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Introduction to “Discrete Direct” (DD) approach

for Model Calibration and Uncertainty Propagation 

problems involving Aleatory Variability

• Propagate the discrete values of the calibration parameters

• Straightforwardly extends to problems with multiple calibration parameters

• N runs of model to propagate N param. values or sets from N calibration experiments

• Simple to update w/new experiments/data that may become available (w/out Bayes’ rule & machinery) 
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Testing and Optimization of Sparse-Sample 1-D UQ Methods 
for Conservative Tail-Probability Estimation3

• Large numerical study with > 3e+08 performance tests

• ~20 established and newly developed methods (variants, hybrids)

• tail probability magnitudes 10-1, 10-2, 10-3, 10-4, 10-5

• # samples N = 2, 3, 4,…,20

• 16 diverse distribution shapes below

• 10K random sampling trials for each combinations of the above factors studied

Objective: be conservative but not overly conservative (efficient)
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• Example: 

• a model with 3 calibration parameters

• N=2 replicate experiments

• DD: 2 calibrations ➔ 2 parameter sets ➔ 2 runs

of prediction model ➔ 2 values of response

• get a 1-D UQ problem with 2 samples of response

• Get reliable bounding estimates on response statistics 

• Distribution-based cal. parameter uncertainty representation & 

propagation approaches like Bayesian would need to infer a 3-D 

Joint PDF of param. variability from the 2 calibration parameter 

sets (data points) in the 3-D space of the calibration params.

• get a highly questionable JPDF and predicted PDF of response, 

uncertainty would be difficult and expensive to reliably estimate

• JPDF propagation requires high expense or a surrogate model (added 

complexity, uncertainty, and more runs of the prediction model than DD)

DD Simplicity, Cost, and Trustworthiness 

Advantages: maps Multi-D UQ  1-D UQ
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Confirmation of DD Calibration-Propagation-UQ method
on Weld Depth and Strength Variability test problem

5/9/2024
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1000 sets of calibration 
parameter values

simulate Circular Laser Weld 
Test using input parameter sets

• 1000 values for each 
output response 
quantity of interest 
(QOI)

• example QOI 
histograms

• 40 QOIs/histograms

1000 random samples from 
Normal distribution fit to 34 
weld-depth (D) measurements

input parameter 
sets (Y, A, n, ф, D)

j

j = 1, 1000

  

Pose 1000 weld-model 

calibration parameter sets that 

yield representative curve 

shapes and a population that 

envelopes 7 actual tension 

tests and stress-strain curves



Performance on QOI tail-probability estimation
6

➢ Conduct 250 random trials of the DD calibration-propagation-
UQ method

• Each trial

• N=4 material tests (replicate tests) for calibrating N=4 material plasticity 
and damage parameter sets

• Combine the N=4 calibration parameter sets and N=4 weld-depth 
measurement samples and propagate through Circular Laser Weld 
structural model  4 samples of each QOI  use statistically biased 1D 
UQ tail-probability estimation methods for conservative estimation of 
0.005 left and right tail probabilities of the 40 QOIs

• 40 challenging response QOI distributions (80 tails)

• most are highly Non-Normal — skewed, long-tailed, and/or multi-
modal, some with bumps far out in the tails (examples below)
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• Postprocess the 4 response samples per QOI (per trial) with the following 

conservatively biased 1D UQ tail-probability estimation methods

Tolerance Interval Equivalent-Normal method

(very simple, easy)

• 94% success rate of conservative tail-

probability estimation over the 20,000 

trials (80 diverse tails x 250 trials per 

tail)

• average conservatism (mean bias) of 

estimates = 1.5 orders of magnitude

Super-Distribution Complete Jackknifing

(somewhat more complex)

• 99.9% success rate of conservative 

tail-probability estimation over the 

20,000 trials

• average conservatism (mean bias) = 1.3 

orders of magnitude

250 random trials for each of 80 diverse tails



DD Methodology applied to Strain-Rate Dependent 

Plasticity Model calibrated to Sparse Random Field 

Data

I.

II
.

Experimental Design for Calibration Data:
Propose material tension tests at various strain rates

Use experimental data to calibrate JC model 
to predict component-level responses/QOIs 
that reflect effects of material variability  

JC model parameter 
variations below emulate 
physical material variability

Evaluate component 
model responses (output 
QOIs of Can-Crush 
problem)

Form populations/distributions 
of QOI response and selected 
statistics

(A,B,C,n)1

(A,B,C,n)100

…

QOI response 
distribution

potential desired 
statistics
• percentiles
• tail probabilities

• 2 strain rates X 2 tests each

Example - 4 uniaxial tension tests
One possible combination…

JC calibration to
mtl. curves Set 1

Use JC with (A,B,C,n)1,100@random

Fo
rc

e,
 

F

QOI  
prediction 1

JC calibration to 
mtl. curves Set 2

QOI  
prediction 2

Tolerance 
Interval 
from 
sparse 
sample 
data

QOI



Confirmation on Can Crush test problem:
—DD performance for bounding the 5-95 percentile ranges 

of 16 mildly to highly non-Normal PDFs of response QOIs

• 95/90 Tolerance Intervals 

used (based on 2 samples 

of QOI response from DD 

calibration and 

propagation of 2 cal. 

param. sets per trial)

• 20 random trials 

• 92% success rate over 

the 320 trials (= 16 QOIs x 

20 trials/QOI)



DD calibration-propagation-UQ applied to Bolt Failure Modeling 

5/9/2024
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Other work in progress by Mersch et al: 

“Discrete-Direct Uncertainty Quantification for Prediction of Fastener Failure in Sandia 
Mechanics Challenge” 
—challenge problem developed by Sandia experimentalist Sharlotte Kramer
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Lid
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Bottom



Accounting for IC/BC Control Variability and 

Non-Traveling Uncertainties in the Calibration 

Experiments and Computations (use model val. tech.)
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Calibration Samples

of embodied

unit-unit variability

+ epistemic uncertainty
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DD Approach for problems with both Aleatory AND Epistemic uncertainties 

calibration model 

Response Function is 

different and uncertain 

for each experiment

⁞

random & systematic

measurement uncertainties
• some errors/uncers. 

independent and some 

correlated across tests and 

therefore calibrations

systematic uncertainty components (intvl. and/or PDF)

• highly correlated sources and effects across tests

random uncertainty components

• uncorrelated sources and effects across tests

Computational uncertainties

• Model discretization related 

• Surrogate related (if present)

• Opt. solution non-uniqueness 

due to noise in objective 

function and/or parameter 

non-identifiability



DD Propagation of Calibration Parameter Sets reflecting 

Aleatory Variability and Epistemic Uncertainty, 

with UQ Processing of Response Samples 
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DD Calibration-Propagation-UQ with Epistemic Uncer. Only 
(case of 1 calibration test—no replicate tests for elucidating

unit-to-unit variability of modeled systems—Bayesian calibration 

becomes more competitive for epistemic-only cases)
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of QOI response

uncertainty (epistemic)

from 3 – 5 calibrations 

and model runs 

• Straightforward and Transparent treatment of various types and sources of 
epistemic uncertainties in experiment inputs and outputs (ICs, BCs, auxiliary/other)

• UQ treatment and propagation does not scale in cost or complexity with the 
number of uncertainty sources (compared to Bayesian calibration)



11 Accelerometer 

sensors
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6-parameter 

Single joint2g 

defined at interface

Strainsert Bolted Joint

Kettlebell Assembly test setup

Kettle Bell

Mounting 

Plate Parameter Units

𝑘𝑥 lbf/in

𝑘𝑦 lbf/in

𝑘𝑧 lbf/in

𝑘𝑟𝑥 in•lbf/rad

𝑘𝑟𝑦 in•lbf/rad

𝑘𝑟𝑧 in•lbf/rad

DD Application to Bolted-Joint Parameter Inversion 
in structural dynamics application

• Calibrate 6 stiffness parameters of joint2g model 
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DD “Cross Prediction” approach for Epistemic Uncertainty in 
the 6 calibration parameters due to Limited Sensors

• Test Problem Setup:

• Take the solution for the 6 parameters of the Kettle-Bell problem given the actual 

experimental conditions and sensor information

• The 6 parameter values become the exact-known values in a test problem where 

they are prescribed to the joint and then synthetic BCs close to those in the 

experiment are prescribed for the shaker plate and outputs at the 11 sensor 

locations are obtained.

• Using the limited (11) sensors data set in an inversion yields slightly different 

values for the 6 parameters than if a fuller set of sensors is used 

• Leave-1-out “Cross Prediction” approach to account for limited sensors

• Pick 5 different sensors at random, eliminate each (one at a time) and solve the 

parameter inversion problem based on information from the remaining 10 sensors

• The parameter values in the five sets yield 95/90 TIs that capture the true values 

of the parameters

• When the five param. sets

are propagated through 

7 posed next-level output QOI

functions (at right), the 7 QOI

95/90 TIs capture the 7 QOI

truth values 

• Same in 19 other trials — 100% success 
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DD approach for Uncertainty in the 6 calibration parameters 
due to “Auxiliary” Epistemic Uncertainties in the experiments

• Test Problem featuring uncertain values of Kettlebell material properties

• Let truth values of Young’s Modulus (E) and 

Poisson’s Ratio (V) lie on an edge of a prescribed E-V UQ space 

(10% and 17% uncertainties for E and V respectively)

• Sparsely sample the E-V UQ space and perform inverse calculations

for the 6 calibration parameters given each sample pair (E,V)i i=1,5

• The 5 inversions have variously good objective function fits to the

calibration data (from the 11 sensors) that correlates with how close

the (E,V)i sample points are to the truth point (E,V)Truth

• Weight the parameter sets by log(1/objective_function_value)

• Propagate the 5 parameter sets to the 7 QOI functionals and form

95/90 TIs from the weighted means and standard deviations of the

5 sample values of each QOIk k=1,7

• See if QOIk 95/90 TIs capture (QOIk)Truth

• Results of Random Trials

• 8 trials of random point sets (E,V)i i=1,5

• For all 8 trials, for all k the QOIk 95/90 TIs captured (QOIk)Truth

• 100% success in the 8x7 = 56 tests

• 100% success as well in 56 tests using only 3 uncertainty realizations (E,V)i i=1,3 

E

V

Truth values



• The DD approach is versatile and relatively simple, economical, 

and effective

• especially for physical systems involving significant unit-to-unit 

aleatory variability and models being calibrated for them

Closing Remarks
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