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Introduction to “Discrete Direct” (DD) approach
for Model Calibration and Uncertainty Propagation @ﬁg?dﬁal
problems involving Aleatory Variability o

Laboratories
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* Propagate the discrete values of the calibration parameters

« Straightforwardly extends to problems with multiple calibration parameters

 Nruns of model to propagate N param. values or sets from N calibration experiments

« Simple to update w/new experiments/data that may become available (w/out Bayes’ rule & machinery)




H

Testing and Optimization of Sparse-Sample 1-D UQ Methods

3 | for Conservative Tail-Probability Estimation

Objective: be conservative but not overly conservative (efficient)

» Large numerical study with > 3e+08 performance tests
» ~20 established and newly developed methods (variants, hybrids)
» tail probability magnitudes 101, 102, 103, 104, 10°

« #samplesN =2, 3, 4,...,20
« 16 diverse distribution shapes below
« 10K random sampling trials for each combinations of the above factors studied
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DD Simplicity, Cost, and Trustworthiness
Advantages: maps Multi-D UQ » 1-D UQ @ﬁ%ﬁﬂﬁm

Laboratories

« Example:
- amodel with 3 calibration parameters Response QO
* N=2 replicate experiments 4
Samples of
1 predicted

« DD: 2 calibrations =» 2 parameter sets = 2 runs response
. . ®
of prediction model =» 2 values of response variabilty

« geta l1l-D UQ problem with 2 samples of response

« Get reliable bounding estimates on response statistics

« Distribution-based cal. parameter uncertainty representation &
propagation approaches like Bayesian would need to infer a 3-D
Joint PDF of param. variability from the 2 calibration parameter
sets (data points) in the 3-D space of the calibration params.

o

« getahighly questionable JPDF and predicted PDF of response, ®
uncertainty would be difficult and expensive to reliably estimate

« JPDF propagation requires high expense or a surrogate model (added
complexity, uncertainty, and more runs of the prediction model than DD)




Confirmation of DD Calibration-Propagation-UQ method
on Weld Depth and Strength Variability test problem

¥

Pose 1000 weld-model
calibration parameter sets that
yield representative curve
shapes and a population that
envelopes 7 actual tension
tests and stress-strain curves

1000 random samples from
Normal distribution fit to 34
weld-depth (D) measurements

simulate Circular Laser Weld
Test using input parameter sets

1 O

8 spot welds
o IR + 1000 values for each
e output response
» . 90° . .
Input parameter » quantity of interest
sets (Y, A n, ¢, D). Ol
j=1,1000 (o0
' o - « example QOI
D=1.5" .
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Performance on QOI tail-probability estimation

> Conduct 250 random trials of the DD calibration-propagation-
UQ method

e Each trial

* N=4 material tests (replicate tests) for calibrating N=4 material plasticity
and damage parameter sets

* Combine the N=4 calibration parameter sets and N=4 weld-depth
measurement samples and propagate through Circular Laser Weld
structural model ® 4 samples of each QO| ® use statistically biased 1D
UQ tail-probability estimation methods for conservative estimation of
0.005 left and right tail probabilities of the 40 QOls

* 40 challenging response QOI distributions (80 tails)

* most are highly Non-Normal — skewed, long-tailed, and/or multi-
modal, some with bumps far out in the tails (examples below)

x2 strain @plateau x3 strain @plateau y1 strain @plateau displ @plateau




DD method High Success/Reliability rates of
Conservative Tail-Probability Estimation for 80 Diverse Tails
(Truth tail probabilities = 0.005)

» Postprocess the 4 response samples per QOI (per trial) with the following
conservatively biased 1D UQ tail-probability estimation methods
Tolerance Interval Equivalent-Normal method Super-Distribution Complete Jackknifing
(very simple, easy) (somewhat more complex) I
* 94% success rate of conservative tail- * 99.9% success rate of conservative
probability estimation over the 20,000 tail-probability estimation over the
trials (80 diverse tails x 250 trials per 20,000 trials
tail) » average conservatism (mean bias) = 1.3
« average conservatism (mean bias) of orders of magnitude

estimates = 1.5 orders of magnitude
250 random trials for each of 80 diverse tails
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DD Methodology applied to Strain-Rate Dependent
Plasticity Model calibrated to Sparse Random Field Sandia
Da ta @ National

Laboratories

JC model parameter Evaluate component Form populations/distributions
I variations below emulate ¢ model responses (output ¢ of QOI response and selected
' physical material variability QOls of Can-Crush statistics
problem)
. potential desired
A,B,C,n > > QOl response ent
( _ g ( j distribution statistics
: * percentiles
. * tail probabiliti
B - O S o proailes
G Q¢
I I Experimental Design for Calibration Data: ¢ Use experimental d%ta to calibrate JC model
Propose material tension tests at various strain rates to predict component-level responses/QOls

that reflect effects of material vaxiability

Example - 4 uniaxial tension tests Use JC with (A,B,C,n); 100@random

One possible combination...

« 2 strain rates X 2 tests each Ol
) . Tolerance
JC (l:allbratlon to ) " QO o Interval
mtl. curves Set 1 prediction 1-»g| fom
sparse

JC calibration to _y, QO /' sample
mtl. curves Set 2 prediction 2 data




Confirmation on Can Crush test problem:

—DD performance for bounding the 5-95 percentile ranges
of 16 mildly to highly non-Normal PDFs of response QQOls

Sandia
National
Laboratories
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DD calibration-propagation-UQ applied to Bolt Failure Modeling
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Uncertainty Quantification for
Component Modeling Using the
Discrete-Direct Approach

John P. Mersch

Paul R. Miles

Deborah M. Fowler
Christopher M. Laursen
Brian Fuchs

Mini-Radax
_Bottom

I Loading direction

Figure 1. Single-Coupon Analysis Model

Other work in progress by Mersch et al:

“Discrete-Direct Uncertainty Quantification for Prediction of Fastener Failure in Sandia
Mechanics Challenge”
—challenge problem developed by Sandia experimentalist Sharlotte Kramer

5/9/2024




Accounting for IC/BC Control Variability and
Non-Traveling Uncertainties in the Calibration Sandia

National

Experiments and Computations (use model val. tech= Laboratories

DD Approach for problems with both Aleatory AND Epistemic uncertainties

response calibration model
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) different and uncertain
Experimental for each experiment
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DD Propagation of Calibration Parameter Sets reflecting

Aleatory Variability and Epistemic Uncertainty,
with UQ Processing of Response Samples

Sandia
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DD Calibration-Propagation-UQ with Epistemic Uncer. Only
(case of 1 calibration test—no replicate tests for elucidating Sania
unit-to-unit variability of modeled systems—Bayesian calibration @ Netional
becomes more competitive for epistemic-only cases)

e Straightforward and Transparent treatment of various types and sources of
epistemic uncertainties in experiment inputs and outputs (ICs, BCs, auxiliary/other)
* UQ treatment and propagation does not scale in cost or complexity with the

feSPONSe  number of uncertainty sources (compared to Bayesian calibration)
Vallj? response
Experimental Tolerance Interval QOjvalue Prediction Model
Data ki of QOl response
D 7 from 3 — 5 calibrations

and model runs '
o) 5}
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DD Application to Bolted-Joint Parameter Inversion
14 In structural dynamics application

« Calibrate 6 stiffness parameters of joint2g model

Kettlebell Assembly test setup

Kettle Bell

\ 11 Accelerometer
A Sensors

| Parameter | Units [N
6-parameter

lby/in 5
lby/in
Ib/in

. . inelb/rad

Single joint2g inslb,/rad .=
:

3
defined at interface _ inelby/rad : - :
- . 4 I

Mounting
Plate

Strainsert Bolted Joint




DD “Cross Prediction” approach for Epistemic Uncertainty in
15 | the 6 calibration parameters due to Limited Sensors

 Test Problem Setup:

Take the solution for the 6 parameters of the Kettle-Bell problem given the actual
experimental conditions and sensor information

The 6 parameter values become the exact-known values in a test problem where
they are prescribed to the joint and then synthetic BCs close to those in the
experiment are prescribed for the shaker plate and outputs at the 11 sensor
locations are obtained.

Using the limited (11) sensors data set in an inversion yields slightly different
values for the 6 parameters than if a fuller set of sensors is used

« Leave-1l-out “Cross Prediction” approach to account for limited sensors

Pick 5 different sensors at random, eliminate each (one at a time) and solve the
parameter inversion problem based on information from the remaining 10 sensors

The parameter values in the five sets yield 95/90 Tls that capture the true values
of the parameters

When the five param. sets
are propagated through
7 posed next-level output QOI

7 QOI test functions of the six calibration parameters QOI 7 Truth Response and 95/90 Tls
QOI 1 = KX + KY + KZ + KRX + KRY + KRZ 1.0522
QOI 2 = KX - KY + KZ - KRX + KRY - KRZ 1052
1.0518
QOI 3 = KX + KY + KZ - (KRX + KRY + KRZ) 1.0516

1.0512
95/90 TIs capture the 7 QOI -
_ 0 5 10 15

tI’Uth Values QOI 7 = (KX*KY*KRY)/(KZ*KRX*KRZ) o

Same in 19 other trials — 100% success

functions (at right), the 7 QOI

20



DD approach for Uncertainty in the 6 calibration parameters
16 | due to “Auxiliary” Epistemic Uncertainties in the experiments

« Test Problem featuring uncertain values of Kettlebell material properties

« Let truth values of Young’s Modulus (E) and Truth values
Poisson’s Ratio (V) lie on an edge of a prescribed E-V UQ space ')

(10% and 17% uncertainties for E and V respectively)

« Sparsely sample the E-V UQ space and perform inverse calculations V
for the 6 calibration parameters given each sample pair (E,V); i=1,5

« The 5 inversions have variously good objective function fits to the E
calibration data (from the 11 sensors) that correlates with how close
the (E,V); sample points are to the truth point (E,V)1 o

*  Weight the parameter sets by log(1/objective_function_value) ' °

« Propagate the 5 parameter sets to the 7 QOI functionals and form A
95/90 TlIs from the weighted means and standard deviations of the E

5 sample values of each QOI, k=1,7
- See if QOI, 95/90 Tls capture (QOI )ty

* Results of Random Trials
8 trials of random point sets (E,V); i=1,5
« Forall 8 trials, for all k the QOI,, 95/90 Tls captured (QOI} )1,
« 100% success in the 8x7 = 56 tests
« 100% success as well in 56 tests using only 3 uncertainty realizations (E,V), i=1,3



Closing Remarks @ﬁ%ﬁﬂﬁm
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« The DD approach is versatile and relatively simple, economical,
and effective

« especially for physical systems involving significant unit-to-unit
aleatory variability and models being calibrated for them
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