the minimum principle

section, we assume a simple form of internal power dissipation density and show its compatibility

ariational formulation. To derive the viscoplastic flow rule, we apply the minimum principle intr

hile imposing a constraint on a yield function Φ̂y ≤ 0.

e assume that the form of internal power dissipation density is given, in agreement with Eq. (19)

Dint = Y p
v

.
εp ≥ 0

generalized dissipative (viscous) thermodynamic force Y p
v can be found by using the minimum

y, the constrained optimization problem reads as follows

inf
np,
.
εp

D ,

the constraint on the von Mises yield function in J2 plasticity theory as follows

Φ̂y = sv − Y p
s − Y p

v ≤ 0 ,

enotes the von Mises stress.

imizing the functional D in Eq. (15) with respect to
.
εp, the generalized dissipative force Y p

v is exp

e dissipation pseudo-potential as follows [12]

Y p
v = ρ0

∂ϕ

∂
.
εp
.

8
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izing the functional D in Eq. (15) with respect to np and imposing the constraints outlined in

termine the viscoplastic flow direction

np =

√
3

2

s

∥s∥ =
3

2

s

sv
,

notes the deviator of the Kirchhoff stress tensor τ .

arush-Kuhn-Tucker (KKT) conditions expressed as plastic loading/unloading conditions read

.
εp ≥ 0 and Φ̂y ≤ 0 and Φ̂y

.
εp = 0 .

lastic flow rule (according to Eq. (7)) is derived as follows

dp =
3

2

.
εp

s

sv

quation describes an associative plastic flow rule which is similar to the one presented in [10, 56]

g the viscoplastic flow direction (Eq. (25)) into Eq. (19) and combining the result with Eq. (21),

uality of internal power dissipation density

Dint =

[√
3

2
∥s∥ − Y p

s

]
.
εp = Y p

v

.
εp ≥ 0.

orthy that the form of internal power dissipation density is compatible with the KKT conditions.

e fracture model: Energy specifications and governing equations

of free energy and dissipation pseudo-potential

tal free energy is additively decomposed into elastic, fracture, plastic and thermal components as

ψ(M, T,Z) = ψe(Ce, d) + ψf (d,∇0d) + ψp(d, T, εp) + ψθ(T ) ,

ssipation pseudo-potential has only a viscoplastic component

ϕ = ϕ(
.
M,

.
Z;M, T,Z) = ϕp(

.
εp; d, T, εp) .

phase-field fracture method, the fracture component of the Helmholtz free energy is a function of p

dient [57] as follows

ρ0ψ
f =

Gc

2ℓ0

(
d2 + ℓ20 |∇0d|2

)
,

is the critical energy release rate, and ℓ0 is a regularization length-scale.

ume that all the remaining components depend on phase field d, except the thermal free energy

ρ0ψ
θ = ρ0Cv

[
(T − T0)− T ln

T

T0

]
,

s a reference temperature, and Cv denotes the specific heat capacity.

4.1. Notice that viscoelastic effects are ignored in this work, and we assume that fracture does not

ation.
9
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erelastic model

model, the elastic strain energy is degraded due to damage following the law

ρ0ψ
e = ge(d)W+(Ce) +W−(Ce) ,

and W− are the “tensile” and “compressive” contributions respectively. In the numerical simu

the elastic degradation function is described by ge(d) = (1− d)2 + ge1, where g
e
1 = 10−9 is used as

revent numerical instabilities after crack formation (d = 1). Notice that the degradation functio

e tensile part while the compressive part is not affected.

stic response is governed by a constitutive model in which strain energy is decomposed into volum

components. Specifically, we follow the strain energy decomposition presented in [51, 58]. To thi

Ce = Je− 2
3Ce ,

lumetric and deviatoric components are defined as follows (p. 307 in [51])

U(Je) =
1

2
κ

[
1

2

(
Je2 − 1

)
− ln Je

]

W (Ce) =
1

2
µ
[
tr
(Ce
)
− 3
]




.

d µ are the bulk and the shear modulus respectively.

his energy decomposition at hand, the damaged elastic strain energy is rewritten as

ρ0ψ
e = ge(d)W+(Je,Ce) +W−(Je)

tensile part is given by

W+ =




U(Je) +W (Ce), Je ≥ 1

W (Ce), 0 < Je < 1

e compressive part by

W− =




0, Je ≥ 1

U(Je), 0 < Je < 1

lass of thermo-viscoplasticity models

d by the work of Ranc and Chrysochoos [59], we present a framework for the representation of a b

ical (evolution) equations. The goal of this section is to consistently couple thermo-viscoplastici

e Johnson-Cook model [6]) with the phase-field fracture approach in the context of the generalized

damaged stored energy density due to plastic work, denoted by W p, defines a plastic stress σs,

d dissipation pseudo-potential (per unit volume), denoted by Rp, defines a viscous stress σv as fol

σs =
∂W p

∂εp

σv =
∂Rp

∂
.
εp




.

10
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posed model, the plastic component of Helmholtz free energy is degraded as follows

ρ0ψ
p = gp(d)W p(εp, T ) ,

dissipation pseudo-potential is given by

ρ0ϕ
p = gp(d)Rp(

.
εp; εp, T ) ,

same plastic degradation function gp(d) is adopted. Using Eqs. (23) and (24), the evolution of th

(which is described by the KKT conditions given in Eq. (26) when
.
εp ̸= 0) reads

Φ̂y = 0 ⇒ sv = ρ0
∂ψ

∂εp
+ ρ0

∂ϕ

∂
.
εp
.

ng Eqs. (40) and (41) into Eq. (42), the evolution equation of εp can be simplified as follows

sv = gp(d)

(
∂W p

∂εp
+
∂Rp

∂
.
εp

)
= gp(d) (σs + σv) .

t parts of this section, we construct the undamaged stored plastic free energy and dissipation pseudo

an additive decomposition of stresses holds as follows

σs(εp, T ) + σv(εp,
.
εp, T ) = σy(εp,

.
εp, T ) ,

denotes a temperature-dependent viscoplastic flow stress for a broad class of material models. In

ence of von Mises stress on the phase field and yield stress (according to Eq. (43)) reads as follow

sv = gp(d)σy(εp,
.
εp, T ) ,

right-hand side of the above equation describes the damaged yield stress.

astic degradation function. When a material point is fully damaged (d = 1), the evolution equatio

plastic strain εp, given in Eq. (45), loses its physical meaning because the material can no longer ac

ormation. This results in numerical instabilities, manifested as divergence in our algorithm and

n the values of εp.

literature, one strategy for stabilizing the numerical scheme involves incorporating a re-scaling facto

rm of the plastic energy threshold in the phase-field equation, as suggested by [60]. An alternative

degradation function proposed by [61], where its polynomial form is normalized by the accumulati

work, we propose a novel plastic degradation function to account for the gradual contribution of t

rk to fracture, and the non-vanishing values of the damage-dependent yield stress. To this end, we

gradation function that satisfies the following conditions

gp(0) = 1

gp(1) = gf

∂gp

∂d

∣∣∣
d=0

= s0

∂gp

∂d

∣∣∣
d=1

= 0





,

11
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controls the initial slope when the material is intact, and gf represents the residual value of t

n function when the material is fully damaged. It is noteworthy that even though gp(1) ̸= 0,

ce associated with its first derivative vanishes at d = 1. Hence, the role of s0 is analogous to t

eshold introduced by [35] in delaying the damage evolution after the accumulation of plastic en

ld be negative and close to zero (e.g., s0= −0.01 unless otherwise stated in the numerical resul

t). By imposing the above conditions, we arrive at the proposed plastic degradation function

gp(d) = (2− 2gf + s0)d
3 + (−3 + 3gf − 2s0)d

2 + s0d+ 1 .

t of gf on our proposed formulation is explored in the section on numerical examples.

d representation of flow stress. In this work, we study a class of thermo-viscoplasticity models in

depends on plastic strain, strain-rate, and temperature. We assume a multiplicative decomposit

as follows

σy(εp,
.
εp, T ) = fp(εp;Pp)fv(

.
εp, T ;Pv)fθ(T ;Pθ) ,

Pv and Pθ denote material parameters corresponding to the functions fp, fv, and fθ respectivel

pends on both
.
εp and T , while the other functions have only one argument.

independent of T (i.e. ∂fv
∂T = 0), the multiplicative decomposition is unique (up to constant mu

le, the flow stress in the Johnson-Cook model [6] is a function of εp,
.
εp, and T as follows

σy(εp,
.
εp, T ) =

(
A+Bεmp

) (
1 + C ln

.
ε∗
)
(1− θq∗) ,

, C,m, and q are material parameters and the normalized strain-rate is defined by
.
ε∗ =

.
εp.
ε0

and th

erature is given by θ∗ = T−Tt

Tm−Tt
, where

.
ε0 is a reference strain-rate and Tt and Tm are transition an

res respectively. Hence, the factors of the flow stress read

fp(εp;Pp) = A+Bεmp where Pp = {A,B,m}

fv(
.
εp, T ;Pv) = 1 + C ln

.
ε∗ where Pv = {C,

.
ε0}

fθ(T ;Pθ) = 1− θq∗ where Pθ = {Tt, Tm, q}




.

d by the work of Simo and Hughes [51], we propose an extended Johnson-Cook (XJC) plasticity m

r hardening law. The proposed flow stress, which incorporates two additional material parameters

te stress Au and the saturation parameter δ), is given by the function

σy(εp,
.
εp, T ) =

(
Au +Bεmp − (Au −A) exp (−δεp)

)(
1 + C ln

.
ε∗
)
(1− θq∗) .

s of flow stress are expressed as

fp(εp;Pp) = Au +Bεmp − (Au −A) exp (−δεp) where Pp = {A,Au, B,m, δ}

fv(
.
εp, T ;Pv) = 1 + C ln

.
ε∗ where Pv = {C,

.
ε0}

fθ(T ;Pθ) = 1− θq∗ where Pθ = {Tt, Tm, q}




.

12
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er, these types of decomposition are not always unique (e.g., in the case of a function fv that

n T ). For instance, the flow stress in a modified Zerilli-Armstrong model [62] is a function of εp,

σy(εp,
.
εp, T ) =

(
A+Bεmp

)
exp

(
−C3T + C4T ln

.
ε∗
)
,

T ;Pv) can be chosen as exp
(
−C3T + C4T ln

.
ε∗
)
or exp

(
C4T ln

.
ε∗
)
(and many other functions). T

we select the function that satisfies the following condition

fv(
.
εp, T ;Pv) =

σy(εp,
.
εp, T )

σy(εp,
.
ε0, T )

= exp
(
C4T ln

.
ε∗
)
.

factors of the flow stress read

fp(εp;Pp) = A+Bεmp where Pp = {A,B,m}

fv(
.
εp, T ;Pv) = exp

(
C4T ln

.
ε∗
)
where Pv = {C4,

.
ε0}

fθ(T ;Pθ) = exp (−C3T ) where Pθ = {C3}




.

4.2. Eq. (54) can be seen as a normalization condition. This type of condition is also used in the

model to find the unique factors and calculate the unknown constant multipliers.

rmore, we assume that the function fp is additively decomposed into two parts, namely, stored and d

ts as follows

fp(εp;Pp) = fp(εp;Pps) + fp(εp;Ppd) ,

and Ppd are material parameters that characterize the stored and dissipative components respec

we adopt the power law (as shown in Eqs. (50) and (55))

fp(εp;Pp) = A+Bεmp where Pp = {A,B,m}

fp(εp;Pps) = As +Bsε
ms
p where Pps = {As, Bs,ms}

fp(εp;Ppd) = Ad +Bdε
md
p where Ppd = {Ad, Bd,md}




,

As+Ad, B = Bs+Bd, and m = ms = md. We introduce partial Taylor-Quinney (TQ) coefficient

ated with parameters A and B respectively, to control the fraction of the plastic work that will be

the latter is related to dissipative components) as shown below

Ad = χAA⇒ As = (1− χA)A

Bd = χBB ⇒ Bs = (1− χB)B



 .

the generalized representation of flow stress as expressed in Eq. (48), the undamaged stored viscop

sity and dissipation pseudo-potential can be expressed as follows

W p(εp, T ) = Fp(εp;Pps)fθ(T ;Pθ)

Rp(
.
εp, εp, T ) =

[
fp(εp;Ppd)

.
εp + fp(εp;Pp)F̂v(

.
εp, T ;Pv)

]
fθ(T ;Pθ)




,

13
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Fp(εp;Pps) =

∫ εp

0

fp(p̂;Pps) dp̂

F̂v(
.
εp, T ;Pv) = Fv(

.
εp, T ;Pv)−

(.
εp −

.
ε0

)

Fv(
.
εp, T ;Pv) =

∫ .εp
.
ε0

fv(r̂, T ;Pv) dr̂





.

ook model. As a simple case of this framework, the undamaged stored energy density due to pla

ation pseudo-potential (per unit volume) are derived from Eq. (59) based on the analytical express

ook model [6] (cf. functions in [20]):

W p(εp, T ) =

(
Asεp +

Bs

m+ 1
εm+1
p

)
(1− θq∗)

Rp(
.
εp, εp, T ) =

[(
Ad +Bdε

m
p

) .
εp +

(
A+Bεmp

)
C
.
ε0

(.
ε∗ ln

.
ε∗ −

.
ε∗ + 1

)]
(1− θq∗)




.

ohnson-Cook model. Applying the same framework, the energy and dissipation functions for our

on of the JC model with a nonlinear hardening law read:

W p(εp, T ) =

(
Au

s εp +
Bs

m+ 1
εm+1
p + (Au

s −As) exp (−δεp)/δ
)
(1− θq∗)

Rp(
.
εp, εp, T ) =

[(
Au

d +Bdε
m
p − (Au

d −Ad) exp (−δεp)
) .
εp

+
(
Au +Bεmp − (Au −A) exp (−δεp)

)
C
.
ε0

(.
ε∗ ln

.
ε∗ −

.
ε∗ + 1

)]
(1− θq∗)





= Au
d +Au

s .

erilli-Armstrong model. To show the versatility of the proposed framework, the following func

m Eq. (59) for the modified Zerilli-Armstrong model [62]:

) =

(
Asεp +

Bs

m+ 1
εm+1
p

)
exp (−C3T )

p, T ) =

{
(
Ad +Bdε

m
p

) .
εp +

(
A+Bεmp

) .
ε0

C4T + 1

[(.
ε∗
)C4T+1

− (C4T + 1)
.
ε∗ + C4T

]}
exp (−C3T )

ation of governing equations

mentum equation

lance of linear momentum in the reference configuration reads

∇0 · (FS) + ρ0B = ρ0
..
u ,

second Piola-Kirchhoff stress (at the reference configuration) is given by a pullback operation of E

S = 2ge(d)F p-1

(
∂W+

∂Ce

)
F p-T + 2F p-1

(
∂W−

∂Ce

)
F p-T .

oundary conditions for displacement and velocity fields are prescribed as reported in the numerical
14
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se-field equation

, we derive the phase-field equation from the balance of microforces given in Eq. (9). First, we s

to the microforce balance equation leading to

ρ0∇0 ·
(

∂ψ

∂∇0d

)
+ fe − ρ0

∂ψ

∂d
= 0 .

fe = 0 and adopting the free energy decomposition as shown in Eq. (29), the aforementioned eq

as follows

∇0 ·
(
∂ψf

∂∇0d

)
=
∂ψe

∂d
+
∂ψf

∂d
+
∂ψp

∂d
.

specific forms of free energies as introduced in Section 4, we derive the phase-field equation

−Gcℓ0∆0d+
Gc

ℓ0
d+

∂ge

∂d
W+ +

∂gp

∂d
W p = 0 ,

denotes the Laplace operator in the reference configuration. Crack irreversibility is enforced by in

y variables: H+ = max
t

(W+) and Hp = max
t

(W p). Finally, Neumann boundary conditions are imp

as ∇0d · n = 0, where n denotes the outward normal vector at the boundary.

t equation

ning Eqs. (17) and (21), the heat equation is expressed as follows

ρ0T
.
η = −∇0 ·Q+ Y p

v

.
εp ,

rier’s law is adopted as a model of heat conduction

Q = −κcC-1∇0T ⇔ q = −κc∇T .

teady states, accurate modeling of heat-transfer physics in thermomechanical problems requires the

tion functions for thermal conductivity κc, as shown in [49, 63]. However, the thermal conducti

onstant and independent of d in this study, as our focus lies on analyzing transient rather than ste

. This assumption may lead to slight inaccuracies in the temperature field around the cracks.

the dependence of free energy ψ (Eq. (29)) on the absolute temperature, the total entropy is

d into elastic, plastic, and thermal components as follows

η = −∂ψ
∂T

= ηp + ηθ = −∂ψ
p

∂T
− ∂ψθ

∂T
,

entropy rates can be calculated in a closed form as follows

ρ0T
.
ηp = −

[
T

(
∂gp

∂d

∂W p

∂T

) .
d+ T

(
gp
∂2W p

∂T 2

) .
T + T

(
gp
∂2W p

∂T∂εp

) .
εp

]

ρ0T
.
ηθ = ρ0Cv

.
T




.

ing that the contributions of
.
d, and

.
T to the plastic components of entropy are small when the

extreme plastic deformation, the left-hand side (LHS) of Eq. (69) is approximated by

ρ0T
.
η ≈ ρ0Cv

.
T − T

(
gp
∂2W p

∂T∂εp

) .
εp .
15
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. (24), (30), (41) and (44), the generalized dissipative force reads

Y p
v = ρ0

∂ϕp

∂
.
εp

= gp(d)
∂Rp

∂
.
εp

= gp(d) (σy − σs) = gp(d)χσy ,

Taylor-Quinney (TQ) coefficient [4, 5] is given in closed form as follows

χ = 1− σs
σy

= 1− σ−1
y

∂W p

∂εp
.

the above equations, we arrive at the final form of the governing equation for the temperature

ρ0Cv

.
T = ∇0 ·

(
κcC

-1∇0T
)
+Qp ,

heat source resulting from plastic deformation is expressed by

Qp = gp
[
χσy + T

∂σs
∂T

] .
εp .

t source, significant plastic work heating is attributed to the first term associated with the inter

density, as described in Eq. (21). In our proposed framework, the closed-form expression for this d

given by

Dint = gp(d)χσy
.
εp .

boundary conditions. To model the convective heat-transfer processes across the solid-air inte

oundary condition for the temperature is applied:

qn = q · n = hq [T (x)− T∞] .

uation, qn represents the heat flux in the normal direction, given by the outward unit vector

The material parameter hq is called heat-transfer coefficient, and the thermal-insulation conditio

ployed as a special case when this parameter is set to zero (hq = 0). The term T (x) refers to the tem

ndary, with x highlighting the dependence on the location of points on the interface where the c

is applied. Finally, the parameter T∞, the so-called far-field temperature, is assumed to be a const

hosen as the room temperature.

mary

section, we briefly summarize the elastic-viscoplastic constitutive framework and governing equation

s 4.1 and 4.2 respectively.

Table 1: Elastic-viscoplastic constitutive framework

er–Lee decomposition: F = F eF p

oric assumption: Jp = det (F p) = 1 and J = Je = det (F e)

relastic model: S = 2ge(d)F p-1

(
∂W+

∂Ce

)
F p-T + 2F p-1

(
∂W−

∂Ce

)
F p-T and τ = FSF

rule: dp =
.
εpn

p where np =

√
3

2

s

∥s∥ and s = dev (τ )

plastic flow stress: σy(εp,
.
εp, T ) = σs(εp, T ) + σv(εp,

.
εp, T ) where σs =

∂W p

∂εp
and σv =

∂

conditions: Φ̂y =

√
3

2
∥s∥ − gp(d)σy(εp,

.
εp, T ) ≤ 0 and

.
εp ≥ 0 and Φ̂y

.
εp = 0
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Table 2: Governing equations

Momentum balance: ∇0 · (FS) + ρ0B = ρ0
..
u

Heat equation: ρ0Cv

.
T = ∇0 ·

(
κcC

-1∇0T
)
+ gp

[
χσy + T

∂σs
∂T

] .
εp

Phase-field equation: −Gcℓ0∆0d+
Gc

ℓ0
d+

∂ge

∂d
H+ +

∂gp

∂d
Hp = 0

rical results

section, we present four numerical examples to demonstrate the modeling capabilities of the propos

fracture framework. We illustrate these capabilities by means of force-displacement curves, field s

ion of the variable Taylor-Quinney (TQ) coefficient. All four examples are based on the ductil

cribed in Section 4 and include thermomechanical coupling with plasticity models that are describe

r generalized standard materials (see Section 4.1.2).

ion 5.1, the first example exhibits the ductile failure response of a double-corner-notched square

to tensile loading. To study the influence of the location and shape of notches on the failure

mple reports the thermomechanical response of a double-edge-notched tension specimen in Sectio

3, the third example studies the crack initiation and propagation in an I-shaped specimen, wher

takes place at the center of the geometry. Finally, in Section 5.4, the fourth example investi

capabilities of the proposed PF fracture framework by comparing our numerical results to observa

the Sandia Fracture Challenge experiment [1].

st three examples utilize the Johnson-Cook (JC) plasticity model for X30Cr13 stainless steel,

s our proposed extended Johnson-Cook (XJC) plasticity model (see Eq. (62)) with a nonlinear hard

% Chromium - 5% Nickel precipitation hardened (15-5 PH) stainless steel. The evolution of the e

in takes place at the integration points according to the proposed elastic-viscoplastic constitutive fr

Table 1.

ing the unknown field variables, the system of three coupled equations, summarized in Table

sing the finite element method and implemented in the Multiphysics Object Oriented Simulation

OSE) framework [64]. Specifically, we developed a MOOSE-based application to determine the

lacement, temperature, and phase-field.

ing the implementation details, we employ the Newmark integration scheme for temporal disc

meters β = 0.3025 and γ = 0.6. The system of governing equations, summarized in Table 2,

onolithic scheme that is explicit in the phase-field driving forces H+ and Hp; i.e. at t = tn+1, w

H+ = max
t=0,...,tn

W+ and Hp = max
t=0,...,tn

W p. Lagging the phase-field driving forces by one time

nner improves the performance of the monolithic solver significantly by sidestepping numerical d

ehavior) associated with non-convexity of the system of coupled equations governing the problem

approaches for alleviating this type of numerical difficulties have been described in the literature,

partitioned and quasi-Newton solution schemes; see [65, 66] and references therein for details.
17
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vy = α , ux = 0

uy = ux = 0   

a

rc
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rc

rc

r2

r1

F

C

D

Geometry of the double-corner-notched square specimen, including boundary conditions for displacement and veloc

, an adaptive mesh refinement (AMR) technique, implemented within the MOOSE framework,

computational domains in all four examples. The phase-field value serves as the indicator for h-re

meshes are created using Cubit [67] with an average element size approximately four times the len

-refinement level is set to 3, aiming to achieve a refined mesh size of href = ℓ0/2. It is notewo

lead to significant CPU savings by refining only the cracked regions, and as a result, it reduces t

onal cost. Recent studies have demonstrated reductions in computational time by an order of m

g AMR in phase-field fracture simulations [68, 69].

le-notched square specimen

first example, we examine a double-corner-notched square specimen under combined loading, whic

lization and the formation of a curved crack. The geometry of the sample and its boundary cond

Fig. 2, with dimensions a = 10 mm, r1 = 2 mm, r2 = 2.5 mm, and rc = 1 mm. In this study, the

s for X30Cr13 stainless steel are reported in Table 3 (cf. [70, 71]) unless otherwise specified be

le ℓ0 is chosen as 0.03 mm. Initially, the sample is assumed undamaged (d = 0) with a uniformly d

re Tint. With regards to boundary conditions, vertical velocity vy is applied simultaneously on th

while the bottom and right edges are clamped. Convective heat-transfer boundary conditions are

ed in Eq. (79) with hq = 10−4 W/(mm2K).

dy the performance of the novel plastic degradation function presented in Eq. (47), we first c

analysis with respect to the parameter gf . Fig. 3 illustrates the influence of gf on the fracture p

rce-displacement curves for vy = 10−3 mm/s and Tint = 294 K. It is observed that lower values o

er decrease in the flow stress of the material, which promotes localized plasticity, and hence more pr

ftening and damage accumulation. Together, these effects lead to a total loss of load-carrying ca

ure at an earlier stage of deformation. In addition, we perform a sensitivity analysis on s0, the p

ols the initial slope (at d = 0) of the proposed plastic degradation function. Fig. 4 shows the influ
18
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Table 3: Material properties for X30Cr13 steel and 15-5 PH alloy.

Material properties Notation
Values

Units
X30Cr13 steel 15-5 PH alloy

Young’s modulus E 88.7× 103 195.0× 103 MPa

Poisson’s ratio ν 0.34 0.3 -

Yield stress A 443 770 MPa

Ultimate stress Au - 1250 MPa

Strain hardening modulus B 300 450 MPa

Saturation parameter δ - 6 -

Critical energy release rate Gc 20.90 320 kJ/mm2

Heat transfer coefficient hq 10−4 10−4 W/mm2K

Specific heat capacity Cv 0.46× 109 0.42× 109 mm2/(s2K)

Thermal conductivity κc 0.038 0.0178 W/mmK

Mass density ρ0 7.731 7.8 g/cm3

Thermal softening exponent q 1.5 1.5 -

Strain rate sensitivity coefficient C 6.0× 10−3 1.0× 10−4 -

Reference strain rate
.
ε0 10−4 10−3 s−1

Strain hardening exponent m 0.7 0.7 -

Transition temperature Tt 273 273 K

Melting temperature Tm 1793 1713 K

Partial TQ coefficients χA = χB 0.95 0.99 -

ce-displacement curves for vy = 10−3 mm/s and Tint = 294 K. It is observed that higher absolute

an earlier onset of loss of load capacity at lower displacements. The residual value gf and the in

lastic degradation function in our model achieve a similar effect to the incorporation of a residu

eshold (e.g. see [35]). In this example, the value of gf is set to 0.5 and s0 is set to -0.01 unless oth

ed.

shows a comparison of the force-displacement curves obtained from our formulation (for vy = 10

K, and gf = 0.7) with other numerical approaches published in the literature. In [43], a ductile fract

ped that incorporates a modified elastic degradation function dependent on both the phase-field var

ulated plastic strain. In [70], a non-local softening model was employed to capture the localization

In comparison to these approaches, our results are similar to those of [43] in terms of the high

ing capacity up to uy ≈ 0.15 mm, and they also exhibit a softening behavior similar to that of

deformation up to failure at uy ≈ 0.4 mm. In general, our results also reflect lower ductility in co

o other models.

fluence of temperature on the mechanical behavior of the double-notched square specimen is exa
19
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fluence of gf on the force-displacement curves in the double-notched square specimen. The initial temperature is Ti

ing rate is given by vy = 10−3 mm/s.

e initial temperature values Tint. Specifically, we conduct simulations with four Tint values: 294

800 K, while the far-field temperature is maintained at room temperature (T∞ = 294 K). The tem

own in Fig. 6, where higher Tint values reduce the peak force F and delay crack initiation.

fluence of the loading rate on the response of the double-notched square specimen is investigated u

y values: 10−3 mm/s, 10−2 mm/s, 0.05 mm/s, and 0.1 mm/s. Fig. 7 shows that higher loading ra

ease in the peak force F , indicating that the specimen can withstand greater forces before failur

hardening effects). However, higher loading rates do not necessarily lead to earlier failure. For ins

for vy = 10−2 mm/s is found to be higher compared to vy = 10−3 mm/s. Nevertheless, failure h

lacements for vy = 10−2 mm/s. A similar trend is observed when comparing vy = 0.05 mm/s and

wever, the peak load for vy = 0.1 mm/s is higher, and failure occurs at higher displacements compa

y = 10−3 mm/s. It is important to note that Fig. 7 presents the overall structural response of the

e local response at a material point. This structural response stems from the complex interplay

nlinear, coupled processes at the level of each material point, in addition to nonlinear geomet

instabilities (such as shear bands) which can significantly affect global deformation and failure mo

ifficult to disentangle these mechanisms in order to explain the overall response and/or attribute i

that response to a particular mechanism. This underscores the importance of accounting for the

ermomechanics and damage, to the fullest possible extent, when studying ductile fracture problem

ots showing the crack formation and plastic localization are depicted in Figs. 8 and 9 respectively
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fluence of s0 on the force-displacement curves in the double-notched square specimen. The initial temperature is Ti

ing rate is given by vy = 10−3 mm/s.

comparison of the load–displacement curves between our formulation and the approaches from Ambati et al. (201

t al. (2006) [70] in the double-notched square specimen. The initial temperature is Tint = 294 K and the loading r

3 mm/s with s0 = -0.01 and gf = 0.7.
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fluence of four different initial temperatures on the mechanical behavior of the double-notched square specimen, ill

nding force-displacement curves. The loading rate is vy = 10−3 mm/s.

te of vy = 0.1 mm/s and initial temperature of Tint = 294 K, we illustrate the evolution of the p

ig. 8) and the equivalent plastic strain (Fig. 9) for six time steps with vertical displacements uy of

.298 mm, (c) 0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the corre

ig. 7). It is observed that a curved crack develops on top of a plastic localization zone, which nucle

ches. Figs. 10 and 11 show the evolution of the temperature field and the internal power dissipatio

in Eq. (78)) at the same time steps, with identical initial and boundary conditions (Tint = 294 K

.

e study the fraction of plastic work converted into heat when the JC plasticity model of Eq. (61) i

strates the evolution of the Taylor-Quinney (TQ) coefficient χ (defined in Eq. (75)) over time at two

four different loading rates. As both depicted in Fig. 2, point C is located at (5.4 mm, 5.15 mm),

ed crack path, whereas Point D, with coordinates (2 mm, 8 mm), lies outside this path. The r

ith four imposed velocities vy of 0.1 mm/s, 5 mm/s, 100 mm/s and 500 mm/s, along with initial tem

294 K and coefficients χA = χB = 0.8. It is observed that the TQ coefficient has approximately

χA and χB at Point D (outside the crack path). On the other hand, the TQ coefficient at Point

path) increases as fracture propagates and returns to the values of χA and χB after the comp

The maximum values of the TQ coefficient at Point C slightly increase with higher loading rate

generalized standard materials using the JC plasticity model as expressed by Eq. (61), the sensitiv

ient to loading rates is less than 2%. If the TQ coefficient were (hypothetically) highly depende
22
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fluence of the loading rate on the response of the double-notched square specimen, investigated using four different

he initial temperature is assumed Tint = 294 K.

te, a different plasticity model could be adopted by introducing alternative functions for the stor

e to plastic work and the dissipation pseudo-potential (see Section 4.1.2).

proposed framework, plastic work heating depends on the plastic degradation function gp as

). This coupling prevents the temperature from rising excessively after damage initiation. To s

conduct two analyses: one with a degraded heat source and one without. The results are obtained

re Tint = 800 K, imposed velocity vy = 5 mm/s, and coefficients χA = χB = 0.8. Fig. 13 shows that n

of damage on the heat equation can lead to higher local temperatures, albeit without significantly

isplacement curve in this case. Specifically, the evolution of temperature fields at Point C is pre

t illustrates that as the crack propagates, the maximum temperature at Point C reaches about 97

ource is degraded, whereas the peak temperature is approximately 1080 K when it is not degrad

increase in temperature leads to a slightly earlier loss of load-bearing capacity, as observed in Fi

e with the thermal effects predicted by the JC plasticity model.

, we examine the mesh convergence behavior by testing three different cases of AMR refineme

3, and 4. The results are compared to the non-AMR case, where the mesh is pre-refined along

a minimum mesh size of h = ℓ0/4. Fig. 14a shows that mesh convergence is achieved for href =

no significant difference in the force-displacement curves for these cases compared to the non-A

nt D). After point D, the two cracks merge into one, causing the specimen to fully fracture. Th

idly and requires elements in the middle of the specimen to be refined quickly. The AMR mesh wit
23
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Phase field

apshots showing the phase-field evolution at six time steps with vertical displacements uy of (a) 0.265 mm, (b) 0.2

d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7). The results are obtained wit

of Tint = 294 K and a loading rate of vy = 0.1 mm/s.

(a) (b) (c)

(d) (e) (f)
Equivalent plastic strain

apshots showing the evolution of the equivalent plastic strain at six time steps with vertical displacements uy of (a)

, (c) 0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7). The results a

ial temperature of Tint = 294 K and a loading rate of vy = 0.1 mm/s.
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napshots showing the temperature evolution at six time steps with vertical displacements uy of (a) 0.265 mm, (b)

m, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7). The results are obtain

erature of Tint = 294 K and a loading rate of vy = 0.1 mm/s.

(a) (b) (c)

(d) (e) (f)
Internal power dissipation density

napshots showing the evolution of the internal power dissipation density at six time steps with vertical displacemen

b) 0.298 mm, (c) 0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7).

with an initial temperature of Tint = 294 K and a loading rate of vy = 0.1 mm/s.
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(a) Velocity vy = 0.1 mm/s. (b) Velocity vy = 5 mm/s.

(c) Velocity vy = 100 mm/s. (d) Velocity vy = 500 mm/s.

Figure 12: The influence of loading rates on the TQ coefficient.

d those with href = 4 and the pre-refined mesh in capturing this phenomenon. However, capt

acement curve beyond point D is also extremely challenging in experiments with ductile materials

the evolution of the degrees of freedom (DOFs) with respect to increasing applied displacement. W

mputational cost of AMR with href = 3 is significantly reduced compared to the non-AMR case be

and compared to AMR with href = 4 after crack propagation, respectively. Considering both comp

nd accuracy, we determine that AMR with href = 3 is the optimal choice for our model.

le-edge-notched tension specimen

second example, a double-edge-notched tension (DENT) specimen with U-shaped notches is exami

experimentally investigated in [72]. The specimen’s geometry and boundary conditions are de

ith dimensions a = 47 mm, b = 25 mm, rc = 2.5 mm, and h = 8 mm. In this study, the material p

13 stainless steel are reported in Table 3 unless otherwise specified below. The length scale ℓ0 is

lue of gf is selected to be 0.5 in this problem. Regarding the initial and boundary conditions, th

ed undamaged (i.e., d = 0) with a uniformly distributed temperature denoted by Tint. The botto

hile the top edge is subjected to a vertical velocity vy. Convective heat-transfer boundary cond

s expressed in Eq. (79) with hq = 10−4 W/(mm2K).

illustrates the influence of temperature on the mechanical behavior of the DENT specimen by va

perature values Tint. Specifically, we conduct four simulations with the following values of Tin

K, and 800 K. The far-field temperature is maintained at room temperature (i.e., T∞ = 294 K)
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n of temperature fields at Point C for analyses with different heat source terms.

he effects of damage on the heat equation can lead to higher local temperatures.

With degraded heat source

Without degraded heat source
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u [mm]

splacement curves for analyses with different heat source terms. The increase in temperature

ightly earlier loss of load-bearing capacity.

he influence of damage on the thermomechanical coupling. Two analyses are conducted: one with a degraded heat

c degradation function and one without. The results are obtained for initial temperature Tint = 800 K, imposed ve

coefficients χA = χB = 0.8.
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(b) Evolution of DOFs.

ouble-notched square specimen: (a) Mesh convergence studies for different AMR refinement levels href compared

(b) The evolution of degrees of freedom (DOFs) with respect to increasing applied displacements uy shows that hre

ice for our model.
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Figure 15: Geometry of the DENT specimen, including boundary conditions for displacement and velocity fields.
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nfluence of four different initial temperatures on the mechanical behavior of the DENT specimen, illustrated by the cor

ement curves. The loading rate is governed by the prescribed velocity of vy = 0.1 mm/s.

ading rate is governed by the prescribed velocity of vy = 0.1 mm/s. Similar to the previous examp

s reduce the peak force F in the force-displacement curves but increase ductility by delaying the

-bearing capacity.

er, the dependence of the specimen’s load-bearing capacity on the deformation rate does not follow

reported in the previous example. Specifically, Fig. 17 shows the force-displacement curves fo

tes imposed by prescribed velocities of vy = 10−3 mm/s, 10−2 mm/s, and 10−1 mm/s; and it is

re occurs at monotonically higher values of displacement with increasing loading rates. This

due to both the geometry of the specimen and the coupled local material processes. Thus, even th

ollows a different (and perhaps, more intuitive) trend compared to the previous case, this trend

predict without accounting for all the relevant physical mechanisms and the coupling between th

ots showing the crack propagation and plastic deformation are depicted in Figs. 18 and 19. For the

vy = 0.1 mm/s and initial temperature of Tint = 800 K, we illustrate the evolution of the phase-fiel

nd the equivalent plastic strain (Fig. 19) for five time steps with vertical displacements uy of (a) 0

mm, (c) 0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in

ved that a crack forms on top of the two plastic localization zones, which develop between the

t is also worth noting that one branch of the X-shaped crack develops faster than the other due

errors and/or slight mesh asymmetry. Figs. 20 and 21 show the evolution of the temperature fiel

wer dissipation density (expressed in Eq. (78)) at the same time steps, with identical initial and
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nfluence of loading rates on the response of the DENT specimen, investigated using three different prescribed velo

erature is assumed Tint = 294 K.

(vy = 0.1 mm/s and Tint = 800 K).

ped specimen

third example, we examine an I-shaped specimen subjected to tensile loading. The geometry of th

undary conditions are depicted in Fig. 22, where the dimensions are given as L = 14 mm, b = 6

rc = 1 mm. This configuration is a scaled version of an example presented in [43]. Scaling the

ple allows the use of the same length scale as in the previous example at a reasonable computati

the previous two examples, the material parameters for X30Cr13 stainless steel are listed in Table

stated below. The length scale ℓ0 is selected to be 0.03 mm, and the value of gf is set to 0.5 in this

the initial and boundary conditions, the sample is assumed to be undamaged with a uniformly d

perature denoted by Tint in the numerical studies, while vertical velocities vy are applied to th

ges (Fig. 22). Convective heat-transfer boundary conditions are imposed as expressed in Eq.

W/(mm2K).

illustrates the effect of temperature on the mechanical behavior of the I-shaped specimen by va

perature Tint. To this end, we conduct four analyses with the following values of Tint: 294 K, 400

. The far-field temperature remains T∞ = 294K (room temperature), and the loading rate is control

velocity vy = 10−3 mm/s. Similar to the previous examples, it is observed that higher initial tem

t reduce the peak force F in the force-displacement curves but increase ductility by delaying the
30



Journal Pre-proof

Figure 18: S 61 mm, (c)

0.990 mm, ( h an initial

temperature

Figure 19: S f (a) 0.944

mm, (b) 0.9 results are

obtained wi
Jo
ur

na
l P

re
-p

ro
of

(a) (b) (c) (d) (e)

Phase field

napshots showing the phase-field evolution at five time steps with vertical displacements uy of (a) 0.944 mm, (b) 0.9

d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16). The results are obtained wit

of Tint = 800 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.

(a) (b) (c) (d) (e)

Equivalent plastic strain

napshots showing the evolution of the equivalent plastic strain at five time steps with vertical displacements uy o

61 mm, (c) 0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16). The

th an initial temperature of Tint = 800 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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(a) (b) (c) (d) (e)
Temperature

napshots showing the temperature evolution at five time steps with vertical displacements uy of (a) 0.944 mm, (b)

m, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16). The results are obtain

erature of Tint = 800 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.

(a) (b) (c) (d) (e)

Internal power dissipation density

napshots showing the evolution of the internal power dissipation density at five time steps with vertical displacem

m, (b) 0.961 mm, (c) 0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig

btained with an initial temperature of Tint = 800 K and a loading rate imposed by the prescribed velocity of vy =
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Figure 22: Geometry of the I-shaped specimen, including boundary conditions for displacement and velocity fields.

-bearing capacity.

pendence of the specimen’s failure on imposed loading rates is studied in Fig. 24. We observe th

tes result in an increase in the peak load in force-displacement curves due to strain-rate hardenin

, the displacement at failure decreases with increasing loading rates in this example. This is the o

observed in the previous example. However, it can be considered the most intuitive trend compar

us examples, given the simplicity of the specimen geometry and loading conditions in the present

ots showing the crack propagation and plastic deformation prior to failure are depicted in Figs. 2

posed velocity of vy = 0.1 mm/s and initial temperature Tint = 294 K, we plot the evolution of t

ble (Fig. 25) and the equivalent plastic strain (Fig. 26) for six time steps with vertical displaceme

mm, (b) 0.400 mm, (c) 0.415 mm, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicat

ing letters in Fig. 24). It is observed that crack nucleation occurs at the center of the specim

ormation is most extensive. After crack initiation, it propagates along the plastic localization zones

w the evolution of temperature fields and the internal power dissipation density (expressed in Eq

entioned time steps, with identical initial and boundary conditions (Tint = 294 K and vy = 0.1 m

a Fracture Challenge

ourth example, we assess the predictive capabilities of the proposed PF fracture framework by comp

results to experimental observation and data from the (first) Sandia Fracture Challenge [1]. The

ple and its loading setup are reproduced in Fig. 29. Specifically, the specimen has a blunt notch

les (B,C, and D), and two pins where loads F are applied. To simplify the modeling of the pins, w

nding between the specimen and the pins, eliminating the need to consider contact mechanics.

at the pins share the same material properties as the specimen. The crack opening displacement (C
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ffect of four different initial temperatures on the mechanical behavior of the I-shaped specimen, illustrated by the cor

ement curves. The loading rate is controlled by the prescribed velocity of vy = 10−3 mm/s.

entally measured between two points located on opposite faces of the notch, as shown in Fig. 29.

ing the initial and boundary conditions, the sample is assumed to be undamaged with a uniformly d

perature of Tint = 294 K. The vertical velocity is prescribed as vy = 0.0127 mm/s. Convective hea

conditions are imposed, as expressed in Eq. (79) with hq = 10−4 W/(mm2K).

red to the previous examples, the major difference in this section is the adoption of the extended

) plasticity model with nonlinear hardening behavior, introduced in Eq. (62), for the 15-5 PH allo

meters are reported in Table 3, unless otherwise specified below. The length scale is chosen as ℓ0 =

lue of gf is set to 0.2. It is noteworthy that there are two additional material parameters (com

rd JC model): the saturation parameter δ and the ultimate stress Au. Figs. 30 and 31 demon

of the force-COD curves to variations in δ and Au, respectively. These studies highlight the effect

material parameters of the XJC model on the load-bearing capacity. In general, these two parame

which the material response transitions gradually from the linear to the nonlinear regime. It is also

odel sensitivity to these two parameters is relatively small within the range of values considered

der of this example, we use the values of δ = 6 and Au = 1250 MPa.

nally, we study the effect of the novel plastic degradation function, presented in Eq. (47), on failure

d, we perform a sensitivity analysis with respect to the parameter gf . Fig. 32 illustrates the in

fracture process in terms of force-COD curves. It is observed that gf significantly affects the pe

y, lower values of gf result in a more pronounced degradation of the yield stress, which leads to
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ffect of loading rates on the response of the I-shaped specimen, investigated using three different prescribed velo

erature is assumed Tint = 294 K.

(a) (b) (c) (d) (e) (f)
Phase field

napshots showing the phase-field evolution at six time steps with vertical displacements uy of (a) 0.359 mm, (b) 0.4

d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the corresponding letters in Fig. 24. The results a

ial temperature of Tint = 294 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
35



Journal Pre-proof

Figure 26: S f (a) 0.359

mm, (b) 0.4 ig. 24. The

results are o 0.1 mm/s.

Figure 27: S 0.400 mm,

(c) 0.415 mm re obtained

with an init
Jo
ur

na
l P

re
-p

ro
of

(a) (b) (c) (d) (e) (f)

Equivalent plastic strain

napshots showing the evolution of the equivalent plastic strain at six time steps with vertical displacements uy o

00 mm, (c) 0.415 mm, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the corresponding letters in F

btained with an initial temperature of Tint = 294 K and a loading rate imposed by the prescribed velocity of vy =

(a) (b) (c) (d) (e) (f)
Temperature

napshots showing the temperature evolution at six time steps with vertical displacements uy of (a) 0.359 mm, (b)

, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the corresponding letters in Fig. 24. The results a

ial temperature of Tint = 294 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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(a) (b) (c) (d) (e) (f)
Internal power dissipation density

napshots showing the evolution of the internal power dissipation density at six time steps with vertical displacem

m, (b) 0.400 mm, (c) 0.415 mm, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the correspondin

results are obtained with an initial temperature of Tint = 294 K and a loading rate imposed by the prescribed ve

.
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eometry of the specimen in the Sandia Fracture Challenge from [1]: (left) dimensions (in millimeters) and (right) lo

crack opening displacements (COD).
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ensitivity of the force-COD curves in the Sandia Fracture Challenge experiment [1] to variations in the values of the

of the XJC model.
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ensitivity of the force-COD curves in the Sandia Fracture Challenge experiment [1] to variations in the values of t

the XJC model.
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ensitivity of the force-COD curves to variations in the values of gf . Experimental data are reproduced from the Sand

[1] (including lower and upper bounds as the boundaries of the shaded area). Good agreement between our cur

JC model) and the experimental data is demonstrated.

in the load-bearing capacity.

also presents the force-COD curves for experimental data [1] (including lower and upper boun

of the shaded area) and numerical results from the present work. These experimental data illust

n of the three holes affects the critical crack paths, causing drops in load-bearing capacity (each a

ck connecting two holes). As a result, crack-arresting effects are observed due to the specific arr

s. Using our proposed framework, we capture the peak load and the gradual reduction in streng

This simulation demonstrates very good agreement between our current model and the experime

f the force-COD curves.

ots illustrating the critical crack path and plastic deformation are shown in Figs. 33 and 34 res

res focus on a specific region around the notch, including the three holes. We present the evolut

variable (Fig. 33) and the equivalent plastic strain (Fig. 34) within this region of interest at four t

values of (a) 1.42 mm, (b) 2.11 mm, (c) 4.11 mm, and (d) 6.40 mm (as indicated by the same

The corresponding loads for these time steps are 8.198 kN, 6.896 kN, 5.357 kN and 4.293 kN res

ved that the critical crack path develops on top of plastic localization zones. Specifically, it begins

uentially connects holes D and C, extending towards the specimen’s edge E, denoted by (A-D-C

he aforementioned crack path is supported by experimental evidence in [1], as it represents one o

rack paths, the other being (A-C-E).
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Phase field
(a) (b) (c) (d)

napshots illustrating the phase-field evolution at four time steps with vertical displacements uy of (a) 1.42 mm, (b

, and (d) 6.40 mm (as indicated by the same letters in Fig. 32).

Equivalent plastic strain
(a) (b) (c) (d)

napshots illustrating the evolution of the equivalent plastic strain at four time steps with vertical displacements uy

1 mm, (c) 4.11 mm, and (d) 6.40 mm (as indicated by the same letters in Fig. 32).
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usions

eloped a versatile phase-field framework for modeling ductile fracture within finite-strain elasto

riational formulation of constitutive relations for generalized standard materials (GSMs). The v

of the proposed framework was characterized by a minimum principle for a functional that exp

r generation density, as the sum of power densities for reversible and irreversible processes. By m

onal with a constraint on a (non-positive) von Mises yield function and applying the second law

ics, we determined the evolution equation for the equivalent plastic strain and the standard asso

This constrained optimization problem, arising from the minimum principle, was analytically so

s of temperature-dependent visco-plasticity models. In this particular class, the flow stress is multip

d into purely strain-hardening and thermal softening factors, along with a strain-rate hardening t

vel features of the phase-field fracture framework presented herein can be summarized as foll

ic plastic degradation function to account for the gradual contribution of the stored plastic work to

ell as the non-vanishing values of the damage-dependent yield stress,

d-form expressions of the Helmholtz free energy and dissipation pseudo-potential for a wide class

icity models (e.g., Johnson-Cook (JC) and a modified Zerilli-Armstrong (ZA) models),

xtended Johnson-Cook (XJC) plasticity model with a nonlinear hardening law,

rmodynamically consistent form of the heating term due to plastic work, involving the plastic de

tion and the Taylor-Quinney (TQ) coefficient, for which we present a closed-form expression tha

e plasticity model used.

odeling capabilities of our phase-field (PF) framework were tested on four ductile fracture problem

ree benchmark examples utilizing the Johnson-Cook (JC) plasticity model for X30Cr13 stainless

mental test from the Sandia Fracture Challenge, which uses the novel XJC plasticity model for

performance of the proposed PF framework was assessed by examining force-displacement curve

e evolution of various fields, including phase field, equivalent plastic strain, and temperature, wit

plot snapshots. These studies focused on the interplay between thermomechanics and damage

all four examples, we arrive at the following conclusions.

tic localization is a precursor to ductile fracture. In other words, damage accumulates most rapidl

s where extensive plastic deformation takes place, such that cracks develop along a path that is

these shear bands. This is observed in all of our computational results, but is especially wor

e Sandia Fracture Challenge problem, where our framework (with the XJC plasticity model) su

duces the experimentally observed response and crack paths.

proposed plastic degradation function significantly affects ductility, with lower values of gf leadi

ad-carrying capacity at an earlier stage of deformation. Tuning of this parameter may be needed

rimental data. In addition, plastic work heating is affected by the plastic degradation function. N
41
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effects of damage on heat generation terms can lead to unrealistically high temperatures, especia

ity of cracks.

er initial temperatures reduce peak forces and delay the complete loss of load-bearing capacity. C

er loading rates increase peak forces but do not necessarily precipitate complete failure at an ear

formation. However, it is difficult to trace back individual aspects of the structural response to a

ical process or mechanism. This is because the response of a structure stems from the complex

een various nonlinear, coupled processes at the level of each material point, in addition to geometr

ies and local instabilities (such as shear bands) which can significantly affect global deformation a

es. This underscores the importance of accounting for the interplay between thermomechanics and

e fullest possible extent, in computational frameworks for ductile fracture problems.

mulations using the JC plasticity model, we observe that the TQ coefficient is not highly sensitive t

To account for a stronger dependence of the TQ coefficient on the loading rate (in materials or c

onsidered herein), different plasticity models can be adopted by changing the stored energy dens

ic work and the dissipation pseudo-potential. This can be achieved in a straightforward manner f

of visco-plasticity models, owing to the modularity and versatility of the framework presented in t

re work, we will focus our attention on developing specialized computational methods and/or

chniques and we will explore their use in accelerating the solution of the system of coupled PDEs co

acture framework presented here. We will also extend the framework to accommodate non-eq

amics, by introducing an additional state variable, referred to as the “equilibrium temperature” in

phenomena driven by different thermodynamic processes to be represented more accurately (see also

e will calibrate this PF model, which captures fracture in multiphysics settings (including tem

visco-plastic effects), using experimental data with temperature measurements. This calibration wi

ive capabilities in real-world applications, building upon foundational continuum damage approac
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A. Details on kinematics in finite-strain elastoplasticity theory

appendix, we briefly present additional information on deformation tensors and stress measures

toplasticity theory where multiplicative decomposition of the total deformation gradient and J2

ed.

A.1. Deformation tensors

deformation tensors are particularly essential for formulating the necessary constitutive laws at

te, and spatial configurations (cf. Fig. 1). Starting from the reference configuration, the total an

hy-Green tensors are respectively given by

C = FTF

Cp = F pTF p



 .

ermediate configuration, the elastic right Cauchy-Green tensor reads

Ce = F eTF e ,

viscoplastic velocity gradient is defined as follows

Lp =
.
F pF p-1 .

tial configuration, the total and elastic left Cauchy-Green tensors are respectively defined by

b = FFT

be = F eF eT



 ,

ing the deformation rates, the elastic and plastic velocity gradient tensors are given as follows

le =
.
F eF e-1

lp = l− le = F eLpF e-1



 ,

e algebraic manipulation, we can show that additive decompositions of the rate of deformation

ld as follows

d = de + dp

ŵ = ŵe + ŵp



 ,

n derive the following kinematic relations

.
Ce = 2F eTdeF e

.
Cp = 2F pTsym (Lp)F p



 .

tions are particularly useful to transform rate quantities between configurations and objectively

[74].
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A.2. Constraints in J2 flow rule

work, the flow rule is expressed in terms of the spatial velocity gradient as follows

lp =
.
εp n

p ,

nd np denote the unknown equivalent viscoplastic strain and the direction of viscoplastic flow res

icity, the definition of the von Mises (equivalent) stress includes a factor of
√

3/2 to ensure that pl

the yield stress under uniaxial tension. In addition, the viscoplastic flow direction is normal to

stress space and satisfies the following constraints [54]

tr (np) = 0

np : np =
3

2




.

plete the theory, an evolution equation for ŵp is imposed so that the evolution of lp in Eq. (A.8

e consider the specific constitutive assumption [74–77].

ŵp = 0 ⇔ np = npT .

assume that the plastic flow is isochoric, and as a result

Jp = det (F p) = 1 ⇒ J = Je = det (F e) .

aforementioned assumptions, the flow rule is simplified as follows

dp =
.
εp n

p .

A.3. Stress measures

e strain theory, the stress power can be equivalently expressed in the following forms

P :
.
F =

1

2
S :

.
C = τ : d .

rence configuration, the second Piola-Kirchhoff stress is defined by

S = F -1P ,

epresents the first Piola-Kirchhoff stress tensor.

spatial configuration, the Kirchhoff stress tensor is given by

τ = PFT .

deviator of the Kirchhoff stress tensor and the corresponding von Mises stress are defined

s = dev (τ )

sv =

√
3

2
∥s∥




.

, at the intermediate configuration, the Mandel stress tensor is calculated by

M = F eTPF pT .
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(B.4)

Given te can be680

expressed

(B.5)

Substituti quality is

reformulat

D =

(
τ − 0 . (B.6)

Assum

(B.7)

the followi685

(B.8)
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(B.9)

where Y p
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in [78])

(B.10)
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B. Steps in the Coleman-Noll procedure

appendix, we outline the steps of the Coleman-Noll procedure to derive thermodynamic restrictio

e relations. Interested readers are referred to [44, 54] for similar thermodynamic arguments.

ausius-Duhem form of the second law of thermodynamics in continuum mechanics postulates tha

is non-negative, as expressed as follows:

ρ0
.
η +∇0 ·

(
Q

T

)
≥ 0 .

mmon to recast the latter inequality in the following form

D = Dint + Dcon ≥ 0 ,

dissipation arising from heat conduction Dcon and internal power dissipation density Dint are defi

Dcon = − 1

T
Q · ∇0T

Dint = ρ0T
.
η +∇0 ·Q




.

ning Eqs. (10), (11) and (B.1) the second law of thermodynamics of our system reads

D = τ : d+Ξ · ∇0

.
d+ fi

.
d− ρ0

.
Tη − ρ0

.
ψ + Dcon ≥ 0 .

the form of the free energy and its dependence on the state variables, the Helmholtz free energy ra

as
.
ψ =

∂ψ

∂Ce :
.
Ce +

∂ψ

∂d

.
d+

∂ψ

∂∇0d
· ∇0

.
d+

∂ψ

∂T

.
T +

∂ψ

∂εp

.
εp .

ng the above equation into Eq. (B.4) and using Eq. (12) to simplify
.
T , the Clausius-Duhem ine

ed into

2ρ0F
e ∂ψ

∂CeF
eT

)
: de +

(
Ξ− ρ0

∂ψ

∂∇0d

)
· ∇0

.
d+

(
fi − ρ0

∂ψ

∂d

) .
d+

(
τ : dp − ρ0

∂ψ

∂εp

.
εp

)
+ Dcon ≥

ing that the constitutive equation for the heat flux Q is chosen to satisfy

Dcon = − 1

T
Q · ∇0T ≥ 0,

ng inequality holds for the internal power dissipation density

Dint = D− Dcon =

(
τ : dp − ρ0

∂ψ

∂εp

.
εp

)
≥ 0 .

ality can be expressed as follows

Dint = Dp − Y p
s

.
εp ≥ 0 ,

denotes the generalized thermodynamic force conjugate to
.
εp and the plastic dissipation is given b

Dp = −P p :
.
F p = M : Lp = τ : dp .

ified form of the internal power dissipation density in Eq. (19) is derived by substituting Eq. (7) into

Eq. (B.10).
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hlüter, A. Willenbücher, C. Kuhn, R. Müller, Phase field approximation of dynamic brittle fractu

ional Mechanics 54 (2014) 1141–1161.

urdin, G. A. Francfort, J.-J. Marigo, The variational approach to fracture, Journal of elasticity

.

Verhoosel, R. de Borst, A phase-field model for cohesive fracture, International Journal for

ds in Engineering 96 (2013) 43–62.

nollet, S. May, R. De Borst, C. V. Verhoosel, Phase-field models for brittle and cohesive fracture, M

14) 2587–2601.

mer, M. Hofacker, C. Miehe, Phase field modeling of brittle and ductile fracture, Pamm 13 (2013)

ehe, F. Aldakheel, A. Raina, Phase field modeling of ductile fracture at finite strains: A variational

ded plasticity-damage theory, International Journal of Plasticity 84 (2016) 1–32.

Borden, T. J. R. Hughes, C. M. Landis, A. Anvari, I. J. Lee, A phase-field formulation for fracture

ials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, C

ods in Applied Mechanics and Engineering 312 (2016) 130–166. doi:10.1016/j.cma.2016.09.005

bati, T. Gerasimov, L. De Lorenzis, Phase-field modeling of ductile fracture, Computational Mec

) 1017–1040.

Auliffe, H. Waisman, A unified model for metal failure capturing shear banding and fracture, Inte

al of Plasticity 65 (2015) 131–151.
48



Journal Pre-proof

[45] H. Zh ick-walled785

cylind

[46] H. Ba model for

fractu

[47] C. Ya d coupled

therm of Solids790

and S

[48] M. D odeling of

porou anics and

Engin

[49] L. Sv ion in the795

phase 54.

[50] E. H.

[51] J. C. 06.

[52] T. Be res, John

wiley800

[53] P. Wr

[54] B. Ta Attaining

regula echanics

and E

[55] M. J. in ductile805

mater omputer

Meth

[56] R. Za nstitutive

equat 43 (2006)

1594–810

[57] C. Mi problems.

Part I omputer

Meth .

[58] H. Am unilateral

conta815
Jo
ur

na
l P

re
-p

ro
of

ang, X.-Y. Pei, H. Peng, J.-Y. Wu, Phase-field modeling of spontaneous shear bands in collapsing th

ers, Engineering Fracture Mechanics 249 (2021) 107706.

dnava, M. A. Msekh, E. Etemadi, T. Rabczuk, An h-adaptive thermo-mechanical phase field

re, Finite Elements in Analysis and Design 138 (2018) 31–47.

n, X. Wang, D. Huang, G. Wang, A new 3D continuous-discontinuous heat conduction model an

omechanical model for simulating the thermal cracking of brittle materials, International Journal

tructures 229 (2021) 111123.

ittmann, F. Aldakheel, J. Schulte, F. Schmidt, M. Krüger, P. Wriggers, C. Hesch, Phase-field m
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 phase-field fracture framework for rate- and temperature-dependent materials. 

 wide class of plasticity models for generalized standard materials is considered. 

ovel closed-form expressions for the plastic degradation function and dissipation. 

enchmark problems and data used to assess performance and predictive capability. 
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