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Abstract

Enabling the computation of partial derivatives or sensitivities in production hydrocodes is beneficial
for design, optimization, sensitivity analysis, and uncertainty quantification. Traditional finite difference
approximations of these sensitivities are inefficient since convergence studies of the step size is required
for each parameter of interest. For these reasons, HYPercomplex Automatic Differentiation (HYPAD)
was implemented in the Eulerian hydrocode PAGOSA. HYPAD is analogous to forward-mode automatic
differentiation except hypercomplex numbers (numbers with multiple imaginary parts) are used instead
of dual numbers. Accurate partial derivatives can be computed of all state variables with respect to
multiple input variables in a single run. The method was implemented using operator overloading to
handle hypercomplex algebra. HYPAD was demonstrated and verified on Sod’s shock tube problem to
compute derivatives of the state variables with respect to a material parameter, initial conditions, and
geometry.

1 Introduction

Partial derivatives or sensitivities are beneficial for design, optimization, sensitivity analysis, and uncertainty
quantification [1, 2]. Gradients and Hessians are beginning to be implemented in some areas like finite
element analysis [3, 4], computational fluid dynamics [5], and radiation transport [6, 7]. References [8, 9]
have implemented forward- and reverse-mode AD; however, to the author’s knowledge, they are not readily
available today. For this reason, an Automatic Differentiation (AD) method called HY Percomplex Automatic
Differentiation (HYPAD) was implemented in the Eulerian hydrocode PAGOSA.

HYPAD is analogous to forward-mode AD, except dual numbers are replaced with hypercomplex num-
bers. Hypercomplex numbers are imaginary numbers with multiple imaginary directions. Multicomplex,
multidual, also known as hyper-dual, and Order Truncated Imaginary (OTI) numbers are examples of hy-
percomplex numbers [10, 11, 12]. In the context of AD, OTI numbers are the most computationally efficient
option since no redundant computations are required, unlike multicomplex and multidual numbers.

In the HYPAD method, arbitrary-order partial derivatives of all state variables with respect to multiple
variables can be computed in a single simulation run, unlike traditional forward-mode AD where a separate

run is required for each variable of interest. When the problem contains many variables, on the order of 100



variables or greater, reverse-mode adjoint AD becomes more computationally efficient than HYPAD. Figure
1 graphically shows a comparison of the performance of HYPAD to forward-mode AD and adjoint-based
AD as a function of the number of variables and number of outputs desired. All of these methods usually

outperform finite difference approximations since a step-size convergence is required to find the optimal value

of the derivative.
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Figure 1: Comparison of HYPAD to forward-mode and adjoint-based AD as a function of number of variables

and number of outputs

Higher-order derivatives can become intractable to compute with both forward-mode AD and adjoint-
based AD since multiple passes are required. HYPAD with OTI numbers alleviates this burden by simply
increasing the truncation order of the imaginary bases. The user can define the maximum derivative order
desired prior to the analysis and the first- through n’th-order derivatives will be computed in a single run,

in addition to the traditional output from the code [7].



2 Methodology

2.1 Central Difference Approximation

Central difference approximations of first-order partial derivatives are presented since they will be used to

compare against HYPAD. The central difference approximation for first-order partial derivatives is

05(s) _ flath)— flo—h)
Ox 2h ’

(1)

where h is a step-size. This formula suffers from both subtraction cancellation error and truncation error.

Therefore, a convergence study is required to find the optimal step-size that balances both of these errors.

2.2 Hypercomplex Automatic Differentiation (HYPAD)

Derivatives with respect to multiple variables of arbitrary-order may be computed using hypercomplex
numbers, which have multiple non-real parts. Similar to forward-mode AD with dual numbers or finite
difference, variables of interest are perturbed along unique non-real directions. The hypercomplex parts of
the variables are propagated through the function evaluation and derivatives are extracted from the non-real
parts of the outputs.

The most efficient hypercomplex number for HYPAD is Order Truncated Imaginary (OTI) numbers.
An OTI number ¢* € OTI; of d bases and truncation order n is represented by a real value and multiple
non-real directions ¢; [12]. The OTT directions are analogous to multiple imaginary directions in multidual
(or hyper-dual) numbers [11] except the imaginary bases are truncated above the expansion order n. That
is, €' - €5? - - - €5* = 0, when the multiplicity of the OTI imaginary directions, || = oy + -+ aq, is |a| > n.

Using multi-index notation, an OTI number is represented by

n

* 1 *
= Z ae@@@f (xo), ¢ € OTLY, (2)
|| =0
where o = [71,,...,24,] € R? is a vector of constants at which the derivative 9% f (xzo) = g f(=o)

a1 ad
Oz, -0z,

€ = [e1, ..., €q] is a vector of OTT imaginary directions of size d, and

d
€ = H €xrs. (3)
s=1

OTI numbers have the same structure as the Taylor series expansion of order n and d variables. Partial



derivatives are extracted from an OTI number by
0% f (xo) = ! - Im, [¢7]. (4)

2.3 Implementation of HYPAD in PAGOSA

HYPAD can be implemented in code by converting variables of interest, and variables that depend on
these variables, from real variables to hypercomplex variables. An external FORTRAN library was linked
to PAGOSA so that algebraic operations are overloaded with hypercomplex algebra. The library used in
this work is called OTILib [12]. OTILib is open-source and available on GitHub at https://github.com/
mauriaristi/otilib. The current version of the FORTRAN OTILib requires the number of bases and
order of bases to be defined before the analysis. This means, different versions of OTILib need to be used
based on the order of derivative and number of variables of interest for the particular analysis.

Several other modifications to the source code were performed. Boolean logic statements such as if and
while statements need to be based on the real part of the variables. That is, the real part of all hypercomplex
variables was used in boolean statements. Intrinsic FORTRAN functions, such as MAX, MIN, MAXLOC,
MINLOC, etc. do not support hypercomplex variables. So, custom functions were implemented to base
these functions on the real part of the complex variables, and the function returns the real part with the

corresponding imaginary part.

3 Numerical Example: Sod’s Shock Tube Problem

Consider a shock tube with a rectangular cross-section with two materials separated by a diaphragm, which
is modeled as a discontinuity, at the center of the tube [13]. When the diaphragm is removed, a shock wave
propagates through the tube. The initial density, velocity, pressure, and specific energy of the two materials

are

(1.0, 0, 1.0, 2.5), x < 50 cm,
(p, u, Py e) = (5)
(0.125, 0, 0.1, 2.0), > 50 cm.

In PAGOSA, the initial pressure is computed from the initial energy and density from the Equation Of State
(EOS). The ideal gas EOS was used to model both materials, which is defined as

P=(y—1)ep (6)


https://github.com/mauriaristi/otilib
https://github.com/mauriaristi/otilib

and the squared sound speed is computed as

=~y —1)e. (7)

A two-dimensional (2D) geometry was used to model the shock tube where the domain of the tube in the
(z,y) directions was x € [0,100 cm], y € [-5,5 cm], respectively. The mesh was spatially discretized in the
(x,y) directions as N, = 200, N, = 20, respectively, to obtain a 5 mm mesh resolution and the maximum
time was tmax = 0.2 s. The cell width in the x-direction was used as the artificial viscosity indicator. All
other variables were set at the PAGOSA default parameters. The input file used for this simulation is shown
in Appendix A.

First-order partial derivatives of the state variables (density, the  component of velocity, pressure, and
specific energy, and sound speed) with respect to the variables shown in Table 1 were computed with HYPAD
at every vertex in the mesh and at every time step. Table 1 also shows the OTI directions that each variable
was perturbed along. The initial conditions were perturbed with a value of one along ¢; for x < 50 cm for
the left material and x > 50 cm for the right material. v was perturbed along the €5 direction with a value
of one. Derivatives of the diaphragm location x4 were computed by perturbing the vertex coordinates in the

z-direction along the eg direction with the following magnitude

1 if x = 0.5
2—0.451 Ise if 0.45] < = < 0.5]
0,051 else 1 x
flx) = o
0-5’_5055;‘” else if 0.5] < z < 0.55]
0 otherwise

where [ = 100 cm is the length of the shock tube. The magnitude of the perturbation applied to the
coordinates scales linearly from 0 to 1 on 5% of the mesh on the left side of the diaphragm. Similarly,
coordinates scale linearly from 1 to 0 on 5% of the mesh on the right side of the diaphragm. This creates a
smooth perturbation around the diaphragm.

The version of OTILib used for this example was optimized to handle OTI numbers of order n = 1 and
truncation order m = 6, so that first-order derivatives of all six variables can be computed in the same run.
The HYPAD method was compared to central difference of the as-is PAGOSA version 17.4.9 simulation [14]
and central difference of the analytic solution [13]. Perturbations in the central difference approximations

with PAGOSA were applied in the input file so that source-code was not modified.



Table 1: Variables of Interest for Sod’s Shock Tube Problem

Type Variable Symbol  Value Units Basis
Initial Condition Initial density of left material POL 1.0 gcm ™3 €1
Initial density of right material POR 0.125 g cm™3 €2
Initial energy of left material €L 2.5 Mbar cm? g=! €3
Initial energy of right material €OR 2.0 Mbarcem?® g ! e
Material Parameter —Adiabatic constant of both materials ¥ 14 - €5
Geometry Diaphragm location T4 50 cm €6

3.1 Real Values

The real values of the output from a HYPAD simulation should be identical to the output from a traditional
simulation. Figure 2 shows the real values of the state variables of the HYPAD simulation compared to a
traditional PAGOSA simulation and the analytical solution. There is some discrepancy between HYPAD
and traditional PAGOSA near the shock boundaries, which is most noticeable in e and ¢. The HYPAD

implementation is currently being assessed to identify the cause of this discrepancy.
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Figure 2: State variables at ¢ = 20 ms. Analytic solution compared to standard PAGOSA and the real part
of HYPAD.

3.2 First-order Partial Derivatives of State Variables

First-order partial derivatives of the state variables were computed with HYPAD. Figures 3 through 7
show HYPAD derivatives compared to central difference of the analytic solution and central difference of a
traditional PAGOSA simulation. HYPAD derivatives are as good or better than central difference compared
to central difference of the analytic solution for initial conditions and material parameters. However, the

geometric derivative is worse than the central difference of PAGOSA. A convergence study may be conducted



on the percentage of mesh that is perturbed to find a superior perturbation method. A convergence study

can also be conducted on the resolution of the Eulerian mesh.
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Figure 6: HYPAD-based first-order partial derivatives of specific energy with respect to each input variable
compared to analytic and central difference approximations. ’CD Analytic’ is central difference of the analytic
solution with step-size h. ’CD PAGOSA’ is central difference of PAGOSA with step-size h.
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Figure 7: HYPAD-based first-order partial derivatives of sound speed with respect to each input variable
compared to analytic and central difference approximations. ’CD Analytic’ is central difference of the analytic
solution with step-size h. ’CD PAGOSA’ is central difference of PAGOSA with step-size h.

4 Discussion

Shock boundaries are numerical discontinuities, which result in large derivative values in regions around the
shock front. PAGOSA attempts to smooth these discontinuities using an artificial viscosity term. Smoothing
techniques such as window filtering may be applied to the derivatives to reduce the spikes in the derivative

values near these shock fronts and oscillations [15].
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Oscillations near shock fronts are also produced by PAGOSA’s smoothing method. The effect of these
oscillations are amplified in the derivatives.This effect will increase with order of derivative. Smoothing

methods like window filtering may help reduce these non-physical oscillations.

5 Summary and Future Work

This work implemented HYPercomplex Automatic Differentiation (HYPAD) in the Eulerian hydrocode
PAGOSA. To the author’s knowledge, this is the first time hypercomplex differentiation was proven to work
in hydrocode simulations. The method was verified on Sod’s shock tube problem in a two-dimensional
cartesian simulation. Partial derivatives of all state variables (density, pressure, velocity, specific energy, and
sound speed) with respect to six variables including initial conditions, a material parameter, and geometry,
were computed in a single simulation. HYPAD agreed well with central difference of PAGOSA and central
difference of the analytic solution.

HYPAD allows second- and higher-order partial derivatives to be computed in a straight-forward manner
(increasing truncation order of the OTI algebra). Therefore, future work will compute and verify higher-
order derivatives with HYPAD. Future work will also include implementation of additional physics including

burn, strength, fracture, and crush physics in PAGOSA.
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