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Abstract

Accurately modeling fracture of ductile materials poses open challenges in the field of computational mechanics due to
the multiphysics nature of their failure processes. Integrating the interplay between thermodynamics and damage into
ductile fracture models is vital for predicting critical failure modes. In this paper, we develop a versatile phase-field (PF)
framework for modeling ductile fracture, taking into account finite-strain elasto-plasticity. The framework stems from a
variational formulation of constitutive relations for generalized standard materials (GSMs), whose response is described
by a Helmholtz free energy and a dissipation pseudo-potential. Its variational structure is based on a minimum principle
for a functional that expresses the sum of power densities for reversible and irreversible processes. By minimizing
this functional with a constraint on a von Mises yield function, we derive the evolution equation for the equivalent
plastic strain and an associative flow rule. This constrained optimization problem is analytically solved for a wide
class of thermo-viscoplasticity models. The key innovations of the current work include (i) a cubic plastic degradation
function that accounts for a non-vanishing damage-dependent yield stress, (ii) closed-form expressions of the Helmholtz
free energy and dissipation pseudo-potential for three thermo-viscoplasticity models, (iii) an extended Johnson-Cook
plasticity model with a nonlinear hardening law, and (iv) a plastic work heat source that depends on the plastic
degradation function and a variable Taylor-Quinney (TQ) coefficient. The capabilities of the proposed framework are
tested with the aid of four ductile fracture problems; including the Sandia Fracture Challenge. In each of these problems,
we examine the evolution of relevant field variables such as the PF order parameter, the equivalent plastic strain, the
temperature, and the internal power dissipation density, in addition to the overall structural response quantified by
the force—displacement curve. These numerical studies demonstrate that the proposed framework effectively represents
ductile fracture, yielding computational results that exhibit good agreement with experimental data.

Keywords: Ductile fracture, Phase-field modeling, Generalized standard materials, Thermo-viscoplasticity

1. Introduction

Ductility is an important mechanical property of materials in applications where metallic structures are subjected to

dynamic/impact loading. Extensive plastic deformation may be a desirable mechanical response in many applications,
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such as energy absorbers and protective barriers, as it helps reduce internal forces transferred within a structure and
prevent abrupt failure. The need to reliably adopt ductile materials in design standards motivates efforts aimed at
developing predictive models capable of capturing their inelastic and failure behaviors. Despite considerable investi-
gation conducted over the past few decades, accurately modeling ductile fracture continues to pose open challenges in
the field of solid mechanics [1-3].

The plastic behavior of ductile materials typically depends on state variables such as temperature, as well as loading
conditions and history. These dependencies play a critical role in determining the behavior of such materials, especially
under extreme loading conditions. In addition, in such materials there is a two-way coupling between mechanical and
thermal effects. For example, temperature rise typically leads to thermal softening, i.e. a decrease in the plastic flow
stress. It is also widely accepted that a significant portion of the plastic work, ~ 90% as quantified by the Taylor-
Quinney (TQ) coefficient, is converted into heat during the inelastic deformation of metallic materials [4, 5]. Given
these facts, it is clear that accurately representing the dynamic plastic response of metals requires the development
of constitutive relations that account for thermomechanical coupling, and various material models [6-10] capture such
factors via mechanistic or (semi-)empirical expressions for the plastic flow stress oy,.

The concept of generalized standard materials (GSM) was first introduced by Halphen and Nguyen [11] to express
state and evolution equations (e.g., changes in hardening parameters over time) based on the variation of a single
functional. This variational framework facilitates the development of thermodynamically consistent constitutive models
using finite-strain elastoplasticity theory [12, 13]. In this framework, the response of GSMs in solids is described by
a Helmholtz free energy and a dissipation pseudo-potential [14], expressed as functions of state variables. The local
constitutive model is recast into an optimization problem using the aforementioned energies. This approach gives rise
to the evolution equations for the internal variables and provides a generic formulation of flow laws [15, 16]. This
theoretical treatment of constitutive modeling plays a critical role in the area of phenomenological material modeling
because it circumvents oft-encountered problems in finite-strain elastoplasticity related to the arbitrariness of yield
functions and flow rules [17]. More recently, it has been applied to coupled thermomechanical dissipative systems
[18-20].

The foundation of the field of fracture mechanics can be traced back to the seminal work of Griffith [21, 22] on
brittle materials. Interpreting crack propagation as a competition between the surface energy due to crack formation
and the linear elastic energy stored in brittle materials was revolutionary, leading to an energy-based description of
crack growth [23]. However, the non-physical assumption of linear elastic mechanical behavior (e.g., resulting in infinite
stresses at crack tips) was originally highlighted by Irwin [24], as experimental observations confirmed the occurrence
of plastic deformation at crack fronts (even in materials considered as brittle) [25, 26]. Hence, the surface energy in
Griffith’s theory was modified to account for the plastic work as dissipative energy in ductile materials.

Phase-field (PF) modeling of fracture offers a comprehensive framework for simulating crack initiation and propaga-
tion in materials. The PF approach to fracture was first introduced by Bourdin et al. [27] as a numerical approximation
of the variational model of crack evolution aligned with Griffith’s theory [28]. Within this framework, the solution
to a fracture problem is determined by minimizing the total potential energy of a solid body, which is the summa-

tion of the bulk elastic energy and crack surface energy. To obtain a regularized representation of cracks, PF models
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introduce an auxiliary field, denoted herein by d, and its gradient. Higher-order spatial derivatives can potentially
be included, which were treated by continuous-discontinuous Galerkin methods in [29]. These models are remarkably
similar to gradient-enhanced continuum damage models [30], which were also treated by continuous-discontinuous
Galerkin methods [31, 32].

Over recent decades, the PF fracture approach has gained significant attention in the computational mechanics
community due to its effectiveness in capturing complex fracture patterns (e.g., crack merging and branching), which
have proved challenging to finite element methods based on discontinuity-resolving formulations [33]. Miehe et al. [34]
introduced a pivotal PF framework for modeling brittle fracture based on gradient-damage theory and thermodynamic
principles. This framework was extended to address dynamic brittle fracture in [35, 36]. Additional developments of the
PF approach successfully represented cohesive fracture, as demonstrated in [37-39]. Furthermore, thermodynamically
consistent PF frameworks were presented in [40-42] to represent ductile fracture by coupling plasticity with gradient
damage, since the Griffith-type variational theory that describes the brittle fracture process does not apply directly
to the ductile case [43]. It is also generally recognized that the ability to accurately predict the behavior of ductile
materials at/near failure requires an adequate representation of the interplay between thermomechanics and damage,
since fracture is ultimately observed in ductile materials after (sometimes extensive) plastic deformation. It is therefore
important to note that, when coupled with viscoplastic constitutive laws, thermodynamically consistent PF models
have been shown to capture shear band formation—a precursor to ductile fracture, e.g. see [44, 45]. More recent
research efforts also explored the interaction between damage and heat transfer in both brittle [46, 47] and ductile
materials [48, 49].

In the present paper, we develop a phase-field framework for modeling ductile fracture within finite-strain elasto-
plasticity using the variational formulation of constitutive relations for generalized standard materials. Inspired by
the work of Ortiz and Stainier [12], we adopt a minimum principle for a functional that expresses the sum of power
densities. By applying the second law of thermodynamics and minimizing this functional with a constraint on the
von Mises yield function, we find the evolution equation for the equivalent plastic strain and the standard associative
Jo flow rule. This constrained optimization problem is analytically solved for a broad class of thermo-viscoplasticity
models with flow-stress expressions that can be decomposed multiplicatively. The latter approach is novel and provides
a versatile framework to couple PF fracture with such models (e.g., Johnson-Cook and a modified Zerilli-Armstrong
models). In addition, we propose (i) a cubic plastic degradation function to account for the non-vanishing values of
the damage-dependent yield stress, (ii) an extended Johnson-Cook (XJC) plasticity model with a nonlinear hardening
law, and (iii) a plastic work heat source that depends on the plastic degradation function and a variable TQ coefficient.
The modeling capabilities of the proposed phase-field (PF) framework are tested with the aid of benchmark problems
of ductile fracture using different thermo-viscoplasticity models. Its performance is assessed by comparing numerical
results against experimental data from the Sandia Fracture Challenge [1].

The remainder of this paper is organized as follows. In Section 2, we briefly present kinematic relationships and
conservation laws required for the derivation of the governing equations used to determine the unknown fields; namely,
the displacement, temperature, and phase field. The variational formulation of constitutive relations for generalized

standard materials is described in detail in Section 3. This includes the statement of the minimum principle in terms
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of the total dissipation density, the imposition of the second law of thermodynamics in the form of the Clausius-Duhem
inequality, and the derivation of the flow rule from the aforementioned constrained optimization problem. In Section 4,
we propose a versatile PF framework for ductile fracture, which can be used with a broad class of thermo-viscoplasticity
models, and we specify the different terms appearing in the Helmholtz free energy expression. Numerical examples
involving four benchmark problems of ductile fracture are presented in Section 5 to assess the modeling and predictive
capabilities of the proposed framework. Notably, we compare our numerical results to experimental data from the
Sandia Fracture Challenge, and present sensitivity analyses examining the influence of the plastic degradation function
on the load-bearing capacity of the structures under consideration. Finally, a summary and conclusions are presented

in Section 6.

1.1. Notation: Symbols and operations

In this work, tensors and vectors are denoted by italicized boldface letters, while fourth-order tensors are distin-
guished by a blackboard bold typeface style (e.g., the elasticity tensor C). The dot product of two vectors v and w is
given by v-w = v;w;, where the summation is implied over repeated indices (i.e., the Einstein summation convention).
The double contraction between two second-order tensors A and B is defined as A : B = A;;B;;, where the indices
i and j follow the Einstein summation convention. The dot operator is omitted for scalar products unless it is used
for the sake of clarity. The symbol & (i.e., over-dot) denotes the time derivative of the quantity x (scalar or tensor).
The single contraction of second-order tensors is denoted by (AB) = A By; (similar to matrix multiplication). The
second-order identity tensor is given by I;; = d;;, where d;; is the Kronecker delta. The second-order zero tensor is
denoted by 0.

Following the standard algebraic definitions, the inverse and transpose of a tensor A are denoted by A™' and
AT respectively. Using this notation, the symmetric and antisymmetric (also called skew-symmetric) parts of A can
be calculated by sym (A) = 1 (A + AT) and skew (A) = 1 (A — AT) respectively. The trace and determinant of a
tensor A are denoted by tr (A) and det (A) respectively. Using this notation, the deviator of the tensor A is determined
asdev(A)=A— LSA)I. Finally, the Euclidean norm of the tensor is given by ||A[ = VA : A.

2. Finite-strain elastoplasticity theory: Kinematics and conservation laws

2.1. Kinematics

In this section, we summarize basic kinematic relationships required for the development of the proposed phe-
nomenological model of ductile fracture. Consider a body with a placement 2 at time ¢ € R™ that can undergo plastic
deformation. The motion of this body is described by a function ¢ that maps a material point X of the reference

configuration € into a point & € § of the spatial (or current) configuration as follows
2= p(X.1). 1)
The difference between its current position and its reference position defines the unknown displacement vector

uX,)=x—-X =p(X,t)— X. (2)
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The deformation gradient, which relates tangent vectors of reference and current configurations, is defined as follows

0
F=Yop =52, (3)

where Vj denotes the gradient operator with respect to the reference configuration.

We adopt a local multiplicative decomposition of the total deformation gradient [50], expressed by
F =F°F?, 4)

into elastic and plastic components (F'¢ and F? respectively). This decomposition introduces three configurations as
shown in Fig. 1 (namely, reference, intermediate, and spatial configurations) [51]. For the sake of clarity, a calligraphic
font is used to denote quantities of the intermediate configuration. The deformation gradient maps a point X in the
reference configuration to X in the intermediate configuration by FP, and then to x in the spatial configuration 2 by
F¢. The intermediate configuration is local and incompatible in the sense that continuity of its neighborhoods is not

guaranteed unless the deformation of the body is homogeneous [52].

Figure 1: Multiplicative decomposition of the deformation gradient and definition of the intermediate configuration.

To formulate the necessary constitutive laws, we need to define kinematic and stress measures in these three

configurations. In particular, the spatial velocity gradient is expressed by
l=FF1. (5)

The (total) rate of deformation tensor d and the spin tensor w are defined as the symmetric and skew-symmetric parts

of the spatial velocity gradient tensor as follows

d* = sym (I%) ©)

w* = skew (1¢)

These definitions hold for the total quantities (superscript « is omitted), as well as for their elastic (o« = e) and plastic
(v = p) parts; see Appendix A.1 for details.

Assuming that w? = 0 and isochoric plastic response, the Jo flow rule is expressed in terms of the plastic rate of
deformation tensor as follows

dP =&, nP, (7)
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where &, is the equivalent viscoplastic strain and n” denotes the direction of viscoplastic flow, represented as a second-

order tensor. Further elaboration on the imposed constraints in J; flow theory is provided in Appendix A.2.

2.2. Conservation laws

In this section, we briefly present the differential equations that describe the conservation laws of the proposed

thermomechanical system. Interested readers are referred to [53] for more details on the derivation.

e Balance of linear momentum:

Vo P+ poB = poit, (8)

where P denotes the first Piola-Kirchhoff stress (see Appendix A.3 for details relating to different stress mea-
sures), po is the density in reference configuration, poB expresses the volume force, and V- denotes the divergence

operator with respect to the reference configuration.

e Balance of microforces: To derive the phase-field equation, we assume the existence of micro-forces. Specifically,
fe and f; € R denote the external and internal micro-forces respectively, while = is a micro-force traction vector
[42, 54].

Vo E+fo—fi=0. (9)

e First law of thermodynamics: We also express the balance law which postulates the conservation of energy in
thermomechanical processes. Let e denote the internal energy (per unit mass) and consider the mechanisms that
can change the aforementioned energy (elasto-plastic deformation and fracture). We assume that Voél and d are
the power conjugate quantities to micro-force traction vector and micro-forces respectively. Hence, the balance

law of conservation of energy reads [55]

where @Q is the heat-flux vector at the reference configuration.

3. Formulation of constitutive relations: Minimum principle and Clausius—Duhem inequality

In this section, we derive a visco-plastic flow rule using a variational formulation of thermomechanical constitutive
relations and the second law of thermodynamics for generalized standard materials (GSMs). After defining the state
variables and energy-related functions for GSMs, we express the minimum principle, similar to [12, 20]. Finally, we
employ the second law of thermodynanics (in the form of the Clausius-Duhem inequality) to arrive at the expression
of the internal power dissipation density which plays a critical role in the minimization problem. By analytically
applying the minimum principle, we determine the evolution equations of the internal variables expressed as a standard

associative plastic flow rule in this work.
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3.1. Variational formulation: A minimum principle in generalized standard materials

For the sake of compact notation, we group the state variables as follows: (i) 9 = {C*, d, Vod} characterizes the
mechanical state (C° denotes the elastic right Cauchy-Green tensor), (ii) 3 = {&,} are internal-state variables which
describe dissipative phenomena, and (iii) € = {e,n, T} are thermodynamic variables, including the specific entropy n
and the absolute temperature T'.

Adopting the concept of GSMs [11, 14], we postulate the existence of a Helmholtz free energy (per unit mass)
¥ =M, T,3) and a dissipation pseudo-potential (per unit mass) ¢ = gb(f)j?,j;fm, T,3). Note that the dissipation

pseudo-potential does not depend on the temperature rate T. The Helmholtz free energy is defined as follows
v=e—Tn, (11)

and the definition of specific entropy reads as follows

_oy
ar”

(12)

Furthermore, we assume that the state variables are known and fixed while M and € are calculated from the balance
laws in conjunction with the definitions in Eqgs. (11) and (12) and the second law of thermodynamics. To find the
evolution of the internal variables 3, the following minimum principle is postulated [12, 20]

inf D(&;6), (13)

nP.3

where the state variables are expressed by & = {9, €, 3} and the functional D is introduced as follows
D = poe — poTn+ pod - (14)

This functional is the summation of three components, each representing a power per unit volume for both reversible
and irreversible processes. By solving the optimization problem, we can determine the equivalent viscoplastic strain &,
and flow direction nP. Assuming that the thermomechanical system under consideration is governed by a single type
of temperature, the absolute temperature 7' (i.e., “equilibrium” and absolute temperatures are approximately equal
as defined in [18]), we can substitute Eq. (11) into Eq. (14) and arrive at the variational formulation expressed by the
functional as follows

D = potb + pod + poT. (15)

In the following sections, we will derive the evolution equations of the internal variables by minimizing the afore-

mentioned thermodynamic quantity.

3.2. Second law of thermodynamics: Coleman-Noll procedure and plastic dissipation

In this section, we formulate constitutive relations that adhere to the second law of thermodynamics, which asserts
that entropy production is always greater than zero. The Clausius-Duhem form of this law can be recast into the
following inequality

D= Dint + Deor Z 0’ (16)
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where the dissipation arising from heat conduction D" and internal power dissipation density D are defined by

1
D" =~ Q- Vol

(17)
D™ = poTh + Vo - Q
Following the Coleman-Noll procedure presented in Appendix B, we arrive at the relations
N et
=2pgF¢—-F°
o
== , 18
Po Vod (18)
o
fi= PO%
and the inequality related to the internal power dissipation density
Dt — P _ Yspép = (1:n” —YP) ép >0, (19)

where the term DP denotes the plastic dissipation, and the generalized “thermodynamic forces” associated with plastic

deformation, PP (power conjugate to F?) and Y? (power conjugate to é_p), are defined as follows

TS (20)
Ys =~ Poafgp

3.8. Derivation of the flow rule from the minimum principle

In this section, we assume a simple form of internal power dissipation density and show its compatibility with the
proposed variational formulation. To derive the viscoplastic flow rule, we apply the minimum principle introduced in
Eq. (13) while imposing a constraint on a yield function C/I;y <0.

First, we assume that the form of internal power dissipation density is given, in agreement with Eq. (19), by
D™ = YPE, >0 (21)

where the generalized dissipative (viscous) thermodynamic force Y? can be found by using the minimum principle.
Specifically, the constrained optimization problem reads as follows
inf ©, (22)
nP,é_p

subject to the constraint on the von Mises yield function in Js plasticity theory as follows
By = s, — YP —YP <0, (23)

where s, denotes the von Mises stress.
By minimizing the functional © in Eq. (15) with respect to é_p, the generalized dissipative force Y? is expressed in

terms of the dissipation pseudo-potential as follows [12]

y? = pp 22 (24)

08,
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By minimizing the functional ® in Eq. (15) with respect to n? and imposing the constraints outlined in Appendix

A.2, we determine the viscoplastic flow direction

3 s 3 s

p_, /2 2 _2° 25
" 2(lsl ~ 25, (25)
where s denotes the deviator of the Kirchhoff stress tensor 7.
The Karush-Kuhn-Tucker (KKT) conditions expressed as plastic loading/unloading conditions read

£>0 and ®,<0 and ®,5 =0. (26)

The viscoplastic flow rule (according to Eq. (7)) is derived as follows

3-_ S

dp = iﬁpg (27)

The last equation describes an associative plastic flow rule which is similar to the one presented in [10, 56]. Finally,
substituting the viscoplastic flow direction (Eq. (25)) into Eq. (19) and combining the result with Eq. (21), we arrive

at the inequality of internal power dissipation density

; 3
D" = [\/gsn -y

It is noteworthy that the form of internal power dissipation density is compatible with the KKT conditions.

g, =YPE, > 0. (28)

4. Ductile fracture model: Energy specifications and governing equations

4.1. Form of free energy and dissipation pseudo-potential

The total free energy is additively decomposed into elastic, fracture, plastic and thermal components as follows
(M, T, 3) = ¢°(C, d) + ¢! (d, Vod) +47(d, T, 5,) +¢*(T), (29)
and the dissipation pseudo-potential has only a viscoplastic component
¢ = G, 39N, T, 3) = ¢ (5,3 d. T, 5,). (30)

In the phase-field fracture method, the fracture component of the Helmholtz free energy is a function of phase field
and its gradient [57] as follows

G
=G (242 1vdl?
oot = gy (& + %) (31)

where G, is the critical energy release rate, and ¢, is a regularization length-scale.
We assume that all the remaining components depend on phase field d, except the thermal free energy, which is
given by

pot? = poC., [(T —To) —T'n 17:} ; (32)
0

where Tj is a reference temperature, and C, denotes the specific heat capacity.

Remark 4.1. Notice that viscoelastic effects are ignored in this work, and we assume that fracture does not cause any

heat generation.
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4.1.1. Hyperelastic model

In this model, the elastic strain energy is degraded due to damage following the law
potb® = g ()W T(C) + W (C), (33)

where W1 and W~ are the “tensile” and “compressive” contributions respectively. In the numerical simulations of
this work, the elastic degradation function is described by g¢(d) = (1 — d)? + g, where g¢ = 10~ is used as a residual
value to prevent numerical instabilities after crack formation (d = 1). Notice that the degradation function applies
only to the tensile part while the compressive part is not affected.

The elastic response is governed by a constitutive model in which strain energy is decomposed into volumetric and
deviatoric components. Specifically, we follow the strain energy decomposition presented in [51, 58]. To this end, we
introduce

G = Jemice, (34)

and the volumetric and deviatoric components are defined as follows (p. 307 in [51])

1 |1
U(T) = 55 |5 (J?—1) =InJ°
(35)
W(@) = Lu[tr (&) —3]
where x and p are the bulk and the shear modulus respectively.
With this energy decomposition at hand, the damaged elastic strain energy is rewritten as
pot® = g (AW (J,C%) + W~ (J°) (36)
where the tensile part is given by
U(J) + W(C°), Je>1
Wt = < 0 (37)
W(ce), 0<Je <1
whereas the compressive part by
0, Je>1
W- = (38)

UuJe), o0<Jé<1

4.1.2. A class of thermo-viscoplasticity models

Inspired by the work of Ranc and Chrysochoos [59], we present a framework for the representation of a broad class
of rheological (evolution) equations. The goal of this section is to consistently couple thermo-viscoplasticity models
(such as the Johnson-Cook model [6]) with the phase-field fracture approach in the context of the generalized standard
materials.

The undamaged stored energy density due to plastic work, denoted by WP, defines a plastic stress og, while the

undamaged dissipation pseudo-potential (per unit volume), denoted by RP, defines a viscous stress o, as follows

S owe
"0,

omr (- (39)
Oy = .

0g,

10
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In the proposed model, the plastic component of Helmholtz free energy is degraded as follows
pop? = g (d)W* (&, T), (40)
while the dissipation pseudo-potential is given by
pod? = 9P () RV (5132, T), (41)
where the same plastic degradation function g”(d) is adopted. Using Egs. (23) and (24), the evolution of the internal

variable &, (which is described by the KKT conditions given in Eq. (26) when &, # 0) reads

~ 9] 0
9&p 0&p
Substituting Egs. (40) and (41) into Eq. (42), the evolution equation of &, can be simplified as follows
ow?  ORP
+

0g) &%_p

Sy = gp(d) ( ) = gp(d) (Us + Jv) . (43)

In the next parts of this section, we construct the undamaged stored plastic free energy and dissipation pseudo-potential

such that an additive decomposition of stresses holds as follows
05(Eps T) + 00 (5p, 5, T) = 0y (Eps Epy T) (44)

where o, denotes a temperature-dependent viscoplastic flow stress for a broad class of material models. In this way,

the dependence of von Mises stress on the phase field and yield stress (according to Eq. (43)) reads as follows
sv = g"(d)oy(Ep, ép’ T), (45)
where the right-hand side of the above equation describes the damaged yield stress.

A novel plastic degradation function. When a material point is fully damaged (d = 1), the evolution equation for the
equivalent plastic strain &, given in Eq. (45), loses its physical meaning because the material can no longer accumulate
plastic deformation. This results in numerical instabilities, manifested as divergence in our algorithm and excessive
increases in the values of &,.

In the literature, one strategy for stabilizing the numerical scheme involves incorporating a re-scaling factor into the
gradient term of the plastic energy threshold in the phase-field equation, as suggested by [60]. An alternative method is
a modified degradation function proposed by [61], where its polynomial form is normalized by the accumulative plastic
strain.

In this work, we propose a novel plastic degradation function to account for the gradual contribution of the stored
plastic work to fracture, and the non-vanishing values of the damage-dependent yield stress. To this end, we construct

a cubic degradation function that satisfies the following conditions

0)=1
(1) =gt
%‘

od la=o0

p
%‘ _0

gP
gl’

; (46)




where sy controls the initial slope when the material is intact, and g¢ represents the residual value of the plastic
degradation function when the material is fully damaged. It is noteworthy that even though ¢?(1) # 0, the crack
driving force associated with its first derivative vanishes at d = 1. Hence, the role of sy is analogous to the plastic
energy threshold introduced by [35] in delaying the damage evolution after the accumulation of plastic energy. Its
0 value should be negative and close to zero (e.g., sp= —0.01 unless otherwise stated in the numerical results of this

manuscript). By imposing the above conditions, we arrive at the proposed plastic degradation function
gP(d) = (2 — 2g¢ +50)d® + (=3 + 3gr — 259)d”* +sod + 1. (47)
The impact of g¢ on our proposed formulation is explored in the section on numerical examples.

Generalized representation of flow stress. In this work, we study a class of thermo-viscoplasticity models in which the
flow stress depends on plastic strain, strain-rate, and temperature. We assume a multiplicative decomposition of the

25 flow stress as follows
Uy(gp’éva) = fp(gmmp)fv(épaT§§J3v)f6'(T§ ‘Bo), (48)

where P, B, and By denote material parameters corresponding to the functions f,, f,, and fy respectively. Notice

that f, depends on both é_p and T, while the other functions have only one argument.

If f, is independent of T (i.e. %J;E = 0), the multiplicative decomposition is unique (up to constant multipliers).

For example, the flow stress in the Johnson-Cook model [6] is a function of &, é_p, and T as follows
0y(EprEp, T) = (A + BED) (1+Clné_*) (169, (49)

oo where A, B, C,m, and q are material parameters and the normalized strain-rate is defined by g, = f—" and the homolo-
€0

P _ T-T
gous temperature is given by 0, = G

where & is a reference strain-rate and T3 and T,,, are transition and melting

temperatures respectively. Hence, the factors of the flow stress read
Io(Ep;Bp) = A+ BE)' where B, = {A, B,m}
foBp, T:B,) = 1+ Cln&, where B, = {C,&} ¢ - (50)
f@(T7 ‘139) =1- 92 where (436’ = {Tthnuq}

Inspired by the work of Simo and Hughes [51], we propose an extended Johnson-Cook (XJC) plasticity model with
a nonlinear hardening law. The proposed flow stress, which incorporates two additional material parameters (namely,

o5 the ultimate stress A" and the saturation parameter §), is given by the function
0y(5pr 5, T) = (A“ + Bl — (A" — A)exp (-5@)) (1 +Cln é*) (1-09) . (51)
The factors of flow stress are expressed as

Io(EpiPBp) = A" + BE)" — (A" — A) exp (—0&),) where P, = {A, A", B,m, 6}
fu(é_p,T;‘pv) =1+ Clné, where P, = {C, é‘o} . (52)

Jo(T;Bg) = 1 — 01 where Po = {Tt, Trn, q}
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However, these types of decomposition are not always unique (e.g., in the case of a function f, that explicitly
depends on T). For instance, the flow stress in a modified Zerilli-Armstrong model [62] is a function of &, &,, and T
as follows

0y (Epr 5, T) = (A + BET) exp (—03T +CyTIn é-*) , (53)

and fv(é_p, T;%B,) can be chosen as exp (—CgT + CyTIn 6_*) or exp (C4T In e_*) (and many other functions). To address

this issue, we select the function that satisfies the following condition
. g &, T .
fo(Ep, T5B,) = Uy(ep’iw = exp (C’4T1n 5_*) . (54)
Oy E_p, 50, T)

Hence, the factors of the flow stress read

Ip(Ep;Pp) = A+ BE)' where B, = {A, B,m}
Fol6y TiB,) = exp (C4Tln é*) where P, = {C4, 50} . (55)
fo(T;Bo) = exp (=C3T) where Py = {C3}

Remark 4.2. Fq. (54) can be seen as a normalization condition. This type of condition is also used in the Johnson-

Cook (JC) model to find the unique factors and calculate the unknown constant multipliers.

Furthermore, we assume that the function f, is additively decomposed into two parts, namely, stored and dissipative

components as follows
fp(gp;g‘pp) =3 fp(gp;mps) +fp(gp§q3pd)v (56)

where B, and P, , are material parameters that characterize the stored and dissipative components respectively. In

this work, we adopt the power law (as shown in Egs. (50) and (55))

Ip(Zp;PBp) = A+ BE)' where B, = {A, B,m}
To(EpiBp,) = As + B, where B, = {A;,Bs,ms} ¢ (57)
Tp(Ep;Ppy) = Aa + B4z, where B, , = {Aq, Ba, mq}

where A = A;+ Ag, B = Bs+ By, and m = mg = my. We introduce partial Taylor-Quinney (TQ) coefficients, x4 and

X B, associated with parameters A and B respectively, to control the fraction of the plastic work that will be converted

into heat (the latter is related to dissipative components) as shown below

Ad :XAA:>A5 = (1_XA)A
(58)
Bqg=xB = B;=(1-x)B

Given the generalized representation of flow stress as expressed in Eq. (48), the undamaged stored viscoplastic free

energy density and dissipation pseudo-potential can be expressed as follows

Wp(gpv T) = Fp(gp; mps)ff)(T; ‘Bo)

. ) . (59)
RP(2p,&p,T) = fp(gp;‘ppd)gp+fp(§p§mp)Fv(gva§mv) Jo(T5%B0)
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where

Fp(gp;mps):/opfp(@mps)dﬁ

F‘U(é_p,T; ‘13@) = Fv(épaT;spv) - (gp - 50) . (60)

Fv(ép’T; Y’Bv) = /— p f“(f’ T m”) dr

Johnson-Cook model. As a simple case of this framework, the undamaged stored energy density due to plastic work
and dissipation pseudo-potential (per unit volume) are derived from Eq. (59) based on the analytical expression of the

Johnson-Cook model [6] (cf. functions in [20]):

= = BS =m+1
Wp(5p7T) = (Ascfp + mep + > (1 — 02)

(61)
RP(E,,5,T) = |(Aa + Bagy) &, + (A+ BEy) €& (B.mE. — & +1)| (1 - 09)

Extended Johnson-Cook model. Applying the same framework, the energy and dissipation functions for our proposed

modification of the JC model with a nonlinear hardening law read:

WP, T) = (A?:e-p b B iy v Aesp (—5@)/5) (1 - o)

m+17?
RP(5,,5,,T) = [(A; + By — (A% — Ag)exp (—05,)) 5, (62)
+ (A" + BET — (A" — A)exp (=05,)) C&y (é-* In&, — 5 + 1)} (109
where A" = A} + AY.
Modified Zerilli-Armstrong model. To show the versatility of the proposed framework, the following functions are

derived from Eq. (59) for the modified Zerilli-Armstrong model [62]:

- - Bs _,
Wp(a‘p, T) = <A35p + p—y 151) +1> exp (—CgT)

. . Zo .\ CaT+1 . (63)
RP(8,,8p,T) = < (Aq + Bag)') & + (A + BE)) oT+1 (e_*) —(C4T +1)&, + C4T| pexp (—C3T)
4
4.2. Derivation of governing equations
4.2.1. Momentum equation
The balance of linear momentum in the reference configuration reads
Vo - (FS) + poB = poit, (64)

where the second Piola-Kirchhoff stress (at the reference configuration) is given by a pullback operation of Eq. (18);

ow+ ow~—
— 2¢° p-1 p-T p-1 p-T
S =2¢°(d)F <8C6 >F + 2F <6CE )F . (65)

Dirichlet boundary conditions for displacement and velocity fields are prescribed as reported in the numerical examples.
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4.2.2. Phase-field equation
Herein, we derive the phase-field equation from the balance of microforces given in Eq. (9). First, we substitute

Eq. (18) into the microforce balance equation leading to

0 0
poVo - ((Wfd) + fe = po 815 0. (66)

Assuming f. = 0 and adopting the free energy decomposition as shown in Eq. (29), the aforementioned equation is

simplified as follows

onpt o ot oyr
. = —_—t . 67
Vo <8Vod> od " od " ad (67)
Using the specific forms of free energies as introduced in Section 4, we derive the phase-field equation
G, 99° .+ OgP .,
—GAlyAod + fd—i— %W + 2d —W? =0, (68)

where A denotes the Laplace operator in the reference configuration. Crack irreversibility is enforced by introducing
two history variables: H* = HI?X(W+) and HP = mtax(Wp ). Finally, Neumann boundary conditions are imposed and

expressed as Vpd - n = 0, where n denotes the outward normal vector at the boundary.

4.2.83. Heat equation

Combining Egs. (17) and (21), the heat equation is expressed as follows
poTh =~V Q+YPE,, (69)
where Fourier’s law is adopted as a model of heat conduction
Q=—kCVT = qg=—kVT. (70)

To reach steady states, accurate modeling of heat-transfer physics in thermomechanical problems requires the adoption
of degradation functions for thermal conductivity k., as shown in [49, 63]. However, the thermal conductivity k. is
assumed constant and independent of d in this study, as our focus lies on analyzing transient rather than steady-state
conditions. This assumption may lead to slight inaccuracies in the temperature field around the cracks.

Given the dependence of free energy ¢ (Eq. (29)) on the absolute temperature, the total entropy is additively

decomposed into elastic, plastic, and thermal components as follows

0

= Tar T ar — or

where the entropy rates can be calculated in a closed form as follows

: Dg? AW - o2W PP\
D _ _ Y9
pol [T<ad aT >d+T<g aT? >T+T< aTae,,> ] ' 72)

poTn’ = poC,T

Assuming that the contributions of (.i, and T to the plastic components of entropy are small when the material
undergoes extreme plastic deformation, the left-hand side (LHS) of Eq. (69) is approximated by

o2WP\ -
0Tz, )

poTi ~ poCoT = T <g,, (73)
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Using Egs. (24), (30), (41) and (44), the generalized dissipative force reads

lolod ORP
Yy = Po;ﬁ = gP(d)—,_
0&p Ep

=¢"(d) (oy — 05) = g*(d)x0y (74)

where the Taylor-Quinney (TQ) coefficient [4, 5] is given in closed form as follows

Os _,owe
=1-—=1- . 75
X oy Ty 0&p (75)
Combining the above equations, we arrive at the final form of the governing equation for the temperature
p()CUT =V - (HCC-IVOT) + Qp s (76)
where the heat source resulting from plastic deformation is expressed by
80' -
Qp = gp |:X0'y + Tajf:| €p . (77)

In this heat source, significant plastic work heating is attributed to the first term associated with the internal power
dissipation density, as described in Eq. (21). In our proposed framework, the closed-form expression for this dissipation
density is given by

D™ = Qp(d)XUyép i (78)

Heat flux boundary conditions. To model the convective heat-transfer processes across the solid-air interface, the

following boundary condition for the temperature is applied:

gn=q -n=hy[T(z) - Tw] . (79)
In this equation, ¢, represents the heat flux in the normal direction, given by the outward unit vector m at the
boundary. The material parameter h, is called heat-transfer coefficient, and the thermal-insulation condition g, = 0
can be employed as a special case when this parameter is set to zero (hy = 0). The term T'(x) refers to the temperature
at the boundary, with a highlighting the dependence on the location of points on the interface where the convective

condition is applied. Finally, the parameter T4, the so-called far-field temperature, is assumed to be a constant value,

typically chosen as the room temperature.

4.2.4. Summary
In this section, we briefly summarize the elastic-viscoplastic constitutive framework and governing equations, derived

in Sections 4.1 and 4.2 respectively.

Table 1: Elastic-viscoplastic constitutive framework

Kroner—Lee decomposition: F = F¢F?P

Isochoric assumption: JP=det(FP)=1 and J=J°=det(F°)
: e a [(OWH -T a (OW” -T T
Hyperelastic model: S =2¢°(d)F? 50 FP~* 4 2F? 3¢ F? and T=FSF
. 3
Flow rule: d’ =g,n? where n? = §ﬁ and s =dev (1)
s
. . - = - - = owe ORP
Viscoplastic flow stress: 0y(Ep,EpyT) = 05(8p, T) + 04(8p,Ep, T) where o, = 9= and 0, = —
‘ €p 0z,
~ 3 . . ~ .
KKT conditions: o, = \/;||s| —¢P(d)oy(Ep,&p, T) <0 and &,>0 and &, =0
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Table 2: Governing equations

Momentum balance: V- (FS) + poB = pott

Heat equation: pvaT =V - (ncC'lng) +g° [xoy + T%‘;f] é_p
. G, 0g° dgP
Phase-field equation: —G loQAod + Ed + a—gd’}-ﬁ + (‘%HP =0

5. Numerical results

In this section, we present four numerical examples to demonstrate the modeling capabilities of the proposed phase-
field (PF) fracture framework. We illustrate these capabilities by means of force-displacement curves, field snapshots,
and evolution of the variable Taylor-Quinney (TQ) coefficient. All four examples are based on the ductile fracture
model described in Section 4 and include thermomechanical coupling with plasticity models that are described by flow
stresses for generalized standard materials (see Section 4.1.2).

In Section 5.1, the first example exhibits the ductile failure response of a double-corner-notched square specimen
subjected to tensile loading. To study the influence of the location and shape of notches on the failure type, the
second example reports the thermomechanical response of a double-edge-notched tension specimen in Section 5.2. In
Section 5.3, the third example studies the crack initiation and propagation in an I-shaped specimen, where damage
nucleation takes place at the center of the geometry. Finally, in Section 5.4, the fourth example investigates the
predictive capabilities of the proposed PF fracture framework by comparing our numerical results to observations and
data from the Sandia Fracture Challenge experiment [1].

The first three examples utilize the Johnson-Cook (JC) plasticity model for X30Cr13 stainless steel, while the
fourth uses our proposed extended Johnson-Cook (XJC) plasticity model (see Eq. (62)) with a nonlinear hardening law
[51] for 15% Chromium - 5% Nickel precipitation hardened (15-5 PH) stainless steel. The evolution of the equivalent
plastic strain takes place at the integration points according to the proposed elastic-viscoplastic constitutive framework,
reported in Table 1.

Regarding the unknown field variables, the system of three coupled equations, summarized in Table 2, is dis-
cretized using the finite element method and implemented in the Multiphysics Object Oriented Simulation Environ-
ment (MOOSE) framework [64]. Specifically, we developed a MOOSE-based application to determine the unknown
fields: displacement, temperature, and phase-field.

Regarding the implementation details, we employ the Newmark integration scheme for temporal discretization
with parameters § = 0.3025 and v = 0.6. The system of governing equations, summarized in Table 2, is solved
using a monolithic scheme that is explicit in the phase-field driving forces H* and HP; i.e. at t = t,,1, we use the
definitions H* = t:%}?.i(tn W+ and H? = t:%l,?‘.},{t" WP, Lagging the phase-field driving forces by one time increment
in this manner improves the performance of the monolithic solver significantly by sidestepping numerical difficulties
(singular behavior) associated with non-convexity of the system of coupled equations governing the problem. Several
alternative approaches for alleviating this type of numerical difficulties have been described in the literature, including

staggered /partitioned and quasi-Newton solution schemes; see [65, 66] and references therein for details.
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Figure 2: Geometry of the double-corner-notched square specimen, including boundary conditions for displacement and velocity fields.

Finally, an adaptive mesh refinement (AMR) technique, implemented within the MOOSE framework, is used to
refine the computational domains in all four examples. The phase-field value serves as the indicator for h-refinement.
The initial meshes are created using Cubit [67] with an average element size approximately four times the length scale
ly. The h-refinement level is set to 3, aiming to achieve a refined mesh size of hyey = €p/2. It is noteworthy that
AMR can lead to significant CPU savings by refining only the cracked regions, and as a result, it reduces the overall
computational cost. Recent studies have demonstrated reductions in computational time by an order of magnitude

when using AMR in phase-field fracture simulations [68, 69].

5.1. Double-notched square specimen

In the first example, we examine a double-corner-notched square specimen under combined loading, which leads to
shear localization and the formation of a curved crack. The geometry of the sample and its boundary conditions are
depicted in Fig. 2, with dimensions a = 10 mm, r; = 2 mm, ro = 2.5 mm, and r, = 1 mm. In this study, the material
parameters for X30Cr13 stainless steel are reported in Table 3 (cf. [70, 71]) unless otherwise specified below. The
length scale £y is chosen as 0.03 mm. Initially, the sample is assumed undamaged (d = 0) with a uniformly distributed
temperature Ty, With regards to boundary conditions, vertical velocity vy is applied simultaneously on the top and
left edges, while the bottom and right edges are clamped. Convective heat-transfer boundary conditions are imposed
as expressed in Eq. (79) with h, = 10~* W/(mm?K).

To study the performance of the novel plastic degradation function presented in Eq. (47), we first conduct a
sensitivity analysis with respect to the parameter g¢. Fig. 3 illustrates the influence of g¢ on the fracture process in
terms of force-displacement curves for vy, = 103 mm/s and Tj,e = 294 K. It is observed that lower values of g; allow
for a greater decrease in the flow stress of the material, which promotes localized plasticity, and hence more pronounced
thermal softening and damage accumulation. Together, these effects lead to a total loss of load-carrying capacity of
the structure at an earlier stage of deformation. In addition, we perform a sensitivity analysis on sp, the parameter

that controls the initial slope (at d = 0) of the proposed plastic degradation function. Fig. 4 shows the influence of sg
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Table 3: Material properties for X30Cr13 steel and 15-5 PH alloy.

Values
Material properties Notation Units
X30Cr13 steel | 15-5 PH alloy
Young’s modulus E 88.7 x 103 195.0 x 103 MPa
Poisson’s ratio v 0.34 0.3 -
Yield stress A 443 770 MPa
Ultimate stress Av - 1250 MPa
Strain hardening modulus B 300 450 MPa
Saturation parameter ) - 6 -
Critical energy release rate Ge 20.90 320 kJ /mm?
Heat transfer coefficient hq 1074 1074 W /mm?K
Specific heat capacity Cy 0.46 x 10° 0.42 x 10° | mm?/(s?K)
Thermal conductivity Ko 0.038 0.0178 W/mmK
Mass density 00 7.731 7.8 g/cm?
Thermal softening exponent q 1.5 1.5 -
Strain rate sensitivity coefficient C 6.0 x 1073 1.0 x 1074 -
Reference strain rate €0 104 1073 s7!
Strain hardening exponent m 0.7 0.7 -
Transition temperature T 273 273 K
Melting temperature Tn 1793 1713 K
Partial TQ coefficients XA = XB 0.95 0.99 -

on the force-displacement curves for v, = 103 mm/s and Ty, = 294 K. It is observed that higher absolute values of
sp result in an earlier onset of loss of load capacity at lower displacements. The residual value g¢ and the initial slope
so of the plastic degradation function in our model achieve a similar effect to the incorporation of a residual plastic
energy threshold (e.g. see [35]). In this example, the value of gr is set to 0.5 and s is set to -0.01 unless other values
are specified.

Fig. 5 shows a comparison of the force-displacement curves obtained from our formulation (for vy = 1072 mm/s,
Tint = 294 K, and g¢ = 0.7) with other numerical approaches published in the literature. In [43], a ductile fracture model
was developed that incorporates a modified elastic degradation function dependent on both the phase-field variable and
the accumulated plastic strain. In [70], a non-local softening model was employed to capture the localization of plastic
behavior. In comparison to these approaches, our results are similar to those of [43] in terms of the higher overall
load-carrying capacity up to uy ~ 0.15 mm, and they also exhibit a softening behavior similar to that of [70] with
continued deformation up to failure at uy, ~ 0.4 mm. In general, our results also reflect lower ductility in comparison
to these two other models.

The influence of temperature on the mechanical behavior of the double-notched square specimen is examined by
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Figure 3: Influence of g¢ on the force-displacement curves in the double-notched square specimen. The initial temperature is Tjny = 294 K

and the loading rate is given by vy = 1073 mm/s.

varying the initial temperature values Tj,. Specifically, we conduct simulations with four T, values: 294 K, 400 K,
600 K, and 800 K, while the far-field temperature is maintained at room temperature (T = 294 K). The temperature
effect is shown in Fig. 6, where higher T, values reduce the peak force F' and delay crack initiation.

The influence of the loading rate on the response of the double-notched square specimen is investigated using four
different vy values: 1073 mm/s, 1072 mm/s, 0.05 mm/s, and 0.1 mm/s. Fig. 7 shows that higher loading rates result
in an increase in the peak force F', indicating that the specimen can withstand greater forces before failure (due to
strain-rate hardening effects). However, higher loading rates do not necessarily lead to earlier failure. For instance, the
peak load for vy, = 1072 mm/s is found to be higher compared to vy = 1073 mm/s. Nevertheless, failure happens at
lower displacements for vy, = 1072 mm/s. A similar trend is observed when comparing vy = 0.05 mm/s and vy = 0.1
mm/s. However, the peak load for vy = 0.1 mm/s is higher, and failure occurs at higher displacements compared to the
case with vy = 1072 mm/s. It is important to note that Fig. 7 presents the overall structural response of the specimen,
and not the local response at a material point. This structural response stems from the complex interplay between
various nonlinear, coupled processes at the level of each material point, in addition to nonlinear geometric effects
and local instabilities (such as shear bands) which can significantly affect global deformation and failure modes. It is
therefore difficult to disentangle these mechanisms in order to explain the overall response and/or attribute individual
aspects of that response to a particular mechanism. This underscores the importance of accounting for the coupling
between thermomechanics and damage, to the fullest possible extent, when studying ductile fracture problems.

Snapshots showing the crack formation and plastic localization are depicted in Figs. 8 and 9 respectively. For the
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Figure 4: Influence of sp on the force-displacement curves in the double-notched square specimen. The initial temperature is Tjny = 294 K
and the loading rate is given by vy = 1073 mm/s.
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Figure 5: A comparison of the load—displacement curves between our formulation and the approaches from Ambati et al. (2015) [43] and
by vy = 1072 mm/s with sp = -0.01 and gf = 0.7.

Mediavilla et al. (2006) [70] in the double-notched square specimen. The initial temperature is Tin, = 294 K and the loading rate is given
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Figure 6: Influence of four different initial temperatures on the mechanical behavior of the double-notched square specimen, illustrated by

the corresponding force-displacement curves. The loading rate is vy = 1072 mm/s.

loading rate of vy, = 0.1 mm/s and initial temperature of Tin, = 294 K, we illustrate the evolution of the phase-field
variable (Fig. 8) and the equivalent plastic strain (Fig. 9) for six time steps with vertical displacements uy of (a) 0.265
mm, (b) 0.298 mm, (c¢) 0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the corresponding
letters in Fig. 7). It is observed that a curved crack develops on top of a plastic localization zone, which nucleates close
to the notches. Figs. 10 and 11 show the evolution of the temperature field and the internal power dissipation density
(expressed in Eq. (78)) at the same time steps, with identical initial and boundary conditions (Tin = 294 K and v, =
0.1 mm/s).

Next, we study the fraction of plastic work converted into heat when the JC plasticity model of Eq. (61) is applied.
Fig. 12 illustrates the evolution of the Taylor-Quinney (TQ) coefficient x (defined in Eq. (75)) over time at two material
points and four different loading rates. As both depicted in Fig. 2, point C is located at (5.4 mm, 5.15 mm), i.e. inside
the expected crack path, whereas Point D, with coordinates (2 mm, 8 mm), lies outside this path. The results are
obtained with four imposed velocities vy of 0.1 mm/s, 5 mm/s, 100 mm/s and 500 mm/s, along with initial temperature
of Tiny = 294 K and coefficients x4 = xp = 0.8. It is observed that the TQ coefficient has approximately the same
value with x4 and yp at Point D (outside the crack path). On the other hand, the TQ coefficient at Point C (within
the crack path) increases as fracture propagates and returns to the values of x4 and xp after the complete crack
formation. The maximum values of the TQ coefficient at Point C slightly increase with higher loading rates. In the
context of generalized standard materials using the JC plasticity model as expressed by Eq. (61), the sensitivity of the
TQ coefficient to loading rates is less than 2%. If the TQ coefficient were (hypothetically) highly dependent on the
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Figure 7: Influence of the loading rate on the response of the double-notched square specimen, investigated using four different prescribed

velocities. The initial temperature is assumed Tj,y = 294 K.

loading rate, a different plasticity model could be adopted by introducing alternative functions for the stored energy
density due to plastic work and the dissipation pseudo-potential (see Section 4.1.2).

In the proposed framework, plastic work heating depends on the plastic degradation function gP as expressed
in Eq. (77). This coupling prevents the temperature from rising excessively after damage initiation. To study this
effect, we conduct two analyses: one with a degraded heat source and one without. The results are obtained for initial
temperature Tip, = 800 K, imposed velocity v, = 5 mm/s, and coefficients x4 = x g = 0.8. Fig. 13 shows that neglecting
the effects of damage on the heat equation can lead to higher local temperatures, albeit without significantly affecting
the load-displacement curve in this case. Specifically, the evolution of temperature fields at Point C is presented in
Fig. 13a. It illustrates that as the crack propagates, the maximum temperature at Point C reaches about 970 K when
the heat source is degraded, whereas the peak temperature is approximately 1080 K when it is not degraded. As a
result, the increase in temperature leads to a slightly earlier loss of load-bearing capacity, as observed in Fig. 13b, in
accordance with the thermal effects predicted by the JC plasticity model.

Finally, we examine the mesh convergence behavior by testing three different cases of AMR refinement levels:
hret = 2, 3, and 4. The results are compared to the non-AMR case, where the mesh is pre-refined along the crack
path with a minimum mesh size of h = {y/4. Fig. 14a shows that mesh convergence is achieved for h..s = 3 and 4,
as there is no significant difference in the force-displacement curves for these cases compared to the non-AMR case
(up to point D). After point D, the two cracks merge into one, causing the specimen to fully fracture. This process

occurs rapidly and requires elements in the middle of the specimen to be refined quickly. The AMR mesh with A = 3

23



(e)
Phase field
000 0200 0400 0.600 0.800 1.00

Figure 8: Snapshots showing the phase-field evolution at six time steps with vertical displacements uy of (a) 0.265 mm, (b) 0.298 mm, (c)
0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7). The results are obtained with an initial

temperature of Tine = 294 K and a loading rate of vy = 0.1 mm/s.

(e)
Equivalent plastic strain
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Figure 9: Snapshots showing the evolution of the equivalent plastic strain at six time steps with vertical displacements uy of (a) 0.265 mm,
(b) 0.298 mm, (c) 0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7). The results are obtained

with an initial temperature of Tins = 294 K and a loading rate of vy = 0.1 mm/s.
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Figure 10: Snapshots showing the temperature evolution at six time steps with vertical displacements uy of (a) 0.265 mm, (b) 0.298 mm,
(¢) 0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7). The results are obtained with an

initial temperature of Tin; = 294 K and a loading rate of vy = 0.1 mm/s.

(e)
Internal power dissipation density
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Figure 11: Snapshots showing the evolution of the internal power dissipation density at six time steps with vertical displacements uy of (a)
0.265 mm, (b) 0.298 mm, (c¢) 0.305 mm, (d) 0.309 mm, (e) 0.357 mm, and (f) 0.391 mm (as indicated by the letters in Fig. 7). The results

are obtained with an initial temperature of Tiny = 294 K and a loading rate of vy = 0.1 mm/s.
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Figure 12: The influence of loading rates on the TQ coefficient.

lags behind those with h,f = 4 and the pre-refined mesh in capturing this phenomenon. However, capturing the
force-displacement curve beyond point D is also extremely challenging in experiments with ductile materials. Fig. 14b
illustrates the evolution of the degrees of freedom (DOFs) with respect to increasing applied displacement. We observe
that the computational cost of AMR with h.ef = 3 is significantly reduced compared to the non-AMR case before crack
initiation, and compared to AMR with h..s = 4 after crack propagation, respectively. Considering both computational

efficiency and accuracy, we determine that AMR with h,.f = 3 is the optimal choice for our model.

5.2. Double-edge-notched tension specimen

In the second example, a double-edge-notched tension (DENT) specimen with U-shaped notches is examined. This
problem is experimentally investigated in [72]. The specimen’s geometry and boundary conditions are depicted in
Fig. 15, with dimensions a = 47 mm, b = 25 mm, r. = 2.5 mm, and h = 8 mm. In this study, the material parameters
for X30Cr13 stainless steel are reported in Table 3 unless otherwise specified below. The length scale £y is 0.03 mm,
and the value of g¢ is selected to be 0.5 in this problem. Regarding the initial and boundary conditions, the sample
is considered undamaged (i.e., d = 0) with a uniformly distributed temperature denoted by Tiy. The bottom edge is
clamped, while the top edge is subjected to a vertical velocity vy. Convective heat-transfer boundary conditions are
imposed as expressed in Eq. (79) with h, = 107* W/(mm?K).

Fig. 16 illustrates the influence of temperature on the mechanical behavior of the DENT specimen by varying the
initial temperature values Tiy. Specifically, we conduct four simulations with the following values of Tiu: 294 K,

400 K, 600 K, and 800 K. The far-field temperature is maintained at room temperature (i.e., Too = 294 K), and the
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(a) Evolution of temperature fields at Point C for analyses with different heat source terms.

Neglecting the effects of damage on the heat equation can lead to higher local temperatures.
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(b) Force-displacement curves for analyses with different heat source terms. The increase in temperature

leads to a slightly earlier loss of load-bearing capacity.

Figure 13: The influence of damage on the thermomechanical coupling. Two analyses are conducted: one with a degraded heat source due

to the plastic degradation function and one without. The results are obtained for initial temperature Ti,, = 800 K, imposed velocity vy =

5 mm/s, and coefficients x4 = xp = 0.8.
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Figure 14: Double-notched square specimen: (a) Mesh convergence studies for different AMR refinement levels hyof compared to the non-
AMR case. (b) The evolution of degrees of freedom (DOFs) with respect to increasing applied displacements uy shows that hyes = 3 is the

optimal choice for our model.
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Figure 15: Geometry of the DENT specimen, including boundary conditions for displacement and velocity fields.
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Figure 16: Influence of four different initial temperatures on the mechanical behavior of the DENT specimen, illustrated by the corresponding

force-displacement curves. The loading rate is governed by the prescribed velocity of vy = 0.1 mm/s.

imposed loading rate is governed by the prescribed velocity of vy, = 0.1 mm/s. Similar to the previous example, higher
Tint values reduce the peak force F' in the force-displacement curves but increase ductility by delaying the complete
loss of load-bearing capacity.

However, the dependence of the specimen’s load-bearing capacity on the deformation rate does not follow the same
pattern as reported in the previous example. Specifically, Fig. 17 shows the force-displacement curves for various
loading rates imposed by prescribed velocities of vy, = 107 mm/s, 1072 mm/s, and 10~! mm/s; and it is observed
that fracture occurs at monotonically higher values of displacement with increasing loading rates. This structural
response is due to both the geometry of the specimen and the coupled local material processes. Thus, even though the
response follows a different (and perhaps, more intuitive) trend compared to the previous case, this trend is equally
difficult to predict without accounting for all the relevant physical mechanisms and the coupling between them.

Snapshots showing the crack propagation and plastic deformation are depicted in Figs. 18 and 19. For the imposed
velocity of vy = 0.1 mm/s and initial temperature of Tiy, = 800 K, we illustrate the evolution of the phase-field variable
(Fig. 18) and the equivalent plastic strain (Fig. 19) for five time steps with vertical displacements uy of (a) 0.944 mm,
(b) 0.961 mm, (c) 0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16).
It is observed that a crack forms on top of the two plastic localization zones, which develop between the U-shaped
notches. It is also worth noting that one branch of the X-shaped crack develops faster than the other due to small
numerical errors and/or slight mesh asymmetry. Figs. 20 and 21 show the evolution of the temperature field and the

internal power dissipation density (expressed in Eq. (78)) at the same time steps, with identical initial and boundary
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Figure 17: Influence of loading rates on the response of the DENT specimen, investigated using three different prescribed velocities. The

initial temperature is assumed T, = 294 K.

conditions (vy = 0.1 mm/s and Tj,, = 800 K).

5.3. I-shaped specimen

In the third example, we examine an I-shaped specimen subjected to tensile loading. The geometry of the sample
and its boundary conditions are depicted in Fig. 22, where the dimensions are given as L = 14 mm, b = 6 mm, ¢ =
4 mm, and r. = 1 mm. This configuration is a scaled version of an example presented in [43]. Scaling the geometry
of the sample allows the use of the same length scale as in the previous example at a reasonable computational cost.
Similar to the previous two examples, the material parameters for X30Cr13 stainless steel are listed in Table 3, unless
otherwise stated below. The length scale ¢j is selected to be 0.03 mm, and the value of g¢ is set to 0.5 in this problem.
Regarding the initial and boundary conditions, the sample is assumed to be undamaged with a uniformly distributed
initial temperature denoted by Tj, in the numerical studies, while vertical velocities v, are applied to the top and
bottom edges (Fig. 22). Convective heat-transfer boundary conditions are imposed as expressed in Eq. (79) with
hy =107* W/(mm?K).

Fig. 23 illustrates the effect of temperature on the mechanical behavior of the I-shaped specimen by varying the
initial temperature Ti,;. To this end, we conduct four analyses with the following values of Tj,:: 294 K, 400 K, 600 K
and 800 K. The far-field temperature remains T, = 294K (room temperature), and the loading rate is controlled by the
prescribed velocity vy, = 1072 mm/s. Similar to the previous examples, it is observed that higher initial temperature

values Tj, reduce the peak force F' in the force-displacement curves but increase ductility by delaying the complete
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Phase field
0.00 0.500 1.00

Figure 18: Snapshots showing the phase-field evolution at five time steps with vertical displacements uy of (a) 0.944 mm, (b) 0.961 mm, (c)
0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16). The results are obtained with an initial

temperature of Tip, = 800 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.

Equivalent plastic strain
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Figure 19: Snapshots showing the evolution of the equivalent plastic strain at five time steps with vertical displacements uy of (a) 0.944
mm, (b) 0.961 mm, (c¢) 0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16). The results are

obtained with an initial temperature of Tjns = 800 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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Figure 20: Snapshots showing the temperature evolution at five time steps with vertical displacements uy of (a) 0.944 mm, (b) 0.961 mm,
(c) 0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16). The results are obtained with an

initial temperature of Ti,; = 800 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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Figure 21: Snapshots showing the evolution of the internal power dissipation density at five time steps with vertical displacements uy of
(a) 0.944 mm, (b) 0.961 mm, (c) 0.990 mm, (d) 1.119 mm, and (e) 1.202mm (as indicated by the corresponding letters in Fig. 16). The

results are obtained with an initial temperature of Tjyy = 800 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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Figure 22: Geometry of the I-shaped specimen, including boundary conditions for displacement and velocity fields.

loss of load-bearing capacity.

The dependence of the specimen’s failure on imposed loading rates is studied in Fig. 24. We observe that higher
loading rates result in an increase in the peak load in force-displacement curves due to strain-rate hardening effects.
In addition, the displacement at failure decreases with increasing loading rates in this example. This is the opposite of
the trend observed in the previous example. However, it can be considered the most intuitive trend compared to the
two previous examples, given the simplicity of the specimen geometry and loading conditions in the present case.

Snapshots showing the crack propagation and plastic deformation prior to failure are depicted in Figs. 25 and 26.
For the imposed velocity of vy = 0.1 mm/s and initial temperature Tins = 294 K, we plot the evolution of the phase-
field variable (Fig. 25) and the equivalent plastic strain (Fig. 26) for six time steps with vertical displacements uy of
(a) 0.359 mm, (b) 0.400 mm, (¢) 0.415 mm, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the
corresponding letters in Fig. 24). It is observed that crack nucleation occurs at the center of the specimen, where
plastic deformation is most extensive. After crack initiation, it propagates along the plastic localization zones. Figs. 27
and 28 show the evolution of temperature fields and the internal power dissipation density (expressed in Eq. (78)) at

the aforementioned time steps, with identical initial and boundary conditions (Tin = 294 K and vy, = 0.1 mm/s).

5.4. Sandia Fracture Challenge

In the fourth example, we assess the predictive capabilities of the proposed PF fracture framework by comparing our
numerical results to experimental observation and data from the (first) Sandia Fracture Challenge [1]. The geometry
of the sample and its loading setup are reproduced in Fig. 29. Specifically, the specimen has a blunt notch A, three
circular holes (B,C, and D), and two pins where loads F' are applied. To simplify the modeling of the pins, we assume
perfect bonding between the specimen and the pins, eliminating the need to consider contact mechanics. We also

assume that the pins share the same material properties as the specimen. The crack opening displacement (COD) can
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Figure 23: Effect of four different initial temperatures on the mechanical behavior of the I-shaped specimen, illustrated by the corresponding

force-displacement curves. The loading rate is controlled by the prescribed velocity of vy = 1073 mm/s.

be experimentally measured between two points located on opposite faces of the notch, as shown in Fig. 29.

Regarding the initial and boundary conditions, the sample is assumed to be undamaged with a uniformly distributed
initial temperature of Tiy, = 294 K. The vertical velocity is prescribed as vy, = 0.0127 mm/s. Convective heat-transfer
boundary conditions are imposed, as expressed in Eq. (79) with h, = 10=* W/(mm?K).

Compared to the previous examples, the major difference in this section is the adoption of the extended Johnson-
Cook (XJC) plasticity model with nonlinear hardening behavior, introduced in Eq. (62), for the 15-5 PH alloy. Its ma-
terial parameters are reported in Table 3, unless otherwise specified below. The length scale is chosen as £y = 0.28 mm,
and the value of gf is set to 0.2. It is noteworthy that there are two additional material parameters (compared to
the standard JC model): the saturation parameter § and the ultimate stress A". Figs. 30 and 31 demonstrate the
sensitivity of the force-COD curves to variations in § and A", respectively. These studies highlight the effects of these
additional material parameters of the XJC model on the load-bearing capacity. In general, these two parameters affect
the rate at which the material response transitions gradually from the linear to the nonlinear regime. It is also observed
that the model sensitivity to these two parameters is relatively small within the range of values considered here. For
the remainder of this example, we use the values of 6 = 6 and A" = 1250 MPa.

Additionally, we study the effect of the novel plastic degradation function, presented in Eq. (47), on failure behavior.
To this end, we perform a sensitivity analysis with respect to the parameter g¢. Fig. 32 illustrates the influence of
gr on the fracture process in terms of force-COD curves. It is observed that g; significantly affects the peak loads.

Specifically, lower values of gf result in a more pronounced degradation of the yield stress, which leads to an earlier
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Figure 24: Effect of loading rates on the response of the I-shaped specimen, investigated using three different prescribed velocities. The

initial temperature is assumed T, = 294 K.
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Figure 25: Snapshots showing the phase-field evolution at six time steps with vertical displacements uy of (a) 0.359 mm, (b) 0.400 mm, (c)
0.415 mm, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the corresponding letters in Fig. 24. The results are obtained

with an initial temperature of Tin, = 294 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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Figure 26: Snapshots showing the evolution of the equivalent plastic strain at six time steps with vertical displacements uy of (a) 0.359
mm, (b) 0.400 mm, (c) 0.415 mm, (d) 0.426 mm, (e¢) 0.429 mm, and (f) 0.452 mm (as indicated by the corresponding letters in Fig. 24. The

results are obtained with an initial temperature of Tiny = 294 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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Figure 27: Snapshots showing the temperature evolution at six time steps with vertical displacements uy of (a) 0.359 mm, (b) 0.400 mm,
(c) 0.415 mm, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the corresponding letters in Fig. 24. The results are obtained

with an initial temperature of Tins = 294 K and a loading rate imposed by the prescribed velocity of vy = 0.1 mm/s.
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Figure 28: Snapshots showing the evolution of the internal power dissipation density at six time steps with vertical displacements uy of
(a) 0.359 mm, (b) 0.400 mm, (c) 0.415 mm, (d) 0.426 mm, (e) 0.429 mm, and (f) 0.452 mm (as indicated by the corresponding letters in
Fig. 24. The results are obtained with an initial temperature of Tj, = 294 K and a loading rate imposed by the prescribed velocity of vy

= 0.1 mm/s.

33.02 |

Figure 29: Geometry of the specimen in the Sandia Fracture Challenge from [1]: (left) dimensions (in millimeters) and (right) loading setup

to measure crack opening displacements (COD).

37



— 6=6 — 6=9 —o6=12

F [N]

8000

6000

4000

2000

COD [mm]

Figure 30: Sensitivity of the force-COD curves in the Sandia Fracture Challenge experiment [1] to variations in the values of the saturation

parameter § of the XJC model.
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Figure 31: Sensitivity of the force-COD curves in the Sandia Fracture Challenge experiment [1] to variations in the values of the ultimate

stress A of the XJC model.

38



560

565

570

575

— =02 — g =03 — g=04

— gr=0.5 — Experiment bounds

F [N]

8000

6000

4000

2000

L L L L L L L COD [mm]
7

Figure 32: Sensitivity of the force-COD curves to variations in the values of g¢. Experimental data are reproduced from the Sandia Fracture
Challenge in [1] (including lower and upper bounds as the boundaries of the shaded area). Good agreement between our current model

(using the XJC model) and the experimental data is demonstrated.

reduction in the load-bearing capacity.

Fig. 32 also presents the force-COD curves for experimental data [1] (including lower and upper bounds as the
boundary of the shaded area) and numerical results from the present work. These experimental data illustrate that
the location of the three holes affects the critical crack paths, causing drops in load-bearing capacity (each associated
with a crack connecting two holes). As a result, crack-arresting effects are observed due to the specific arrangement
of the holes. Using our proposed framework, we capture the peak load and the gradual reduction in strength due to
the holes. This simulation demonstrates very good agreement between our current model and the experimental data
in terms of the force-COD curves.

Snapshots illustrating the critical crack path and plastic deformation are shown in Figs. 33 and 34 respectively.
These figures focus on a specific region around the notch, including the three holes. We present the evolution of the
phase-field variable (Fig. 33) and the equivalent plastic strain (Fig. 34) within this region of interest at four time steps
with COD values of (a) 1.42 mm, (b) 2.11 mm, (c) 4.11 mm, and (d) 6.40 mm (as indicated by the same letters in
Fig. 32). The corresponding loads for these time steps are 8.198 kN, 6.896 kN, 5.357 kN and 4.293 kN respectively.
It is observed that the critical crack path develops on top of plastic localization zones. Specifically, it begins at notch
A and sequentially connects holes D and C, extending towards the specimen’s edge E, denoted by (A-D-C-E). (see
Fig. 29). The aforementioned crack path is supported by experimental evidence in [1], as it represents one of the two

observed crack paths, the other being (A-C-E).
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Figure 33: Snapshots illustrating the phase-field evolution at four time steps with vertical displacements uy of (a) 1.42 mm, (b) 2.11 mm,

(c) 4.11 mm, and (d) 6.40 mm (as indicated by the same letters in Fig. 32).
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Figure 34: Snapshots illustrating the evolution of the equivalent plastic strain at four time steps with vertical displacements uy of (a) 1.42

mm, (b) 2.11 mm, (c) 4.11 mm, and (d) 6.40 mm (as indicated by the same letters in Fig. 32).
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6. Conclusions

We developed a versatile phase-field framework for modeling ductile fracture within finite-strain elastoplasticity
using a variational formulation of constitutive relations for generalized standard materials (GSMs). The variational
structure of the proposed framework was characterized by a minimum principle for a functional that expresses the
total power generation density, as the sum of power densities for reversible and irreversible processes. By minimizing
this functional with a constraint on a (non-positive) von Mises yield function and applying the second law of ther-
modynamics, we determined the evolution equation for the equivalent plastic strain and the standard associative Js
flow rule. This constrained optimization problem, arising from the minimum principle, was analytically solved for a
broad class of temperature-dependent visco-plasticity models. In this particular class, the flow stress is multiplicatively
decomposed into purely strain-hardening and thermal softening factors, along with a strain-rate hardening term.

The novel features of the phase-field fracture framework presented herein can be summarized as follows. We

introduced

1. a cubic plastic degradation function to account for the gradual contribution of the stored plastic work to fracture,
as well as the non-vanishing values of the damage-dependent yield stress,

2. closed-form expressions of the Helmholtz free energy and dissipation pseudo-potential for a wide class of visco-
plasticity models (e.g., Johnson-Cook (JC) and a modified Zerilli-Armstrong (ZA) models),

3. an extended Johnson-Cook (XJC) plasticity model with a nonlinear hardening law,

4. a thermodynamically consistent form of the heating term due to plastic work, involving the plastic degradation
function and the Taylor-Quinney (TQ) coefficient, for which we present a closed-form expression that depends

on the plasticity model used.

The modeling capabilities of our phase-field (PF) framework were tested on four ductile fracture problems. These
include three benchmark examples utilizing the Johnson-Cook (JC) plasticity model for X30Cr13 stainless steel, and
one experimental test from the Sandia Fracture Challenge, which uses the novel XJC plasticity model for 15-5 PH
alloy. The performance of the proposed PF framework was assessed by examining force-displacement curves, and by
tracking the evolution of various fields, including phase field, equivalent plastic strain, and temperature, with the aid
of contour plot snapshots. These studies focused on the interplay between thermomechanics and damage evolution.

Based on all four examples, we arrive at the following conclusions.

e Plastic localization is a precursor to ductile fracture. In other words, damage accumulates most rapidly in shear
bands where extensive plastic deformation takes place, such that cracks develop along a path that is congruent
with these shear bands. This is observed in all of our computational results, but is especially worth noting
in the Sandia Fracture Challenge problem, where our framework (with the XJC plasticity model) successfully

reproduces the experimentally observed response and crack paths.

e The proposed plastic degradation function significantly affects ductility, with lower values of g¢ leading to loss
of load-carrying capacity at an earlier stage of deformation. Tuning of this parameter may be needed to match

experimental data. In addition, plastic work heating is affected by the plastic degradation function. Neglecting
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such effects of damage on heat generation terms can lead to unrealistically high temperatures, especially in the

vicinity of cracks.

e Higher initial temperatures reduce peak forces and delay the complete loss of load-bearing capacity. Conversely,
higher loading rates increase peak forces but do not necessarily precipitate complete failure at an earlier stage
of deformation. However, it is difficult to trace back individual aspects of the structural response to a particular
physical process or mechanism. This is because the response of a structure stems from the complex interplay
between various nonlinear, coupled processes at the level of each material point, in addition to geometric nonlin-
earities and local instabilities (such as shear bands) which can significantly affect global deformation and failure
modes. This underscores the importance of accounting for the interplay between thermomechanics and damage,

to the fullest possible extent, in computational frameworks for ductile fracture problems.

e In simulations using the JC plasticity model, we observe that the TQ coefficient is not highly sensitive to loading
rate. To account for a stronger dependence of the TQ coefficient on the loading rate (in materials or conditions
not considered herein), different plasticity models can be adopted by changing the stored energy density due to
plastic work and the dissipation pseudo-potential. This can be achieved in a straightforward manner for a wide

class of visco-plasticity models, owing to the modularity and versatility of the framework presented in this work.

In future work, we will focus our attention on developing specialized computational methods and/or machine
learning techniques and we will explore their use in accelerating the solution of the system of coupled PDEs constituting
the PF fracture framework presented here. We will also extend the framework to accommodate non-equilibrium
thermodynamics, by introducing an additional state variable, referred to as the “equilibrium temperature” in [18]. This
will allow phenomena driven by different thermodynamic processes to be represented more accurately (see also [19, 20]).
Finally, we will calibrate this PF model, which captures fracture in multiphysics settings (including temperature-
dependent visco-plastic effects), using experimental data with temperature measurements. This calibration will enhance

its predictive capabilities in real-world applications, building upon foundational continuum damage approaches [73].
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Appendix A. Details on kinematics in finite-strain elastoplasticity theory

In this appendix, we briefly present additional information on deformation tensors and stress measures in finite-
strain elastoplasticity theory where multiplicative decomposition of the total deformation gradient and J plasticity

are assumed.

Appendiz A.1. Deformation tensors

First, deformation tensors are particularly essential for formulating the necessary constitutive laws at reference,
intermediate, and spatial configurations (cf. Fig. 1). Starting from the reference configuration, the total and plastic

right Cauchy-Green tensors are respectively given by

C=FTF
(A1)
C? = FPTF?
At the intermediate configuration, the elastic right Cauchy-Green tensor reads
Ct=F°TFe, (A.2)
while the viscoplastic velocity gradient is defined as follows
P — Frpvl (A.3)
At the spatial configuration, the total and elastic left Cauchy-Green tensors are respectively defined by
b=FFT
(A.4)
be = FeFeT
Regarding the deformation rates, the elastic and plastic velocity gradient tensors are given as follows
l¢ = FEFE_I
(A.5)

P =1-1°=F°LPF!

After some algebraic manipulation, we can show that additive decompositions of the rate of deformation and spin

tensors hold as follows

d=d°*+d”’
, (A.6)
w=w°+ w’
and one can derive the following kinematic relations
C°=2F°Td°F*
(A7)

Ccr=2 FPTsym (LP) F?

These relations are particularly useful to transform rate quantities between configurations and objectively integrate

flow rules [74].
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Appendiz A.2. Constraints in Jo flow rule

In this work, the flow rule is expressed in terms of the spatial velocity gradient as follows

P _ = P
P =g,n?,

(A.8)

where £, and n? denote the unknown equivalent viscoplastic strain and the direction of viscoplastic flow respectively.
In J; plasticity, the definition of the von Mises (equivalent) stress includes a factor of \/3/2 to ensure that plastic flow
occurs at the yield stress under uniaxial tension. In addition, the viscoplastic flow direction is normal to the yield

surface in stress space and satisfies the following constraints [54]
(A.9)
To complete the theory, an evolution equation for w? is imposed so that the evolution of I in Eq. (A.8) is well-
defined. We consider the specific constitutive assumption [74-77].
WP =0 n? =nfT, (A.10)
Finally, we assume that the plastic flow is isochoric, and as a result
JP=det (FP)=1=J =J°=det (F°) . (A.11)
After the aforementioned assumptions, the flow rule is simplified as follows
dP =&, nP. (A.12)
Appendiz A.3. Stress measures
In finite strain theory, the stress power can be equivalently expressed in the following forms
PZF:%S:C:T:d. (A.13)
At the reference configuration, the second Piola-Kirchhoff stress is defined by
S=F'P, (A.14)

where P represents the first Piola-Kirchhoff stress tensor.

At the spatial configuration, the Kirchhoff stress tensor is given by
T=PFT. (A.15)
where the deviator of the Kirchhoff stress tensor and the corresponding von Mises stress are defined

s =dev (1)

o= fnsn | (A'w)
2

Finally, at the intermediate configuration, the Mandel stress tensor is calculated by

M = FTpprT, (A.17)

44



675

680

685

690

Appendix B. Steps in the Coleman-Noll procedure

In this appendix, we outline the steps of the Coleman-Noll procedure to derive thermodynamic restrictions on the
constitutive relations. Interested readers are referred to [44, 54] for similar thermodynamic arguments.
The Clausius-Duhem form of the second law of thermodynamics in continuum mechanics postulates that entropy

production is non-negative, as expressed as follows:
i+ % () 2 0. (B.1)
It is common to recast the latter inequality in the following form
D = D™ + D" > 0, (B.2)
where the dissipation arising from heat conduction D" and internal power dissipation density D" are defined by

1
D — ——Q - V,T
79 Vo

(B.3)
D™ = poTH+ Vo - Q
Combining Egs. (10), (11) and (B.1) the second law of thermodynamics of our system reads
]D):T:d+E'V()C'i-‘rfid—pojﬂ?]—poib-i-ﬂ)conZO. (B.4)

Given the form of the free energy and its dependence on the state variables, the Helmholtz free energy rate can be

expressed as

o e O 0P v, 0. 0y

= : — . —T+—F,. B.
acc € T ad T avea VT art T gg, % (B-5)

(G
Substituting the above equation into Eq. (B.4) and using Eq. (12) to simplify T, the Clausius-Duhem inequality is

reformulated into

oY e = O . oY - o -
D= — 200 F° F° - d° =_ T ).V, A —_ 7 - dP — D™ > 0. (B.
(T ™ et ) I +< ”Oavod> °d+<fl poad>d+<T ¢ poagﬂ)* 0. (B6)

Assuming that the constitutive equation for the heat flux Q is chosen to satisfy
1
Den = _TQ -VoT >0, (B.7)

the following inequality holds for the internal power dissipation density

, N
D™ =D — D" = <7‘ cdP — pof/%,,) >0. (B.8)
0&p
This inequality can be expressed as follows
D™ =DP — YPE, >0, (B.9)

where Y? denotes the generalized thermodynamic force conjugate to ép and the plastic dissipation is given by (p. 487
in [78])

DP=—PP:FP=M:LP =7 :d°. (B.10)
The simplified form of the internal power dissipation density in Eq. (19) is derived by substituting Eq. (7) into Eq. (B.8)
and using Eq. (B.10).
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Highlights

A phase-field fracture framework for rate- and temperature-dependent materials.

A wide class of plasticity models for generalized standard materials is considered.
Novel closed-form expressions for the plastic degradation function and dissipation.
Benchmark problems and data used to assess performance and predictive capability.
An extended Johnson-Cook plasticity model used to reproduce experimental data.
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