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2 | Context & Motivation

* Machine Learning (ML) is a fast-growing field with many engineering applications

* One application of ML is surrogate modeling in lieu of computational mechanics
modeling for design optimization and uncertainty quantification

» Best practices for surrogate model credibility assessment are not yet established

» Several useful concepts from studies not directly involved with the VVUQ community
are applicable. How do we bring these in to form a comprehensive picture?

“Artificial intelligence will create entirely new ways to do computational science: In just the last
few years, artificial intelligence (Al) and machine learning (ML) have begun to transform broad
swaths of commerce and society. These technologies are beginning to have major benefits for
science and engineering as well, but the field is still young. Al is being used to accelerate

simulations, to combine experiments with simulations, to automate workflows, to propose new
hypotheses, and much more. This rapidly developing area will be a major driver of scientific
progress for the foreseeable future, but only if investments are made to ensure that existing or new
Al technologies are appropriately reliable and trustworthy for scientific and engineering
applications.” - 2024 SIAM Task Force Report: The Future of Computational Science.




3 1 What is a Surrogate Model?

« A surrogate model is an approximate model that is used instead of a computational
physics model in order to reduce the computational cost of an engineering analysis.

» Forrester: “Educated guesses as to what an engineering function might look like,
based on a few points in space where we can afford to measure the function values.
While these glimpses alone would not tell us much, they become very useful if we build
a number of assumptions into the surrogate based on our experience of what such
functions tend to look like (Forrester, 2008).”

* Machine learning models are often used as surrogates for computational mechanics

models
Input parameter, x RANS Model, f(x) Quantity of Interest

Surrogate Model, f (%)



+ 1 Physics Scenario

Velocity inlet B.C.

* 2D flow over NACA 0012 airfoil (Rumsey, 2022) \ Adil? Eaéic
wall B.C.
* Subsonic (Mach number = 0.15) ¥
* Fully turbulent \ Pressure
* Separation at high angles of attack outlet B.C.

* Reynolds number: 2 x 10°, 6 x 10°,8.95 x 10°

T o 300 K
Pret 0 Pa
Dret 1.177 kg/m?
A s 1 m?
Uer Uinlet
Href HRe



Task Page <

Solution Methods

Pressure-Velocity Coupling

s | Simulations

Scheme
Coupled -
* Meshing and simulation done in Ansys Flux Type
Rhie-Chow: momentum based * | ¥ Auto Select
* Standard kK — w model used as turbulence model after Spatial Discretization
comparison to Spallart—Allmaras on a sample case Gradient
- p o - p oo - p - Least Squares Cell Based -
; . . . Pressure
« 28 order discretization chosen Second Order ’
) ) ) ) Momentum
* Simulations run using Texas A&M’s ngh Performance Second Order Upwind -
Research Computing (HPRC) Clusters e
! Second Order Upwind -
. p t - 1 . p 'th . t Specific Dissipation Rate
ost-processing done using Python scripts second Order Upwind -

Pseudo Time Method
Global Time Step

Case Viscosity Case and Journal | Simulations Data Data Post- I
Updated? Files Uploaded? Run? Extracted? processed?

Re =2 x 10° 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X

Re = 6 x 10° 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X

Re = 8.95 x 10° 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X 1X, 2X, 4X



6 ‘ Surrogate Model Description

* Surrogate model built using machine learning algorithms. Specifically, Deep Neural Network model
implemented in Keras and SciKit Learn.

* Architecture:
* Two inputs: Reynolds number and angle of attack
* Three hidden layers with 28, 128, and 256 nodes respectively*

*  Two outputs: Cq and C;

* Hyperparameters:
*  Kernel initalizer: he_uniform
* Activation function: Rectified Linear Unit (ReLu)
*  Optimizer: Adam Input Layer

* Loss function: mean squared error \

*This is admittedly somewhat large. This network architecture was found to yield the highest average accuracy. For a
larger dataset but otherwise similar problem, the network size would be reduced to reduce training/testing time.
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7 1 Surrogate Model Training and Testing

* The data was split 90/10 between training and testing after evaluating using

80/20 and 70/30 splits
* Model is trained using 5000 epochs

» Evaluation is done using repeated k-fold cross validation (10 splits, 3 repeats)
» Average root mean square error (RMSE) for both Qols was on the order of 1x104

Loss
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s | Modified PCMM

The Predictive Capability Maturity Model describes the necessary elements for assessing the level of
maturity of computational modeling and simulation efforts (Oberkampf, 2007)

This model was developed for use with computational physics models

Acquesta et al. proposed a modified version for ML models, which is used in this study (Acquesta, 2022)

Geometric fidelity - data representation (does the data provide a representative population for
training/testing/validating?)

Physics models - domain aware training (what physics phenomena need to be preserved in the model?)
Verification is achieved differently for ML models. Explainability and interpretability play into this as

Representation
and (.ieor.netric Representation
= Fdellty _ P

Domain
Aware

Physics
Models

Validation

Validation

Solution
Verification

Solution
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Results & Analysis




0 I Solution Verification on Parent CFD Model

« Simulations were run on three meshes of different
refinement and numerical uncertainty was
quantified using the grid convergence index (GCl)

« Numerical uncertainty is generally reasonably
small

« Expansion of uncertainty at the edges of the
parameter space

« (, results transformed by subtracting linear fit to
experimental data
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1 1 Validation Analysis on Parent CFD Model

« Experimental data from Ladson, 1988

« Experimental uncertainty estimated from rough
estimate of drag coefficient and normal-force
coefficient

« Relative error in both quantities significant but
generally less than 15%

* Much higher relative error near zero for C; due
to low magnitude of Qol there. Absolute error
was not high near zero.
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2 ‘ Validation Analysis on Surrogate Model

« Validation comparison error calculated for surrogate
model predictions at experimental data locations

» Error trends for surrogate model very close to those
of parent CFD model

* Most error in surrogate model appears to come from
parent CFD model

* Run-to-run variability of surrogate model used to
estimate numerical uncertainty
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13 ‘ Summary Plots

« Surrogate model trends follow parent CFD model
trends closely

 Primary source of surrogate model error is parent CFD
model error

« Systematic errors/biases seen for both coefficients 2
potential to add bias correction to surrogate model

« Accuracy for Re = 4 x 10° similar to that of other
Reynolds numbers

Simulation Results
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14

Explainability and Datasheet

Datasheet created for training/testing
dataset using template and guidance in
“Datasheets for Datasets” (Bebru, 2021)
Defines pedigree of data

Enhances explainability and reduces
reliance on SME/developer for insight into
data

Makes limitations, sensitivities,
accessibility, purpose, and strengths of
dataset apparent

Motivation

Composition

For what purpose was the dataset created?

The dataset was created for training and testing of the
surrogate model. Comparable datasets for this airfoil
and flow scenario have been created for model
validation.

‘What do the instances that comprise the dataset
represent (e.g., documents,

photos, people, countries)?

Coefficients of lift and drag of the airfoil at flow
conditions described by Reynolds number and angle
of attack.

Who created the dataset (e.g., which team,
research group) and on

behalf of which entity (e.g., company, institution,
organization)?

The primary researcher on this project (Jared Kirsch).

How many instances are there in total (of each
type, if appropriate)?

There are 310 instances of each Qol, in order to
inform solution verification. 63 instances are used in
surrogate model training and evaluation.

‘Who funded the creation of the dataset?
Sandia National Laboratories, through contract with
Texas A&M University.

Does the dataset contain all possible instances or is
it a sample (not

necessarily random) of instances from a larger set?
The training and testing data is a sample of the larger
set of 93 data points. The dataset was reduced to
eliminate data at high and low angles of attack, where
flow characteristics change significantly.

Any other comments? No.

‘What data does each instance consist of?
Coefficients of lift and drag of the airfoil at flow
conditions described by Reynolds number and angle
of attack.

Is there a label or target associated with each
instance? Yes, the coefficients of lift and drag.

Is any information missing from individual
instances? No.

continued o o




5 I Conclusions

* An ML-based surrogate model was used to predict coefficients of lift and drag for a NACA 0012 airfoil at
various angles of attack

* Modified PCMM framework was used to assess credibility

* Uncertainty quantification was done, excluding input uncertainty

» Validation analysis showed moderate error with respect to experimental data

* Most error was inherited from parent computational physics model

» Datasheet created to enhance explainability of dataset used in training/testing of surrogate model

» Potential extensions of work include bias correction in surrogate model, increased UQ efforts, and
evaluation of surrogate model accuracy at more points
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18 ‘ Backup Slide — Simulation Settings

e The

- Viscous Model
Model
Inviscid
Laminar
Spalart-Allmaras (1 egn)
k-epsilon (2 egn)
® k-omega (2 eqn)

Transition k-kl-omega (3 eqgn)

Transition SST (4 eqn)
Reynolds Stress (5 egn)

Scale-Adaptive Simulation (SAS)
Detached Eddy Simulation (DES)

k-omega Model
® Standard
GEKO
BSL
55T

k-omega Options
~ Low-Re Corrections
| Shear Flow Corrections
Options
Curvature Correction
Corner Flow Correction
Production Kato-Launder
! Production Limiter

Model Constants
Alpha*_inf
1
Alpha_inf
0.52
Alpha_0
0.11111
Beta*_inf
0.09
Beta_i
0.072
R_beta
8
R_k
6
R_w
2.95
TKE Prandtl Number
2

User-Defined Functions
Turbulent Viscosity
none
Prandtl Numbers
TKE Prandtl Number
none
SDR Prandtl Number
none

B Velocity Inlet

Zone Name
inlet

Momentum | Thermal | Radiation | Species | DPM | Multiphase | Potential

Velocity Specification Method Magnitude and Direction
Reference Frame | Absolute
Velocity Magnitude [m/s] 52.0828
Supersonic/Initial Gauge Pressure [Pa] 0
X-Component of Flow Direction| 0.998629535
Y-Component of Flow Direction| 0.052335956
Turbulence
Specification Method | Intensity and Viscosity Ratio
Turbulent Intensity [%] 5
Turbulent Viscosity Ratio| 10

- Pressure Qutlet
SDR Prandtl Number
2
Production Limiter Clip Factor
10 Momentum

Zone Name
outlet

Thermal | Radiation | Species DPM Multiphase | Potential

Backflow Reference Frame  Absolute
Gauge Pressure [Pa] 0
Pressure Profile Multiplier| 1
Backflow Direction Specification Method | Normal to Boundary
Backflow Pressure Specification Total Pressure
Prevent Reverse Flow
Average Pressure Specification
Target Mass Flow Rate
Turbulence
Specification Method | Intensity and Viscosity Ratio
Backflow Turbulent Intensity [%] 5
Backflow Turbulent Viscosity Ratio 10

Structure

Structure

*

uDs

-

ups

s

| B wal

Zone Name
airfoil

Adjacent Cell Zone
solid-surface_body

Momentum | Thermal | Radiation | Species | DPM | Multiphase | UDS | Potential
Wall Motion Motion
® Stationary Wall | ¥ Relative to Adjacent Cell Zone
Moving Wall

Shear Condition
= No Slip
Specified Shear
Specularity Coefficient
Marangoni Stress
Wall Roughness
Roughness Models
® Standard
High Roughness (Icing)

Sand-Grain Roughness
Roughness Height [m] 0
Roughness Constant| 0.5

Structure

X

Ablation

E
!
|



19 I Ansys Fluent Standard vs. SST k — w Models

“Both models have similar forms, with transport equations for k and w. The major ways in which
the SST model differs from the standard model are as follows:

> Gradual change from the standard kK — @ model in the inner region of the boundary layer to a high-
Reynolds-number version of the k — € model in the outer part of the boundary layer

> Modified turbulent viscosity formulation to account for the transport effects of the principal turbulent shear
stress”

Standard: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/nodeé66.htm
SST: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm



https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node66.htm
https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm

20 | Backup Slide — Modifying the Reynolds Number

From the experimental data, we know the Mach and Reynolds number.
We assume T = 300 K and corresponding y, R. p comes from engineering toolbox. Then we can calculate

k
V = velocity magnitude =M = ,[YRT = M = \](1.4) (EB?.D 5% : H)(SDD K)

. . pVD
it = dynamic viscosity = e



21 | Investigating the Effects of Using Different Grit to Trip in
Ladson Report

* Uses 60-W, 80-W, and 120-W (possibly others as well) to trip flow
* Do these different grits cause an appreciable difference in the Qols?
* Investigated for the three grits above, and plots are shown below

Ver _gooctj. agreement for 80-W and 120-W grit. Significant disagreement for 60-W grit. 60-W grit corresponds to a wrap-around
configuration.

* In the report, it says that the 60-W grit produced a large decrease in max. Cl and a large increase in min. Cd. This is consistent with
the plots below.

*  “The use of wrap-around grit produces a 20- to 30-percent decrease in max. lift-to-drag ratio when compared with that produced for
the 0.05c transition location.”
0.025 1.2

/s
1
0.02 0.8

0.6 /

0.015 )
0.4 /
3 —8—60-W Grit S / —e—60-W Grit
001 —e—80-W Grit 0.2 /’ —e—80-W Grit
120-W Grit 0 120-W Grit

0.005 -0.2 /,
-0.4

-5 0 5 10 15 -5 0 5 10 15
alpha (deg) alpha (deg)



2 | Mesh Sizes

Growth rate: 1.2

Inflation option: smooth transition

Transition ratio: 0.272
Finest two meshes have y+ less than 1

4X size:
> Nodes: 3,844,800
o Elements: 3,840,000

2X size:
> Nodes: 962,400
o Elements: 960,000

1X size:
o Nodes: 241,200

o Elements: 240,000

0.5X size:
> Nodes: 60,600

o Elements: 60,000



23 | Data Scaling

Divided Reynolds number by 1 X 10°
Multiplied C4 by 100

Converted back to actual values in post-processing

Tried automated scaling, but no significant improvement over manual scaling seen



24 ‘ DNN Hyperparameters

Adam ReLU layer

ReLU class [source]
Adam class

keras.layers.RelLU(max_value=None, negative slope=0.0, threshold=0.@ kwargs)
keras.optimizers.Adam(
learning rate=¢
beta 1-0
beta 2-0

. def get model(n_inputs, n_outputs):
epsilon-le-07 model = Sequential()
amsgrad-False, model . add (Dens
weight decay-=None, model . add (Dens

. model . add (Dense( activation=
clipnorm=None, )

clipvalue=None, model . add(Dense(n outputs, kernel initializ

global clipnorm=None, model . compile(optimizer="adam’, loss="mean_
return model

use ema=False,

ema_momentum=;¢

ema_overwrite frequency=None,
loss _scale factor=None,

gradient accumulation steps=None,
name="adam",

kwargs



25 | Optimizing the DNN




26 I Training Time vs. Network Size
5000 epochs still, network has 28, 56, 112 neurons in the 3 layers

Total (Training + Prediction) Time

13.612683899933472 13.678318799939007
16.71096729999408 16.775100099970587
19.806038399925455 19.87224779999815

13.281809599953704 13.342205699998885
14.011337500065565 14.076991100097075

Total (Training + Prediction) Time

18.734906499972567 18.802630199934356

16.201080900034867 16.263148800004274
Network with 28, 128, 25» 15.208082800032571 15.267421799944714

17.521413500071503 17.58225279999897

16.179354000021704 16.248251299955882




27 | Estimating Uncertainty from Run-to-run Variability of
Surrogate Model

Ran DNN model 100 times, which yielded 3 — 7 instances for each angle of attack.
Used average value as nominal

Used max. deviations to form uncertainty (conservative vs. using 20). This was done largely because
the number of evaluations at each angle of attack was relatively small.




22 1 Domain Awareness

Separation occurs at large angles of attack — simulated values kept to @ € [—10°,10°]

Fully turbulent flow — no transition




