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Asymmetric energy exchange interactions, also known as Hatano-Nelson type couplings, enable
the study of non-Hermitian physics and associated phenomena like the non-Hermitian skin effect and
exceptional points (EP). Since these interactions are by definition non-reciprocal, there have been
very few options for real-space implementations in integrated photonics. In this work, we show that
real-space asymmetric couplings are readily achievable in integrated photonic systems through time-
domain dynamic modulation. We experimentally study this concept using a two-resonator photonic
molecule produced in a lithium niobate on insulator platform that is electro-optically modulated by
means of rf stimuli. We demonstrate the dynamic tuning of the Hatano-Nelson coupling between
the resonators, surpassing the asymmetry that has been achieved in previous work to reach an EP
for the first time, and are additionally able to flip the relative sign of the couplings for opposite
directions by going past the EP. Using this capability, we show that the through-chain transport can
be configured to exhibit both giant optical contrast as well as photonic gyration or non-reciprocal

7 phase contrast.

In the analysis of photonic systems, couplings are rou-
tinely assumed to be symmetric, while gain and loss are
considered as higher-order perturbations on an otherwise
Hermitian system. Recent work has demonstrated, how-
ever, that a full non-Hermitian consideration [1H4] pre-
dicts surprising phenomena like parity-time (PT) symme-
try breaking [5Hg], the non-Hermitian skin effect (NHSE)
[9H11], exceptional points (EPs) [5] [6] [8, [12H16], and non-
reciprocal transport [7, [17) [18], all of which lead to new
physical insights and the potential for new applications.

One particularly important non-Hermitian system is
the one-dimensional Hatano-Nelson chain [9)[10] in which
couplings between adjacent elements are asymmetric
(Fig. [th), i.e. have different value depending on the cou-
pling direction, and is the simplest system that gives
rise to the NHSE and additionally exhibits exceptional
points. Hatano-Nelson type couplings, along with the
NHSE and EPs, have been demonstrated in mechanical
lattices [19) [20] and electronic networks [21] where non-
reciprocal components, and therefore asymmetric cou-
plings, are relatively easy to produce in real space. These
capabilities are not available in photonics, however, so
previous explorations of non-Hermitian physics have in-
voked synthetic dimensions [22] 23] produced by dynamic
modulations [3| [24] or through the explicit addition of
optical gain [5H8| [25]. Specifically, Hatano-Nelson type
couplings in photonics have only two extant real space
demonstrations 26| 27] both of which used linking cou-
plers having relatively large footprint, required active
materials to produce the asymmetry and to overcome
loss, and only achieved a modest asymmetry in the cou-

plings.

In this work, we show that real space asymmetric cou-
plings with very large contrast can be readily achieved
in integrated photonics through the use of gauge fields
[28, 29] induced by dynamic modulation. This approach
was first demonstrated in microwave circuits [30] with
good results, though an acousto-optics based photonic
implementation [31] produced only a weak effect. Here
we leverage the very large electro-optic effect in thin film
lithium niobate to produce the first Hatano-Nelson pho-
tonic system with coupling contrast large enough to reach
and even surpass the EP condition. While past imple-
mentations of photonic Hatano-Nelson chains [3] 24] 20]
have focused on the NHSE eigenstates, our real space ex-
perimental system enables the study of transport through
the chain and the consequences of the persistent current
within the Hatano-Nelson system [32]. With this capa-
bility, we are able to show that, at the EP, the system
produces arbitrarily large optical contrast that may be
beneficial for isolator and switch applications. By going
past the EP, we are able to unidirectionally flip the sign
of the coupling to achieve photonic gyration.

It is instructive to briefly consider the phenomenol-
ogy of a simple photonic molecule composed of a pair
of identical resonators having inter-resonator couplings
A2 = 14+ a and Ag; = 1 — a (where @ € R) as
shown in Fig. [Ip. For any non-zero « the system can be
analyzed as the Hatano-Nelson model and will exhibit
the NHSE. Notably, an exceptional point (EP) can be
found at the specific value @ = 1 where the coupling for
one direction becomes exactly zero [I] [L6]. At this EP,
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(a) Example Hatano-Nelson (HN) chain exhibiting non-reciprocal couplings for « # 0. (b) A two resonator photonic

molecule with imbalanced couplings 1 + a has complex eigenvalues € that vary with non-Hermitian perturbation a. The
exceptional point (EP) is indicated. The inset figures within the Re(e) panel show evolution of the eigenmode, with red and
blue being opposite phases and the color intensity signifying the amplitude. (¢) Non-reciprocal coupling matching the HN model
can be introduced to a photonic molecule with a reciprocal inter-resonator coupling strength of A by means of time-domain
modulation. The green regions represent the fraction of the photonic resonators that have time varying refractive index, which
produces a temporal variance for the mode frequencies with a value of 3. (d) We can generate a 2D time-invariant equivalent
representation of the time-varying photonic molecule from (c¢) by introducing a synthetic dimension in frequency space. The
modulation depth 3 sets the hopping rate along the synthetic dimension while the relative phase A# sets the flux through each

plaquette of the lattice.

all the eigenmodes are fully localized onto a single res-
onator, irrespective of the length of the chain. Moreover,
transport through the chain in one direction gets shut
down completely, producing an isolator-like response.
For a > 1, the eigenvalues transition from being purely
real to purely imaginary, as shown in Fig. [Ib. Since the
signs of the inter-resonator couplings Aj2 and A9 are
opposite, transport through the chain should exhibit a
gyration response, i.e. a direction-dependent phase shift
of 7.

Our implementation of Hatano-Nelson coupling
through dynamic modulation is presented in Fig[Tk. We
initially assume a reciprocal coupling A between the res-
onators. The resonators are then frequency modulated
sinusoidally with identical frequency w,,, modulation
depth 3, and relative phase A#, so that the instantaneous
frequency of the ;' resonator is expressed as w; = wo +
B cos(wmt + 0;) with 6; = 0 and 0, = Af. Setting aside
loss, we can describe the time-dependent Hamiltonian for
the system as H(t) = 3_; h(wo + B cos(wit + 0;)) a; aJ—i—
h/\(a Qi1+ aja T+1) where a' (@) is the creation (anni-
hllatlon) operator. If we expand the each operator as
aj =Y., ajne”"mt where n indexes the n'" sideband
and apply rotating frame approximation, we get:

H=Y" h(wo+ nwn)al ;. +hA (a},naﬁm + aj,na}H,n)

Jm

B —i0; | A~ 0,
+hs ( jna’] nt1€ s +a’j7’ﬂa;r',n+1€w]) . (1)

This Hamiltonian describes a two-dimensional lattice
(Fig.[Id) with one dimension j representing space and the
other dimension n corresponding to a frequency domain
synthetic dimension [30, [3I]. The first term of Eq.
is form invariant to the variation of an electric poten-
tial in synthetic dimensions [33]. The latter terms re-
semble the Hamiltonian of a charged particle moving on
this lattice subjected to a uniform magnetic field [34],
which is set here by the relative modulation phase A#.
At this point we can discard the synthetic dimension
and generate a new effective Hamiltonian for the central
chain around wy (details in Supplement §1) by project-
ing the lattice sites at non-zero potential into effective
coupling pathways for the chain at zero-potential. With
this new perspective, the effective Hamiltonian matches
the Hatano-Nelson model. It is also useful to note that
the application of other modulation frequencies that are
incommensurate with w,, will produce orthogonal syn-
thetic spaces, and therefore can be used to generate pair-
wise non-reciprocal couplings between other resonators
in more complex configurations.

While the exact coupling rates can be evaluated nu-
merically, a simpler treatment with only the first-order
upper and lower sidebands can be resolved into an ana-
lytical expression that helps to generate intuitive under-
standing. In this simplified treatment, the coupling be-
tween the sites at zero potential (wg) occurs only via three
paths: through reciprocal hopping A, and through the
upper and lower frequency shifted channels that undergo
non-reciprocal phase shift due to the synthetic magnetic



It

N

o e 2
Drop Transmission [t,,]

L L

l

\ ) =03
K_/ 502!
<

4 3 2

. Wik A

N

FIG. 2.

‘€05 Fit o

Detuning from w, (GHz)

1
£

2M\=2.3GHz
"\[2v,=1.2 GHz|,

'
N

\\\\

=0.23 GHz V"

0 1 2 3 4 8 -4 0 4 8
Applied DC bias v, V)

N

Detuning from w, (GHz)
o

(a) True-color image of the experimental photonic molecule, fabricated in a thin film lithium niobate on insulator

photonics platform. The rf modulation electrodes appear in brighter yellow. (b) The transmission spectrum |1€12|2 measured
through the photonic molecule reveals the two optical supermodes of the device. (c¢) The left-port drop transmission spectrum
|t13* measured as a function of dc bias electrode voltage V1 (where Vie = —V.1). This 2D visualization reveals an avoided
crossing that allows us to extract the electro-optic modulation strength per applied voltage (i.e., 8/V') through the slope of the

white dashed line.

flux. The net coupling at wy is therefore affected by in-
terference between these three channels and for the ideal
non-reciprocal case with w,, = A and A6 = /2 [30], is

evaluated as
) @)
(AN +v3)n /)

Here, we have also included ~g, which is the half of the
loss rate of each resonator within the photonic molecule
in the absence of temporal modulation. From Eq. , we
can easily see that the effective coupling takes the form of
the A(1+«) terms similar to the Hatano-Nelson model [9]
10, B8] with o = AB%/(4A\? 4+ 43)yo. Furthermore, the
effective loss rate for the each site at the central chain also
exhibits a modulation-dependent behavior, as elaborated
in Supplementary Section §1.

Our experimental implementation was performed at
1550 nm using 500 nm thick X-cut LiNbOs-on-insulator
integrated photonics platform. The large electro-optic
coefficients of LiNbO3 (LN) enable rf-induced frequency
modulation of the integrated microring resonators. The
resonators within the photonic molecule (Fig. ) sup-
port TEgy modes, and were designed with a crescent-
like ring geometry [36] that was produced by introduc-
ing a 1.125 um shift between two circles of diameter of
195.25 um and 200 um. The crescent-like shape facili-
tates high-Q devices with a tight bending radius, allowing
us to achieve overcoupling at the input and output waveg-
uides without increasing the intrinsic loss rate, which en-
ables a high transmission coefficient. Each resonator is
accessed through a single-mode waveguide with grating
couplers on both ends to provide off-chip optical access.
Metal electrodes for inducing modulation are fabricated
through e-beam evaporation of 300 nm gold followed by
a lift-off process. The electrodes were designed so that
the applied rf field is mostly oriented along the Z-axis of
the LN crystal to harness the rss electro-optic coefficient.
To achieve a balance where we have large modulation
depth with low optical loss, the gap between the elec-
trode and the resonator was set to 2.4 microns, and the

)\12,21 = (1 +

angular coverage of the modulation electrode (green re-
gion in Fig. ) was designed as +45 degrees with respect
to the Z axis of the crystal.

In order to measure optical transport through the
chain we make use of a heterodyne detection system
(Supplement §2). Here we define the optical transfer
function between any pair of ports p and ¢ as the field ra-
tio tpq = Sp,./Sq,+, where s, _ is the outgoing and s, y is
the incoming wave. Fig.|2b presents the power transmis-
sion spectrum through the resonator chain without any
modulation applied (i.e. |t21]?> = [t12]?), revealing two
distinct peaks corresponding to the symmetric and an-
tisymmetric supermodes of the system. This enables us
to estimate the inter-resonator coupling A ~ 1.15 GHz.
Similarly, the loaded optical loss rates are estimated as
279 ~ 1.2 GHz corresponding to a Q factor of 167,000.
Electro-optic modulation is then tested by applying a dc
bias voltage to the electrodes in a pull-push configura-
tion (Vea = —V,1), shifting the resonance frequencies of
the rings in opposite directions. For a transmission mea-
surement (Fig. ) performed at the left side ‘drop’ port
(i.e. |t13]?) we observe an avoided crossing as a function
of V.1, which allows the estimation of the electro-optic
modulation strength § from the tuning slope. The spe-
cific value of 3 is both determined by the electric field
strength (i.e. gap between the electrodes) and the an-
gular coverage of the electrodes for the ring, and for our
configuration we extract 8 ~ 0.23 GHz/V.

We can now investigate the parameter space by extrap-
olating from the measured optical properties and electro-
optic modulation strength. In Fig. |3 we present the nu-
merically simulated ratio of forward and backward power
transmission \tlg/t21|2, i.e. the amplitude contrast, as
well as the phase contrast arg(t12/te1) at the zero detun-
ing frequency wg. For both plots we vary the synthetic
lattice spacing (modulation frequency) w,, and hopping
strength 3, while setting Af = /2 to maximize the opti-
cal non-reciprocity. In Fig. [3p we observe many trajecto-
ries in the lattice parameter space where very high optical
contrast is obtained, corresponding to EPs in the pho-
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(a) Experimentally measured representative spectra of the amplitude and phase responses before, near, and after

the EP at Vee,erit = 6.77 volts rms. Experimentally measured evolution of the non-reciprocal (b) amplitude contrast |t12/to1|*
and (c) phase contrast arg(ti2/t21) at zero detuning. The sweep of V. corresponds to 8 values roughly along the dashed line
shown in Fig. [Bh. These measurements confirm the maximal transmission contrast at the EP and gyration beyond the EP.

tonic molecule. When £ is increased past an EP trajec-
tory the sign of the inter-resonator coupling flips, result-
ing in an island-like region where gyration takes place,
i.e. a direction sensitive m-phase contrast. These struc-
ture in parameter space are fairly complex since we in-
voke 5 sidebands in the calculation (additional sidebands

do not noticeably affect the simulation). Fig. [3| predicts
that the most accessible EP with the lowest value of
will be found near w,,, ~ 1.4\.

For experiments we generate an rf signal with fre-
quency wp,, whose amplitude V.. (rms value) con-
trols the hopping strength in synthetic dimension g,



specifically setting V.1 = V2 Ve, cos(wpt) and Voo =
V2 Ve cos(wmt + A) with the required phase offset of
A = /2. Fig.[3k shows that we successfully reached the
above predicted EP for Ve¢ ¢t = 6.77 volts rms and were
able to experimentally confirm a record amplitude con-
trast of ~ 60 dB. Our ability to measure and report the
optical isolation contrast was limited only by the noise
floor of the measurement electronics, though in princi-
ple the contrast should tend to infinity at the EP with
sufficient fine tuning and improved SNR.

To fully extract the amplitude and phase information
of the transfer functions, we modify our setup slightly
to include an external electro-optic amplitude modula-
tor (details in Supplement §3). We are specifically inter-
ested in the evolution of the optical transfer functions
to1 and t19, i.e. in opposite directions, as we sweep
past the EP along the path shown by the dashed line
in Fig.[3p. Fig.[4h shows a representative sequence of the
evolution of these transfer function spectra (both ampli-
tude and phase) for V.. just prior to, near, and after
Vee,erit- Fig. ,C present consolidated single-point (zero
detuning) measurements of the experimental transmis-
sion for many more values of V.. through the identified
sweeping path. From here we can verify that the non-
reciprocal contrast peaks around V. crit, in agreement
with Fig. Bk. Additionally, we confirm the direction
dependent m-phase contrast for V.. beyond the critical
value, while the amplitude contrast also reduces, demon-
strating that we have entered the predicted gyration is-
land. Notably, at zero optical detuning, the photonic
molecule exhibits fast (slow) light in the backward prop-
agation direction before (after) the critical voltage level.
The slope of the phase response becomes remarkably
steep, eventually approaching infinity at Veccrie. This
behaviour also serves as an indication of the EP, which is
realized by destructive interference between the channels
at different potential levels.

The synthesis of asymmetric couplings in real space is
important for the exploration of a variety of novel phys-
ical systems, including topological materials [11, 21, [37-
41]), high-order exceptional points [12] [14] [16], and skin

effect phenomena [9HIT] [19H21] 26 27, [42]. Our work
demonstrates a versatile approach to achieve asymmetric
couplings in real space using commonly available modu-
lation techniques that can be implemented in photonics
foundries without requiring optical gain. Moreover, this
approach is shown to be very effective in reaching the EP
condition, and surpassing it to produce gyration, neither
of which were achieved in previous integrated photonics
efforts. Our technique can be readily expanded to more
complex configurations by using multiple modulation fre-
quencies that produce orthogonal synthetic spaces, en-
abling higher dimensional photonic materials and longer-
range asymmetric couplings.
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I. INPUT-OUTPUT RELATION OF PHOTONIC
MOLECULE UNDER DYNAMIC MODULATION

We use coupled mode theory to calculate the input-
output relationships for the photonic molecule considered
in this work. Each resonator has an intrinsic resonance
frequency wg, and the reciprocal coupling rate between
resonators is A\. We sinusoidally modulate the resonance
at each site with a modulation frequency of w,,. The
phase of the modulation is changed linearly with fixed
phase offset of Af relative to the adjacent sites. Gener-
ally we can write that the resonance frequency of the nth
resonator is:

Wi (t) = wo + B cos(wmt + 0y,) (1)

where (8 is the modulation amplitude. We can also ex-
press the time evolution of the intracavity field in each
resonator as [1} 2]:

0 . . .

37 10() = [iQ0 + i (1) = T |a(t)) + iK™ |s1. (1)) (2)
Here, |a(t)) = [a1(t),a2(t)]” is a vector containing the
intracavity field of each resonator, and the other variables

are:

_ |wo A Yo 0 _ Kext 0
o= 5 r=[0 2] <=5 ]
[ Bcos(wmt + 61) 0

= [ 0 B cos(wpmt + 62) (3)

The effect of the modulation is taken into account via
Q1 (t) matrix, and I' includes on-diagonal elements ~y,
which are the total decay rate of each resonator. ke ; in
K is the external coupling rate between the resonators
and the ports, and I' and K are related to each other
as 2I' = KTK + kI [3], where k = diag(ko, ro) is the
intrinsic loss in each resonator. Finally, the incoming and
outgoing waves from the ports are expressed by |s4(t))
vectors respectively. For an input excitation of |s4 (t)),
we can write the outgoing wave as:

s (1)) = s+ (1)) +iK |a(?)) (4)

a b
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FIG. 1. (a) The configuration consists of 2 coupled res-

onators. Each resonator is assigned a time-varying resonant
frequency, as described by Eqn. |1} (b) This short chain can be
mapped to a time-invariant 2D lattice, with synthetic electri-
cal and magnetic fields. (c) All the interactions taking place
in the 2D space can then be collapsed into an effective system
for the central resonator pair and reveals a Hatano-Nelson
type non-reciprocal coupling.

In order to calculate the spectral response, we take the
Fourier transform (i.e. |a(w)) = [ dt|a(t)) e=**) of both
sides of Eq.

iw |a(w)) =iHo |a(w)) + K" |s4(w))
+iBa(w — wp)) +iBY |a(w + wy)), (5)

where Hj is the Hamiltonian of the system without any
modulation and is given by Hy = Qg + i['. The matrix
B = diag(f, B2) represents the coupling between the ad-
jacent resonators in the synthetic frequency space with
Bn = e~ 3/2. The eqn. produces a recursive relation-
ship between different frequency components separated
by fw,,. Since we generate infinitely many sidebands
due to the applied modulation, we can extend the Eq.



for all sidebands as [1]:

iw|a(w)) = iH |a(w)) +iKT oy (W), (6)
where H is the block-tridiagonal matrix
0 0 0
. Hy—w,l B 0 0
H=|0 Bf Hy B ol, (7
0 0 BY Hy+wnl -’
| 0 0 0 i

and K is a block-diagonal matrix with each block compo-
nent being K. Furthermore, the intracavity field vector
for all sidebands |a(w)) and incoming and outgoing wave
vectors |oy(w)) are:

la(w + wm))

52 (w + wm))
o) = | la@) | os@) = | ls£(@))
la(ew — w))

s (w —wm))

(8)
We see that once eqn. [f] is re-written as eqn. [] with a
Hamiltonian of eqn. [7] our system now transforms into
a 2D lattice (Fig. [Ip) spanning in frequency and spatial
domain. Furthermore, the Hamiltonian in eqn. [7| for the
two-dimensional array not only spans in the synthetic
frequency dimension, but also manifests two synthetic
fields in the system. The diagonal terms of the Hamil-
tonian are equally spaced by w,,, which depends on the
external modulation frequency. This is equivalent to the
Hamiltonian for a charged particle in an electric field
that produces an electrostatic potential gradient along
the direction of the field. Moreover, examining B ma-
trix, which represents the coupling between the adjacent
resonators in the synthetic frequency space, shows that
there exists a direction-dependent phase shift of A in
each plaquette, induced by the phase gradient Af with
the external modulation (Eq. . This is equivalent to
the Hamiltonian for a charged particle in a magnetic field
with out of plane flux of Af [4] [5].

The impact of the synthetic electric and magnetic fields
on the transport properties of the photonic molecule can
be determined by producing an effective Hamiltonian for
the central chain. To do so, we project the effect of sites
at non-zero potential by using the properties of the block
tridiagonal matrix as:

iwl aw)) = i {[Ho] = O = O} |a(w)) +iK” |s: () (9)
where
O = B(lwl — H_1] + B([wl — H_5] + ... (10)

+ B([wl — H_j 1]+ BlwI — H_;]7Y(B)")™!
(B)"..)H)(B)f

and
O = (B)([wI — Hy] + (B)'([wI — Ha] + ... (11)
+(B)N([wl = Hy-1] + (B)'[wl — H;)"'B)~!
B.)"Y)B

Here, we truncated the synthetic frequency dimension at
+J*% sidebands. Furthermore, H; = Hy — jw,, 1, |a;) =
a(w+ jw)) and [s_;) = |s_ (o + jwp)), where {j €
Z| —J < j < J}. From eqn. EI, we can also write the
effective Hamiltonian for the central chain around wq as:

o A A A
rut-0-0-[0 ] G

Here, ~ is the effective loss rate, A2 and A9 are the
directional coupling rates of the sites at zero potential
with A2 # A21. Also, v, A2 and Ay are purely real
due to the symmetric (asymmetric) transmission (phase)
spectrum of the photonic molecule around wg. Because of
this symmetry, the effective Hamiltonian is pseudo anti-
Hermitian and shows an exceptional point (EP) when Ajo
or \gp is zero. To understand the formation of the EP,
we obtain a simplified expression of Heg by considering
the sidebands up to first order as:

_ |0 A
Hea = [ A i%}
L [wm —iv0 +Ae7A0 32 /4
+)\61A9 W — 170 (Wm _ i'YO)2 —)\2
—Wpy, — @ +AetA? B?/4
+ —iAgO _ _ . / 2 2 (13)
+Xe Wm — 70| (W +170)% — A

Considering the symmetry of the photonic molecule,
we can further simplify the above expression by substi-
tuting w,, = A and Af = /2

B (75 +2)%) )
— (14 20T A )
T ( 2(g +475A?)
B*Mo
P 1 —————————————
Mz =4 ( )
B*Mo
Ao =2 ( % + AN )

From equn. we see that effective loss rate () and
inter resonator coupling rates (A12 and Ag;1) show a mod-
ulation dependent behaviour. Importantly, the inter res-
onator coupling rates are non-reciprocal (i.e., A\j2 # A2;
and Ai221 = A(1£a)), and show a dependence similar to
the Hatano-Nelson model with a = 82X\yo/ (75 + 472 \?).
We reach the EP when o becomes 1, resulting in infi-
nite non-reciprocal contrast for transmission through the
photonic molecule. If we include higher order sidebands,
the same form of the effective Hamiltonian holds, and
we show this by numerically calculating the eigenvalues
of the system in Fig. Similar to previous conclusion,
we see that a set of exceptional points occurs for various
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FIG. 2. Simulated eigenvalues of the photonic molecule for various modulation depth (8) and frequency (wn) by including five
sidebands above and below wg. The real (a) and imaginary (b) solutions coalesce to a single point at the exceptional points,

which are highlighted as a black curve in this parameter space.

values of 8 and w,, (shown as the black curve). Here,
the bold red and grey curves in Fig. [2| correspond to
our experimental results that are presented in the main
manuscript.

After obtaining the effective Hamiltonian, we can also
calculate the S parameters of the photonic molecule with
two external ports as:

So =1+ K[wl — Heg] 'KT. (15)

In Fig. 3 of the main manuscript we present the impli-
cations of Eq. in the form of a heat map showing
the non-reciprocity in the amplitude and phase response
through the photonic molecule.

In the above analysis, we derived the effective Hamil-
tonian for the central chain by projecting the influence
of pathways with non-zero potential onto wg to obtain an
effective value for Aj2 1. Using this Hamiltonian, we cal-
culated the S parameters of our photonic molecule and
demonstrated that the asymmetry in the effective cou-
pling strengths induces non-reciprocity in the system.
This approach can be similarly applied to determine the
effective Hamiltonians, and consequently, the S parame-
ters for any of the sidebands at integer multiples of w,,
most easily accomplished through numerical evaluation.
As a specific example, we numerically evaluate the effec-
tive coupling rates Ai221 at the sideband at +w,, (the
result is the same for the —w,, sideband due to symme-
try) as shown in Fig. We observe that asymmetric
coupling also occurs at this sideband (Fig. [3p,c). As ex-
pected, the asymmetry translates to non-reciprocity in
the transmission amplitude for both the central chain
(Fig. [Bp) and the first-order chains (Fig. [Bd), which can
also be seen in the main manuscript Fig. 3c. For the
central chain, the presence of an exceptional point (EP),
where either of the effective couplings A2 21 — 0, pro-
duces a giant nonreciprocal effect, but this is absent in
the first-order sideband. Finally, we note that the effec-
tive couplings Aq2 21 are purely real for the central chain
(Fig. [3h) but complex valued for the first-order sideband

chains (Fig. [3c).
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FIG. 3. Effective coupling strengths (A12,21) and amplitude
responses (t12,21) of both the central chain and first-order side-
band at 4w, (same at —wn, due to symmetry) for different
modulation depths (8). Central chain: (a) Effective coupling
strengths, (b) Amplitude response at w = wp. First-order
sideband: (c) Effective coupling strengths, (d) Amplitude
response at w — wo = +wm,.

II. MEASUREMENT OF THE OPTICAL
TRANSMISSION

We utilize an optical heterodyne detection system,
shown in Fig. [4] to measure the carrier transmission. We
use an external cavity diode laser (the New Focus model
TLB-6728-P) with a narrow linewidth (< 50 kHz) as the
light source, which is split into two paths using a 50:50
coupler. One path is used to probe the device under test,
while the other path serves as a reference. For hetero-
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FIG. 4. Heterodyne detection system to measure the non-reciprocal optical transmission. ECDL: External cavity diode laser,
AOQOFS: Acousto-optic frequency shifter, PD: Photodetector, VNA: Vector network analyzer, FPC: Fiber polarization controller

dyne detection, the reference path is shifted in frequency
by 100 MHz using an acousto-optic frequency shifter, and
the interference of this shifted light with the probe signal
is detected by a high-speed photodetector (PD). The di-
rection of probing is controlled using an off-chip optical
switch (Thorlab model OSW22-1310E). Fiber polariza-
tion controllers (FPCs) are used to adjust the polariza-
tion of the light that is coupled to the chip. The minimum
per-grating coupler loss is ~ 5 dB, and we factored out
these losses while normalizing our experimental results.
Additional information on the experimental setup and
heterodyne detection method can be found in previous
studies [6], [7].

III. MEASUREMENT OF THE OPTICAL

PHASE RESPONSE

We use an external electro-optic amplitude modulator
(EOM) (IML-1550-40-PMV-HER) to measure both am-
plitude and phase response of the optical system (Fig. [5]).
Similar to the heterodyne measurement system, light
(and hence the pump signal) is generated via an external
cavity diode laser (the New Focus model TLB-6728-P).
The probe signal is generated by applying an RF sweep
to the electro-optic modulator via vector network ana-
lyzer (VNA). During the measurement, the pump signal
is detuned far from the optical modes, and the probe sig-
nal scans both of the resonances due the sweep of the RF
frequency. The photodetector reads the beat note signal
generated by the pump and probe signals which is then
fed to the VNA to measure optical transfer functions to;
and tlg.

In order to calibrate our signals and remove the in-
terference of the experimental setup, we first perform a
reference optical transfer function measurement without

probing any optical mode (i.e. measuring the drop trans-
mission through the waveguide). Under this condition,
the optical spectrum at the photodetector is:

Sout = Ege-iett (1 4 20 —iaurronoy

+ 5e(§e)ei(get+¢(95)))+c.c (16)

where (). is the RF frequency applied to the external
EOM, B.(Q2) is the EOM intensity modulation coefficient
while Er is the amplitude of the electric field in the de-
vice path. Here, we also defined ¢(€2) which represents
the relative delay of the sidebands with respect to the
carrier. Using equation we can find the RF outputs
at the photodetector as:

Poyt = ‘ERe_th (1 + Le(ge)e_im“tﬂbm“))
ou 2

2
4 Bellle) e“”etmme))) +ee|  (17)

2

We are interested in the signals that are at . (i.e. fre-
quency of modulation), then the result in simplifies
to:

Po, = A|ER|*Becos(Qet + ¢(S2e)) (18)

While measuring the received signal, the VNA decom-
poses the signal in[I§]to its in-phase and quadrature com-
ponents:

Pge = 4|ER\2,86003(QJ + O(Qe))cos(Qet — 6(2)) (19)

Py/? = 4| Eg[*B.cos(Qet + 6(Q0))sin(et — 0(Q2)) (20)
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FIG. 5. Measurement setup with external electro-optic modulator to acquire both amplitude and phase response of the system.
ECDL: External cavity diode laser, EOM: Electro-optic modulator, PD: Photodetector, VNA: Vector network analyzer, FPC:

Fiber polarization controller

where 0(£.) is the electrical delay between the local oscil-
lator of the VNA and the measured photodetector out-
put. After the filtering of the components at 2€)., the
measured signals become:

Py, = 2| Ep|*Becos(6(Qe) + 0(Qe)) (21)

PL/? = 2| Eg|*Besin(¢(Qe) + 0(2)) (22)

The complex valued output signal which we use to cali-
brate further measurements is:

Si,0. = 2|ER\256(003(¢(QQ) + H(Qe))
1 isin($(Qe) + () = 4| Eg[2B./ @@ +000)  (93)

We now can acquire the complex response of the pho-
tonic molecule by measuring the through transmission.
In this case one of the generated sidebands vanishes (it is
the Stokes sideband for this case) due to the lack of the
optical states, and the RF outputs at the photodetector
becomes:

2
Pout:

EReiiUJLt (tc + tusweii(get+¢(96)) +c.c
2

(24)
Here, we used the variables t. and t,s to represent the
complex transmission coefficients of the carrier and the
upper sideband respectively. Ideally, t. = ¢ with |t.| < 1
so that we can retrieve the true cavity response. Then,
the measured signal at ), becomes:

Pa, = 2|Er*Betel|tus|cos(Qet+d(Q2e)+0:(Qe)+0us ()

(25)

Here, ©. and ©,, are the phase response of the carier
and the sideband respectively. After the measurement
using VNA, the complex signal becomes:

S2.0, = |ER|2ﬁe|tC‘|tuS|(COS(¢ +60+ 0.+ 0y)

+isin(p+04+0.4+0s)) = 2| Er|?Belte|[tus|e @ HIHO+Ous)
(26)

We can find the response of the sideband signal and hence
the cavity response by dividing eq. [26] with eq.

So0.  |tel[tus|ei(®tOus)

S0 5 (27)

Then:

tus = (2529> (28)

tcSI,Qe

The expression tys (tpg in the main manuscript) now rep-
resents the calibrated cavity response. During our ex-
periments, we positioned our carrier signal so that |¢.|
is purely real (i.e. the carrier signal does not probe the
photonic molecule), and we used eq. [28] to measure both
the phase and amplitude response of the system for both
directions.
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