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/" Neural-inspired computing

,/What is neural-inspired, neuromorphic, brain-inspired computing?
& - Many terms
«  Fundamental notion of taking inspiration from how the brain performs computation

Mathematical Representation
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/ Neural-inspired computing

eurocomputers

Realized Today

for 10x-100x
/ energy savings

Digital )%

Source: Heemskerk, Jan NH. "Overview of neural
hardware." Neurocomputers for brain-style processing. Design,

implementation and application (1995).

Active Research
for additional
power savings
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/~ Spiking neuromorphic systems

4
3 .—» Neural Chip
ol 10 ~10" - 102 cores
| . 104-106 neurons
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Computational Primitives

+ Spiking Neurons (vertices / nodes)

* Synapses (connections / edges) Neural System

~102 - 10% chips

Programmable as arbitrary graphs 106-109 neurons

+ Edges: Directed and weighted

« Nodes: Threshold gate logic + time EEEIEEE EEEmiEE EEEE

* Artificial neural networks are a special 22
case ' '

«  Programmability, theoretical,
analysis and software are open
research questions
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FULL STACK NEUROMORPHIC

Technologies and Capabilities

Neural Computing
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https://ip.sandia.gov/opportunity/full-stack-neuromorphic/

High Performance
Computing

Sandia’s Neural Computing group is building a suite of cross-cutting capabilities
to bring neural hardware, algorithms, and Al closer to applications




/" What is Fugu? And Why?
/

Neuromorphic Challenges
« Neuromorphic platforms remain a challenge to

s’

‘4

program FUGU
« Lack of interoperability between research outputs https://github.com/sandialabs/Fugu
(Scaﬁold : \
Fugu ;"CKA\
« Open-source library for spiking neural networks s ae
+ Aunified, (mostly) hardware agnostic, framework to N
enable neuromorphic algorithm development Briok D
* Bricks: roughly represents a function \_ Y,

- Scaffolds: represents an application

- Design goals: easy-to-use, lower barrier of entry,
improved code efficiency and re-use

 In active development

Backends

The name Fugu is inspired by the Japanese word for pufferfish; which, of course, have spikes. Furthermore, Fugu is considered a culinary delicacy due to the presence of low levels of the neurotoxin
tetrodotoxin, or TTX, which has significant value in studying the electrophysiology mechanisms underlying biological action potentials.




Bricks
compose to
become a
Scaffold

Because of
composability,
when the
algorithm
changes, you
just change the
Scaffold

How Fugu works

Scaffold

Scaffold

Sequence Classifier

Sequence Classifier

Fugu manages
links between
bricks

Bricks

Bricks

At Compile, the IR
becomes platform-specific

Scaffold

Sequence Classifier

Fugu also adds in some
special neurons to help
control information flow

Bricks

This Intermediate

At Build, the Bricks provide
instructions on how to build
a spiking neural network

Representation (IR) is
platform-agnostic

Scaffold
lassifier

Sequence C

Spiking inputs
& outputs are
all handled by
Fugu when run

\
Input Spikes #
|

=

# Output Spikes

Bricks

Lastly, the
network is
moved to
hardware for
execution




/7 Fugu addresses two key challenges of neuromorphic programming
“4

s’

p Composability
Neuromorphic Mini-Apps Deploying applications on neuromorphic
hardware requires implementing algorithms
. . . within neural circuits

T » Need to be able to build applications from well
designed kernels

« Need to take advantage of features offered by
spiking neuron mode|

13 8¢

Portability

Programming neuromorphic platforms requires a

graph of neurons (nodes) and synapses (edges)

« Need to represent neural algorithms in
common graph format

« Need ability to translate graph into backend
specific constraints




P Neural mini-app structure

Single-line Python interface
«  python fluence_mini_app.py --run_mode loihi --neural_timesteps 10000 -v 100 -dt .02 -ss .05 -da .2 -M 200

User Compiled

nw

Can run multiple backends from same function i

(SpiNNaker)
Data / Graph /
. R . o Output data / performance metrics
Flags to set Mini-App specific parameters

« Scaling parameters (e.g., # neuromorphic timesteps, # of walkers)

E

« Currently have worked with Fugu, Loihi, SpiNNaker

E

« Implementation parameters (e.g., angle precision, time precision)
« Physics parameters (e.g., particle velocity, scattering probabilities)




/" Neural Mini-Apps

Sparse Coding/Dictionary Learning

« Sparse linear combinations
of elements of a given
overcomplete basis set

« On neuromorphic LASSO
approximated by LCA

Example Results -

eeeeeeeeeee

Parameterization Size of image, Size of image patch, Size of the
dictionary, Stride of image patch, Desired sparsity

Scaling Problem size via # of image patches, Parameters

Metrics Time for setup, Time for reconstruction,
Reconstruction performance, Reconstruction sparsity,

Compute resource usage, Energy resource usage

Graph Analysis

 Single Source Shortest Path

« Source neuron spikes and
shortest path determined by
edges traversed leading to
target neuron spiking

Example Results -

ke 0.07 o

* Loihi Run Time -

et 006 Backend /
§0.05 Delay Multiplier
i D5 Sim - 5
5o —Loihi - 5
En.os ~+-DS Sim - 10
g =« Loihi - 10
F0.02 DS Sim - 20

0.01 —a-Loihi - 20

0 500 1000 1500 2000 2500 3000
Graph Size (number nodes)

Parameterization Graph generation (uniformly random tree, small
world), Nodes, Weight range, Max runtime,

Source, Target
Scaling Graph scale, Weight/delay range
Metrics Total time, Time for setup

Random Walk

« Discrete time Markov Chain

- Neuromorphic approach
models state & tracks
walkers via spike activity

Example Results -

0005
5
0.0
® Fugu CPU Simulation 0.00045
003 - g ) ihi wit §
@ SpiNNaker i’ 00004 ¥
’ Eoo ihi no pr ¢
e 5 ’ Y <
% = = Poly. (Fugu CPU Simulation) , HD ' R 0.00035 §
£ P
E 0.02 « oo Linear (SpiNNaker] ,’ = 0.0 ' t 0.0003 g
T ¢ 3 B
g 0015 / i 0.04 5 ooozsi
i % 0035
- | l 5 0002
" % oo
00 -2 0025 I -
- o
@eres@esstcasnnsssanns 0.02 0.000:
%0 . 8 000 00 00 1600 1800 2000

Parameterization Number of total walkers, Size of direction/relative
velocity/angular discretization, Time step size of
simulation, Size of the state space, Size of
positional discretization

Walkers, Mesh size
Energy cost of walkers, Time to run, Space to run

Scaling
Metrics

Vineyard, Craig, et al. "Neural Mini-Apps as a Tool for Neuromorphic Computing Insight." Proceedings of the 2022 Annual
Neuro-Inspired Computational Elements Conference. 2022.
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Leaky Integrate and Fire Neuron

1.E+09

1.E+08

1.E+07

Walker Updates per Joule

1.E+06

//Scientific Computing

Ccacetheveanant

)

/ Neuromorphic hardware can simulate Monte Carlo random walks more efficiently than CPUs / GPUs

timestep= 1

number of walkers

@ TrueNorth Single-Mesh
+ TrueNorth Multi-Mesh
# Loihi
© CPU Single-Core

‘ + CPU Multi-Core
mGPU

¢
® O

1.E+05

1.E+06 1.E+07 1.E+08 1.E+09  1.E+10

Walker Updates per Second

Secssssbcssnnsa

Smith et al., “Neuromorphic Scaling Advantages
for energy-efficient random walk computations”
Nature Electronics 2022




/" Will this translate to real world impact?

number of walkers

Random walks on neuromorphic

timestep=1

(Smith et al., 2022)

Brownian motion
1000's of particles
100's of cells

100's of timesteps

1 neuromorphic chip

SPARTA simulation of Mir space station

(Michael Gallis, Sandia)

Gas physics

1.6 Billion particles
10 million cells
500,000 timesteps
2048 Xeon cores



iy Neural Exploration & Research Lab (NERL)

/" Enables researchers to explore the boundaries of neural computation
‘4 o The research conducted in the lab evaluates what is possible with neural
hardware and software for national security benefit and the advancement
of basic research

Consists of a variety of neuromorphic hardware & neural algorithms
providing a testbed facility for comparative benchmarking and new
architecture exploration

Intel Loihi2 Intel Loihi1 Inilabs DAVIS GraphCor Google Coral
Kapo h B ay USB 240C DVS

i o= ¥

SpiNNaker2 SpiNNaker1 IBM TrueNorth*

https://neuroscience.sandia.gov/neural-exploration-and-research-laboratory-nerl/ Not an exhaustive list n
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Large-Scale Neuromorphic Systems

SYSTEM TIMELINE

SpiNNaker1M
(57,600 chips)
University of Manchester

TrueNorth Blue Raven
o (64 chips)
TrueNorth NS16e AFRL
(16 chips)
LLNL

TrueNorth Loihi Nahuku

UIET\.EIP) o (8 chips)

SpiNNaker
(48 chips)

2015 2016

2017

2018 2019

Loihi Pohoiki Springs  Darwin Mouse Loihi 2 Hala Point
(768 chips) (792 chips) (1152 chips)
Intel @ Zhejiang University

Loihi 2 Alia Point

. . (128 chips)

Loihi Pohoiki'Springs Loihi 2 Kapoho Point

(384 chips) (32 chips) System Legend

Sandia National Laboratories

® Lo
Q Sandia

@ LihieSandia

2022 2023

2021 2024




Sandia Labs & Intel - Hala Point

/

1 Million Neurons

Source: https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html#gs.84527k
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4 Sandia Labs & Intel - Hala Point

32 Million Neurons

Source: https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html#gs.84527k




Sandia Labs & Intel - Hala Point

96 Million Neurons

Source: https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html#gs.84527k




Sandia Labs & Intel - Hala Point

/

115 Billion Neurons

Source: https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html#gs.84527k




Sandia Labs & Intel - Hala Point

115 Billion Neurons
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Source: https://www.intel.com/content/www/us/en/newsroom/news/intel-builds-worlds-largest-neuromorphic-system.html#gs.84527k




Capacity

Speed

Hala Point Specs & Performance

System Performance Characterization
1152 Loihi 2 chips « Up to 20 quadrillion operations per second (or 20
140,544 neuromorphic cores petaops)
2,304 x86 cores - 15 trillion 8-bit operations per second per watt
6U data center chassis (TOPS/W)
2600 Watts power (max) « 10:1 sparse connectivity & event-driven activity via

sigma-delta neuron model

*  MLP network with 14,784 layers; 2048
1.15 billion neurons neurons/layer, 8-bit weights; random-noise activity

128 billion synapses

The world'’s largest neuromorphic research system, code-named

Hala Point

380 trillion synaptic ops/second

240 trillion neuron ops/second

16 petabytes/sec memory bandwidth

3.5 PB/s inter-core communication bandwidth
5 TB/s inter-chip communication bandwidth

Source: https://www.intel.com/content/dam/www/central-libraries/us/en/images/2024-04/newsroom-intel-hala-point-owl.jpg.rendition.intel.web.1920.1080.jpg n



P Sandia Labs & SpiNNcloud (SpiNNaker2)

Spiking Neural Network Architecture (SpiNNaker)

* Each SpiNNaker2 chip contains a low-power mesh of 152 Arm-based
cores + accelerators
* Globally-asynchronous-locally-synchronous operation and dynamic voltage
regulation for energy efficiency

* Event-driven mesh communication

* Designed to boost neuromorphic, hybrid, and mainstream Al model
computations

* Server board consists of 48 SpiNNaker2 chips

* Large-scale systems with 90 boards for billions of neurons

Read more:
https://spinncloud.com/?utm_source=ARM&utm_medium=referr
al&utm_campaign=CollaborationCampaign&utm_content=blogp
0ost&p=5057

https://www.dnn.de/lokales/dresden/ki-supercomputer-an-der-tu-dresden-58b93825-

75fd-46ae-846a-da4e78c9c3e0.html a



Conclusions




Future of Neuromorphic?

Neuromorphic is likely similar to GPUs in degree of specialization

Specialized General Purpose

Truly General Purpose Application Specific

GPU

Performance

Performance
Performance

<]
o
c
]
£
i
o
Y=
-
<]
o

Performance

Exciting research exploring -
Which applications? How? When?




Thank You!

Neural Exploration & Full Stack NMC Fugu Simulation Tool for Neurons to
Research Lab Brochure Asynchronous Algorithms
(NERL) Cortical Streams (N2A)
(STACS)

https://neuroscience.sandia.gov/ https://ip.sandia.gov/opportunity/full  https://github.com/sandialabs/Fugu https://github.com/sandialabs/STACS ~ https://github.com/sandialabs/n2a
-stack-neuromorphic/

Questions?







/" Neural Sparse Coding

Example Results -

Sparse Coding Methods - Computation Scaling

—J— spams fista

4 Sparse Coding or Sparse Dictionary Learning

- Method of modeling data by decomposing it into sparse linear 1
combinations of elements of a given overcomplete basis set

«  On neuromorphic, the LASSO (least absolute shrinkage and selection

operator) computation for sparse coding can be approximated with the

spike-based algorithm LCA (locally competitive algorithm)

- Implemented as rate-coded neurons with inhibitory connections between .,
competing dictionary elements

Execution Time (ms)
)
(=]

500 1000 1500 2000 2500 3000 3500 4000
Image Patches

Sparse Coding Methods - Computation Scaling

—J— spams lasso

500 1000 1500 2000 2500 3000 3500 4000
Image Patches

Sparse Coding Methods - Computation Scaling

: —J— Ioihi Ica
I
Parameterization Size of image, Size of image patch, Size of the |
dictionary, Stride of image patch, Desired sparsity e
Scaling Problem size via # of image patches, Parameters - e
Metrics Time for setup, Time for reconstruction, |
Reconstruction performance, Reconstruction sparsity, fon

376

Compute resource usage, Energy resource usage




/~ Neural Graph Analysis Example Results -
/ " ' 1'—ImL:3hi Run Time

* DS Total Time
* Loihi Total Time

Single Source Shortest Path (SSSP)

- Between a source and target node, what is the shortest path
(and path length) that connects the two

« SNN is straightforward — each vertex in the source graph is a
neuron, each edge is a synapse between neurons, & graph
weights equate to delays
- The source neuron receives input driving it to spike send ensuing "o =0 @ wo w0 o

Nodes

spikes through the SNN 0.07
« Shortest path length is determined when the target spikes & 0-06 Backend /
monitoring edges can yield the path goos e
£ 0 —e—Loihi - 5
g —»—Loihi - 10
Parameterization  Graph generation (uniformly random tree, small Fz: o
world), Nodes, Weight range, Max runtime, , —s
SOUITEE, TElEet T Graph tze (umber nodesy
Scaling Graph scale, Weight/delay range
Metrics Total time, Time for setup



/" Neural Random Walk Example Results -

/ v @® Fugu CPU Simulation
/ . . . oo @ SpiNNaker f.

Discrete time Markov Chain (DTMC) A

« Particle Angular Fluence: the time-integrated flux of particles S I B
traveling through media given as a function of position and velocity g oes s

- Particles travel at a constant speed and experience relative velocity =~ *” ot
scattering over a small region of space _-"

0 e axxymmmmnnm

« Conventional approach models walkers & tracks states - o s ;e w0 W om0

neuromorphic models state & tracks walkers B

® Loihi with probes

o
o
o

0.065 | & |oihino probes 0.00045 __
E 0.06 ¢+« Linear (Loihi with probes) . g
E—0.0SS t++« Linear (Loihi no probes) -._.'::_ 0.0004 !g'
50.045 I i ..,'.'-=' : ) 0.0003 ,%
Parameterization Number of total walkers, Size of direction/relative ~ § oo R : : 00025 3
velocity/angular discretization, Time step size of gooe o002 ¥
simulation, Size of the state space, Size of oo . 000015 >

positional discretization 002 00001

) 800 1000 1200 1400 1600 1800 2000
Scaling Walkers, Mesh size Number of Meshpoins

Metrics Energy cost of walkers, Time to run, Space to run n



P Simulation Tool for Asynchronous Cortical Streams (STACS)

- Large-scale spiking neural network simulator built on top of the Charm++ parallel

programming framework

' = 0.040% + 50+ 140 —u + 1

ifv >

FUGU- i

(1 - )
,thend "¢
u<u

+d

Description Languages
* PyNN, NeuroML, NineML, etc.

Software Frameworks
+ N2A, Fugu, Lava, Nengo, etc.

Network Simulators
« NEST, NEURON, Brian, GeNN, etc.

Data Formats

* NIR, SONATA, NetworkX, GEXF, etc.

Hardware Platforms
+ Loihi, SpiNNaker, BrainScales, etc.

 Available at: https://github.com/sandialabs/STACS

Able to interoperate with software

frameworks through:

« Translating between network description
languages

* Asa simulation backend

STACS is primarily a spiking

—’ neural network simulator

Partition-based SNN-dCSR data format
supports external tool interoperability:
* Graph partitioners & network analysis

 + Also enables mapping to neuromorphic

hardware platforms



P Neurons to Algorithms (N2A)

* Neural programming language and workbench i [ el DA :
- : a S o O —
* Object-oriented, declarative language = ["' | I R R

. . . . I Il 1" Il Il |l

- Parts defined with simple set of equations = . | \j

* No need to program 2| | I

* Build complex structures from simple ones by = N0 I

rEUSing partS I /) M /) 7))

« Backends for major neuromorphic devices (work- L, ™

in-progress)

® Example Fugu Application ins | @ Studies | & Settings

m B FeEFeE = OFEaE ole @k 7]
© Boids [ = # $metadata [~

A Compieie Fugu Synapse I I " out i :r. - ralgelelg\ég $init

;orgnp:’;e (complete) npu outpu e S;w - il:gar expire

:amplelez B !'HPUfVQCfOf 8/—- r : :::: : :
= Inputs opefn A{complete) Fugu Synapse input#d] P1 “» Agent2Group -8 Sy - e
v A & A color = €
0Derand2>< outpul ¢ outputs OUfPUf s
lata -
4 forr

A
input1 -
A(data) \nperanﬂl - > Agentzhgent
Fugu Synapse B.

= Stslifespan*(1+gaussian(0.1)
02
operand OUTPUf ey it2 B

= neighbors=threshold && grou
1

“» Agent2Sugar

onEn = S$tegestationPeriod @ Sinit ||
- operand? AND input3 : LT
= . = St>gestationEnd && uniform(
“operanaz = = T8 sowoanes
A(data)| ~ A delay =1 A potential =0 |(data) _
_ A reset_voltage = 0 = 05
& weight = 0.75 : A threshold =1

= 58

=01

= (Sxyze=0)-{Sxyz>=1)
actoryEnd = SterefractoryPeriod @ formG
toryPeriod = 30ms

= norm{Sxyz')
= 05
=1

° Input2 output
InputVector

= full @ Sinit
=+ -speed-metabolism

Available at: https://github.com/sandialabs/n2a
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