

Wildfire and power grid nexus in a changing climate

Soroush Vahedi¹, Junbo Zhao^{1,†}, Brian Pierre², Fangni Lei¹, Emmanouil Anagnostou¹, Kang He¹, Charles Jones³, Bing Wang⁴

1. Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA. 2. Sandia National Laboratories, Albuquerque, NM, USA. 3. University of California, Santa Barbara, CA, USA. 4. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

†e-mail: junbo@uconn.edu

Abstract | Global wildfire events have caused escalating impacts all over the world in recent years, particularly in the western United States, due to extreme fire-weather, fuel accumulation, and numerous ignition sources. The 2018 Camp Fire in California, caused by powerline ignition, killed 84 people, and caused about \$9.3 billion in housing damage, leading to the filing for bankruptcy by the responsible utility service holder - Pacific Gas & Electricity (PG&E). Wildfires caused by power lines tend to be larger and more devastating than other fires, as they are often ignited during high wind conditions, which makes it easy for fires to spread. Moreover, the spreading of wildfires and the corresponding ignition prevention actions would also cause power outages, resulting in tremendous economic impacts. This article reviews wildfire risks in a changing climate and its interdependency with power grid infrastructures, where the power grid resilience in the presence of wildfire is explored, including wildfire-induced grid risk analysis, prediction, and mitigation strategies. Some practical analysis and experiences in the US will be shared to provide valuable insights for researchers, policymakers, and industry practitioners.

Key points |

1. Analyzes global wildfire patterns and the role of advanced modeling techniques in predicting wildfire behavior, assessing risks, and informing mitigation strategies to better protect power systems infrastructure and human communities.
2. Explores the bidirectional interactions between wildfires and power systems, highlighting the risks of powerline-induced ignitions, infrastructure damage, and mitigation strategies to enhance resilience.
3. Comprehensive strategies for wildfire risk management, including proactive measures, real-time mitigation responses, and recovery plans to enhance resilience and reduce wildfire impacts on power systems and communities.
4. Proposes power system resilience roadmap against wildfire integrates wildfire models, proactive strategies, comprehensive planning, funding partnerships, and ongoing evaluation to ensure safety and sustainability amid escalating wildfire challenges.

1. Introduction

In recent years, extreme weather events such as earthquakes, floods, winter storms, hurricanes, and wildfires have caused significant power interruptions worldwide. Among these events, the increasing frequency and intensity of wildfires are profoundly affecting power system operations and planning globally. Regions such as the western United States, Canada, Australia, southern Europe, northern Eurasia, Chile, and Brazil have been notably impacted¹⁻⁴. These wildfires have led to severe environmental, economic, and human damage. The Copernicus Atmosphere Monitoring Service (CAMS) reported that Canada recorded the highest wildfire carbon emissions since 2003⁵. Similarly, Greece experienced the largest wildfire in European Union history, and on August 8, 2023, Maui, Hawaii suffered its deadliest wildfire in over a century, marking a significant event in U.S. weather history⁶. In 2020, the U.S. faced over 58,000 wildfires, burning more than 10 million acres, as reported by NOAA^{7,8}. In 2022, over 7.5 million acres were burned, with Texas having the most fires and Alaska having the most acres burned⁵. California remains a focal point, enduring the largest, most destructive, and deadliest wildfires, including the 2018 Camp Fire⁹, which resulted in the highest insured loss¹⁰. In 2023, states with the most homes at risk for extreme wildfires included California, Colorado, and Texas. Texas recently experienced its largest wildfire, the “Smokehouse Creek Fire,” which burned over 1 million acres¹¹, leaving at least 11,000 people without electricity.

Wildfires in the U.S. cause between \$394 billion and \$893 billion in damages annually, equivalent to 2-4% of U.S. GDP, as per a JEC report in 2023¹². This is significantly higher than existing estimates in the literature¹³. Climate change is expected to exacerbate the cost of wildfires, making them burn longer and produce more smoke, thereby posing greater challenges to power delivery and generation infrastructure. Addressing the impacts of climate change has become a challenge for the electrical industry and humanity in general. This underscores the urgent need to modernize and fortify the electric grid to ensure continuous electricity access during wildfires and to mitigate the ignition risk posed by aging power transmission and distribution infrastructures. Consequently, discussions on the nexus between wildfires and the power grid in a changing climate have become increasingly prevalent^{1,2}.

Resilience refers to the power grid's ability to withstand and recover from high-impact, low-probability events, and to prevent similar issues in the future¹⁴. Climate change and human-driven land use changes have not only extended the wildfire season but also intensified the severity and expanded the extent of the burned area¹⁵. As extreme weather events become more frequent, resilience now means safeguarding against and recovering from significant disruptions. Developing models that predict these events, assess their impact, and manage and mitigate their risk is crucial. However, recent wildfires in regions such as California and Australia have exposed the shortcomings of legacy power grids, leading to widespread blackouts and significant socio-economic impacts. The 2018 Camp Fire in Northern California, sparked by PG&E's electrical infrastructure, resulted in at least 85 deaths, the destruction of 18,800 homes and structures, and the burning of 153,336 acres¹⁶, leading to a \$13.5 billion lawsuit against PG&E¹⁰. Similarly, the Thomas Fire, sparked by two Southern California Edison (SCE) power lines in 2017, burned 280,000 acres, destroyed more than 1,000 structures, and incurred approximately \$80 million in costs¹⁷. Other examples, such as the Witch Fire (2007), Black Saturday Bushfires (2009), Bastrop County Complex Fire (2011), and Attica Fires (2018), caused by power lines, have also resulted in significant damage and financial burdens¹. Power lines can ignite wildfires, particularly in high wind or dense vegetation conditions.

Advanced methods to minimize ignition risks include utility companies de-energizing (i.e. shutting off) power lines during periods of high winds and fire danger. However, this preventive measure has many

adverse effects and can disrupt essential infrastructure like hospitals or food supply. In 2019, PG&E planned power shutoffs left 2.7 million people without electricity in California¹⁸, highlighting the need for improved resilience in 21st-century power grid infrastructure¹⁹. Wildfires can damage power lines and cause power outages that impact critical infrastructure and communities. For instance, a fire at an interconnector in the UK caused the power supply to cease for almost a week and was expected to operate at a reduced capacity for six months. According to the British Broadcasting Company²⁰, this caused a 19% increase in electricity prices the following day. Given the close relationship between human activity and wildland ecosystems and changes in the climate, power outages due to wildfires could become more frequent¹.

Wildfires present unprecedented vulnerabilities to both natural and built environments, including power grid infrastructure. Enhancing grid resilience against wildfires is essential for effective risk management. Implementing effective wildfire risk reduction strategies is necessary to minimize the impact of fires and power outages. It is crucial to analyze wildfire patterns and severity and understand the interaction between wildfires and power systems to develop these strategies. This article explores the relationship between wildfires and power systems, examining past blackouts, the impact of wildfires on power systems, and ignition sources. It also reviews several wildfire risk management frameworks for electric power systems and identifies research gaps to guide researchers, policymakers, and industry practitioners.

2. Global Wildfire Patterns and Wildfire Modeling

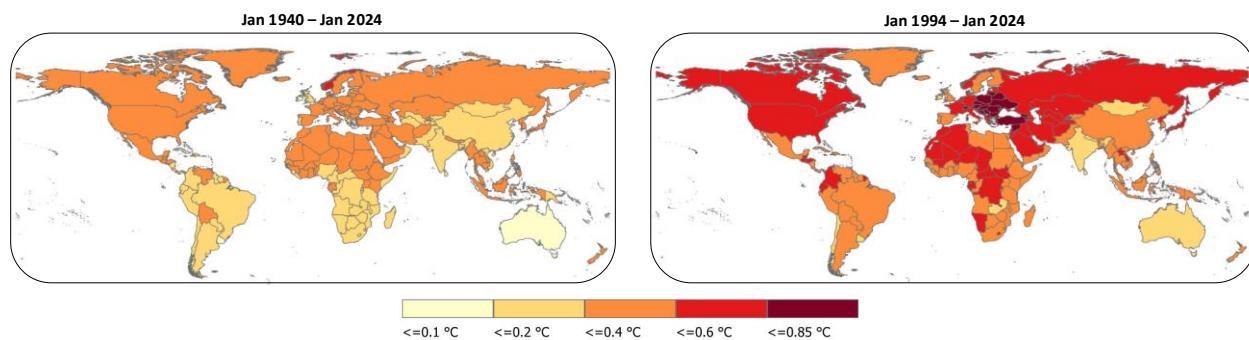


Fig. 1 (a) Trends in annual surface temperature (1994-2024, left) compared to the trend since 1940 to 2024 (right) show recent warming is much faster, especially in the Arctic where ice and snow loss accelerates warming (Data source: Copernicus Climate Change Service: <https://ourworldindata.org/climate-change>).

2.1. Global Pattern of wildfires

Wildfires arise from the intersection of dry weather, fuel, and ignition sources²¹. Weather significantly influences regional burned areas, with temperature, humidity, precipitation, and wind speed playing key roles in fire spread and intensity²¹⁻²⁴. From 1979 to 2019, climate change and extreme weather conditions, such as heat and drought, have markedly increased the frequency and intensity of wildfires^{25,26}. Models indicate that climate change has impacted fire weather across 22% of global burnable land²⁷. NOAA¹ reports that Earth's surface temperature has increased by 0.14°F per decade since 1880, with this rate doubling since 1981²⁸. This accelerated warming is likely intensifying the

¹ National Oceanic and Atmospheric Administration

Annual area burnt by wildfires for 2023

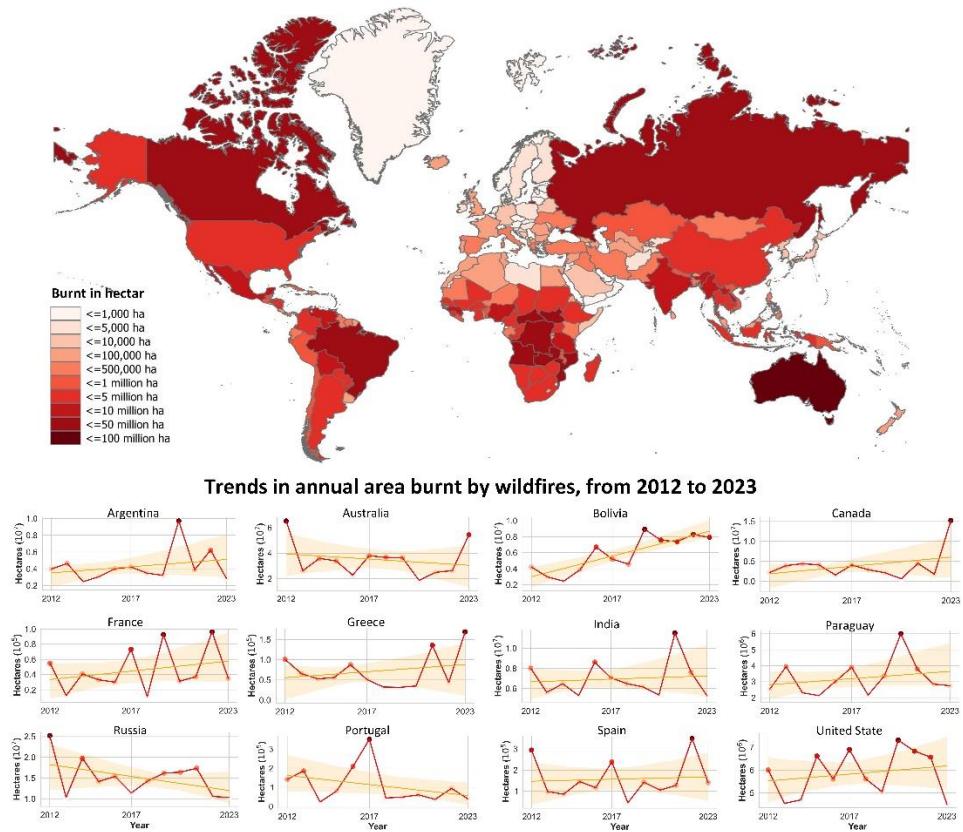


Fig. 1 (b) Annual area burnt by wildfires in hectares (data collected from Global Wildfire Information System: Data: <https://ourworldindata.org/wildfires>). The orange lines represent the overall trend in burnt area for each country during the specified period with the shaded areas depicting the confidence intervals for the regression trends.

global water cycle, leading to more intense rainfall²⁹, severe droughts, and changes in regional humidity (Fig. 1(a)). Recent hot extremes, unlikely without human influence, underscore the link between climate change and increased wildfire risk³⁰.

In April 2024, the Northern Hemisphere recorded its warmest month, at 1.75°C above average, surpassing the previous record set in 2016³¹. Human activities have likely escalated the frequency of extreme events, such as concurrent heatwaves and droughts³⁰. The IPCC's "Climate Change 2021: The Physical Science Basis" reports that global surface temperatures have risen by approximately 1.09°C since the pre-industrial era, with projections ranging from 1.0°C to 5.7°C by 2100, depending on CO₂ emissions. This warming trend is anticipated to heighten the likelihood and severity of wildfires globally³⁰. Annual burned areas are estimated at 350 million hectares per year^{32,33}, with the burnable area affected by long fire weather seasons doubling in recent decades³³. These trends illustrate the clear link between rising temperatures and increased wildfire frequency and severity. However, future wildfire activity will depend on complex interactions among climate conditions, fuel availability, and human activities.

Given this context, recent years have seen significant wildfire outbreaks in countries such as the United States, Canada, Australia³⁴, Southern Europe^{35,36} (Spain, France, Portugal, Greece), as well as in South America (i.e. Bolivia, Argentina, and Paraguay), and India (Fig. 1(b)). From 2012 to 2023, trends in annual burned areas show increases in Argentina, Bolivia, Canada, France, Greece, India, Paraguay, Spain, and the United States, and decreases in Australia, Russia, and Portugal, despite ongoing significant wildfire events in these regions³⁷. In 2023, major wildfires occurred in Australia,

Bolivia, Canada, and Greece, highlighting the rising frequency and severity of wildfires due to climate change and other factors. However, observed trends in the global burned area have decreased despite increasing fire weather. As a result, climate projections alone cannot be used to understand future changes in wildfire activities³⁸. Understanding the future dynamics of wildfire activities requires improved projections of climate-wildfire-vegetation feedback, potentially using dynamic global vegetation models (DGVMs) coupled with climate models to simulate future vegetation and fire scenarios. Future human activity, including changes in population, land settlement patterns, and fuel management, will play a crucial role in future wildfire risks.

Future changes in lightning frequency and distribution may influence wildfire risk but are highly uncertain, with some studies predicting increased lightning activity due to higher Convective Available Potential Energy (CAPE), while others suggest a decrease in lightning frequency³⁸. There is likely to be regional variation in these changes, with stronger evidence of observed and projected increases in lightning frequency and ignition efficiency in North American boreal forests. This highlights the complexity and uncertainty associated with wildfires compared to many other climate hazards.

The contiguous United States has experienced an increase in the annual average temperature by 1.2°F over recent decades and by 1.8°F since the early 1900s^{39,40}. Climate change has resulted in drier conditions, prolonged droughts, stressed forest vegetation, pest outbreaks, and increased surface fuel accumulation⁴¹. Consequently, fires in U.S. regions are now up to four times larger, three times more frequent, and more widespread in the 2000s compared to the previous two decades⁴². The National Interagency Fire Center reports that the 5-year average of annual wildfire suppression costs on U.S. federal lands is about \$2.86 billion (2018-2022), 40% higher than the 2013-2017 average⁴³. These trends are expected to persist until mid-century, potentially limiting fuel availability in some western forests⁴⁴.

California, particularly Los Angeles and San Diego Counties, has the highest probability of wildfire occurrence⁴⁵ (Fig. 2 (a)). Other high-risk regions include the Northwest, Rocky Mountain (Colorado), Great Basin (Nevada and Utah)⁴⁶, Southwest and South (Arizona, New Mexico, and Texas), and states like Florida, Hawaii, and Alaska. The economic impacts of wildfires are significant, with the Wildfire Hazard Risk Index identifying Southern California, Southern Arizona, Northeast Nevada, Northern

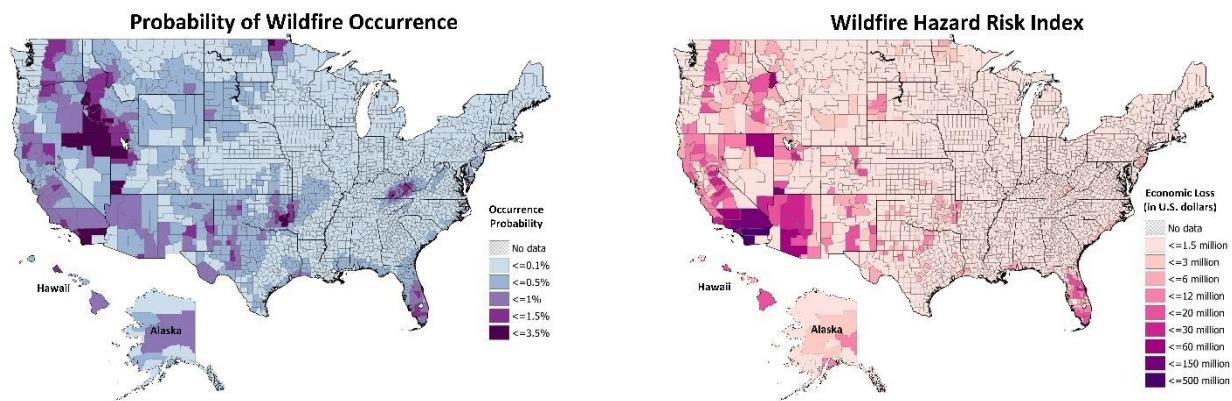


Fig. 2 (a) The probability of wildfire occurrence value represents the modeled frequency of wildfire hazard occurrences (events) per year at the county level (left). The Wildfire Hazard Risk Index presents the community's average economic loss from wildfire hazards each year (right)⁴⁴. The figures are created based on the data that is sourced from Federal Emergency Management Agency 2023 (<https://hazards.fema.gov/nri/data-resources>). Department of Homeland Security (2023), and the U.S. Department of Agriculture's Forest Services' FSIM Burn Probability and Fire Intensity Level Data.

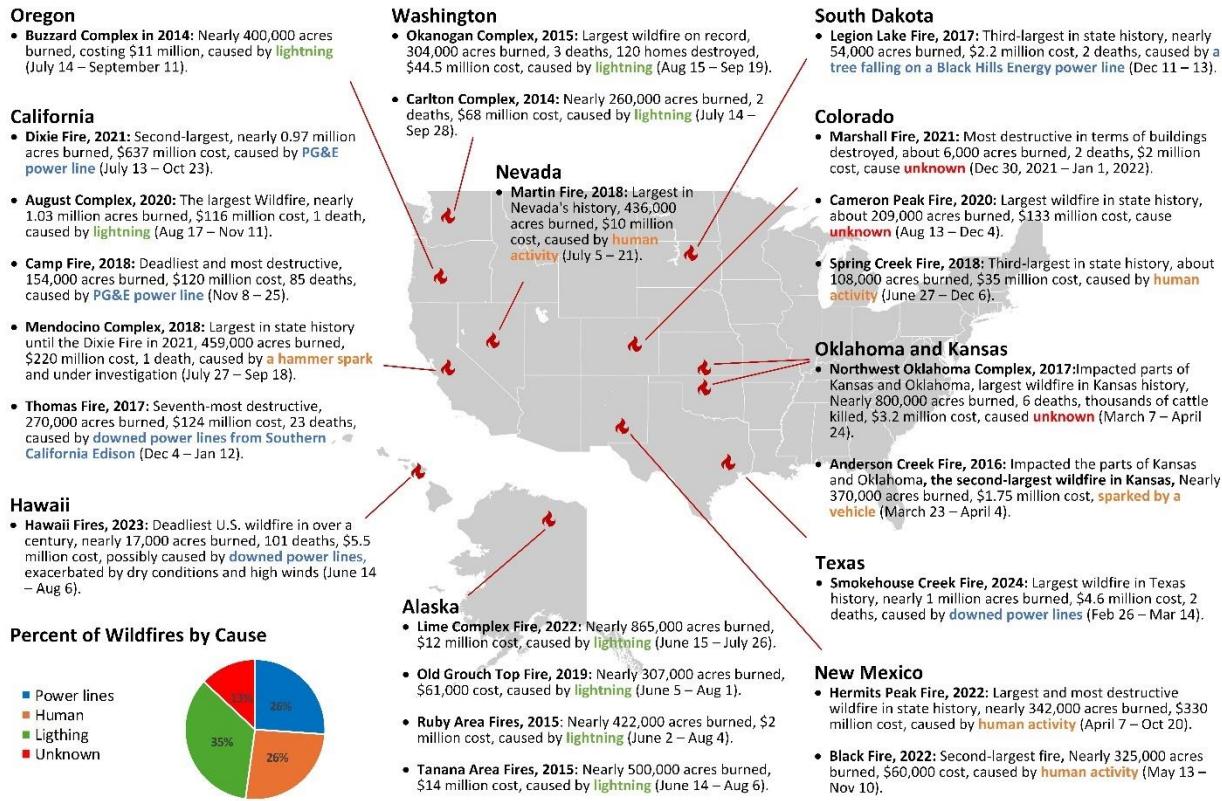


Fig. 2 (b) Key Wildfire Events in the U.S. (2014-2024). Data collected from the Annual National Climate Report (2014-2023) by the National Centers for Environmental Information and the Wildland Fire Summary and Statistics Annual Report (2014-2023) by the National Interagency Coordination Center.

Idaho, and Hawaii as the most affected⁴⁷. From 2014 to 2024, key wildfire events in the U.S. revealed that 35% were caused by lightning, while 26% were attributed either to power lines or human activities (Fig. 2(b)). In California, 60% of notable wildfires⁴⁸, as well as all wildfires in Hawaii, Texas, and South Dakota, were caused by power lines, resulting in significant damage and fatalities. The 2023 Hawaii Fires⁶ were the deadliest in over a century, while the 2024 Smokehouse Creek Fire¹¹ was the largest wildfire in Texas history. Wildfires in the Northwest (Washington and Oregon) and Alaska were primarily caused by lightning, while those in the Great Basin, Rocky Mountains, and Southern areas were mainly due to human activities. This trend underscores the urgent need for improved wildfire management and mitigation strategies.

2.2. Wildfire Modeling

As wildfires become more frequent and severe, the demand for advanced wildfire risk assessment products has significantly increased. Effective risk assessment relies on accurate wildfire modeling, which is complex due to the various interacting factors that influence fire intensity, spread, and impacts on human life and infrastructure⁴⁹. Models typically address wildfire spread, wildfire front properties, and wildfire impact. Wildfire spread models predict fire perimeter advance, rate of spread, fire line intensity, and fuel consumption. Wildfire front properties models describe the geometric features of flames, such as height, length, depth, and angle of inclination. Wildfire impact models analyze the effects of wildfires, including heat and emissions, on human well-being and infrastructure.

Wildfire simulation models are vital for understanding fire dynamics and improving fire propagation forecasting, crucial for effective disaster response¹⁹. Table 1 lists the most renowned and practical wildfire models, detailing their primary applications, key features, benefits, and drawbacks, and explores their use in Power System Resiliency Assessment (PSRA).

Over the last decade, numerous wildfire simulation models have been developed worldwide, crucial for predicting wildfire behavior and assisting in effective fire management. FireSim, developed by Technosylva, is widely used for real-time fire behavior prediction and risk assessment by major utility companies like PG&E and SCE^{50–55}. The Interagency Fuel Treatment Decision Support System (IFTDSS), a user-friendly tool developed by the US Forest Service, integrates multiple models to support wildfire risk assessment and fuel treatment planning. Researchers have used IFTDSS for spatiotemporal wildfire analyses to determine Minimum Travel Time Fire Spread (MTT), fire intensity, Fireline major path, and fire spread rate as inputs for the Solid Fire Model to assess power system vulnerability to wildfires⁵⁶.

The Solid Fire Model, a physics-based approach for fire behavior simulation and computing radiative heat flux transfer emitted uniformly from a visible flame, was employed to quantify the Dynamic Line Rating (DLR) of conductors impacted by a wildfire⁴⁹. This approach has been further developed to assess the operation of a resilient distribution system towards wildfire⁵⁷. MTT predicts fire perimeter expansion by calculating minimum travel time across a 2D landscape network⁵⁹, enabling complex wildfire simulations like FARSITE and FlamMap, which simulate thousands of fires and generate burn probability and intensity maps over large areas⁵⁸.

Burn-P3 is an NRCan-developed, landscape-scale physics-based wildfire simulation model that uses the Prometheus⁵⁹ model to evaluate fire characteristics and produce burn probability maps³⁸. ELMFIRE is an open-source physics-based wildfire spread modeling used for real-time forecasting and risk assessment, with detailed inputs and complex data requirements³⁸. US Forest Service developed several wildfire simulations, such as FlamMap, FARSITE, FSPro, FSim, and BehavePlus, each designed for specific applications like fire behavior prediction, risk analysis, and fire management, enhancing wildfire response and planning. Notably, some of these models have been successfully integrated into PSRA.

A recent study utilized FlamMap⁶⁰ to evaluate burn probability and the Solid Fire Model to estimate heat flux, assessing wildfire risk and mitigation for an electrical substation. Another recent study presents a data-driven framework integrating Farsite and power flow analysis to determine the risk and vulnerability of transmission network components against grid-ignited wildfire⁶¹. While FlamMap and FARSITE have benefits, they also come with drawbacks, including high computational costs and the requirement for detailed input data.

Additionally, SiroFire presents deterministic fire spread prediction with a graphical interface, requiring advanced GIS⁶². WRF-Fire incorporates weather data with fire modeling but at a high computational cost⁶³. FIRETEC offers 3D fire behavior simulation with coupled fire-atmosphere interactions, demanding detailed input data⁶⁴. WFDS is to simulate smoke and heat transport but is still in the early validation stages⁶⁵. FIRESTAR simulates large-scale wildfires, requiring detailed input data and may be complex⁶⁵.

Wildfire simulation models are vital for understanding and managing wildfires. Some, like FireSim and IFTDSS, are integrated into PSRA, while others are valuable for fire behavior prediction and risk assessment, highlighting the importance of ongoing model development to improve wildfire management strategies amid growing threats from climate change and other factors. Future developments may involve integrating stochastic elements, leveraging machine learning algorithms for improved forecasting, and employing early technologies to enhance wildfire propagation models.

Table 1: Wildfire Model Comparison

Wildfire Model	Developer	Primary Application	Key Features	Benefits	Drawbacks	Used in PSRA	Ref
FireSim	Technosylva ²	Deterministic and probabilistic modeling, real-time fire behavior prediction.	Physics-based wildfire models, initial attack assessment, impact analysis, urban encroachment algorithms, real-time data calibration.	Quickly determine fire path and impacts, all-in-one platform wildfire risk forecasting, spread predictions, risk mitigation, and fire behavior analysis.	May not capture all complexities of fire behavior, not free for use	Used by PG&D, SCE, San Diego Gas & Electric, Xcel Energy, Bear Valley Electric Service, liberty for Wildfire Mitigation Plan	50-55
IFTDSS	US Forest Service	Fuel treatment planning and wildfire risk assessment	Web-based application, integrates multiple models (FlamMap, FARSITE, BehavePlus)	User-friendly interface, comprehensive US data, step-by-step fuels treatment testing, supports decision making, free access, generates maps, graphs, and tables.	Requires detailed input data, may be complex to use	Using IFTDSS, they provided a wildfire characterization package enabling proactive decision-making for the Wildfire Mitigation Plan.	56
Solid Fire Model	-	1D/2D Flame model for deterministic/probabilistic wildfire risk modeling, fire management, firefighting.	Physics-based approach, detailed fire behavior simulation, computes radiative heat flux transfer	An easy-to-use tool for evaluating wildfire risk, aiding fire management decisions, and integrating into power system risk assessments.	Does not account for crown fires and spotting, represents the flame only as a radiant surface (solid-flame assumption), and may lack accuracy.	The developed resilience assessment quantifies how wildfire characteristics like ignition probability, intensity, spread rate, temperature, and severity affect the failure likelihood of power system components.	49,57, 66-72
MTT (Minimum Travel Time)	US Forest Service	Underlying model for FlamMap and FSim	Physics-based prediction for fire perimeter expansion, calculates minimum travel time across a 2D network of landscape nodes.	Approximates complex fire behavior models at low computational cost (makes it well-suited for running many wildfire simulations), predicts fire behavior and perimeter expansion effectively.	Not designed to predict final fire extent—final perimeters depend on simulation duration, requires detailed input data.	A study evaluated wildfire risk mitigation measures by PG&D, using MTT for detailed ignition risk predictions based on data from over 25,000 miles of high-risk lines ⁵⁸ .	58,73
Burn-P3	Natural Resources Canada (NRCan) ³	Landscape-scale wildfire simulation	Physics-based model that uses Prometheus model, evaluates fire characteristics, produces burn probability maps.	Detailed predictions, supports planning, open source	Extensive input data, computationally intensive.	No	38,59
ELMFIRE ⁴	Chris Lautenberger	Real-time and historical fire spread forecasting	Physics-based model that considers fuel, topography, weather, and fire suppression; Monte Carlo analysis	Real-time forecasting, quantifies fire risk and exposure.	Complex inputs, requires detailed data	No	38
FlamMap ⁵	US Forest Service	Deterministic fire behavior prediction and landscape analysis under constant conditions.	Physics-based model, produces raster maps, integrates multiple fire models, provides environmental condition data	Detailed fire behavior maps, comprehensive analysis	Not simulate spatial and temporal variations in fire behavior due to constant environmental conditions	Using this model, a study estimated wildfire risk at an electrical substation in the wildland–urban interface of Valparaíso, Chile ⁶⁰ .	60,74,75
Farsite ⁶	US Forest Service	2D deterministic fire growth simulation	Huygens, combines models for surface, spot, crown fires, wave dissemination models	Combines multiple fire models, generates fire propagation maps, essential for forest fire extinction decision-making.	Lacks dynamic wildfire simulation, lower crown fire accuracy, unreliable evaluation, poor estimation of spatial fuel and features distribution, needs multiple layers (unavailable inputs)	A study incorporates power flow analysis to quantify exposure, risk, and vulnerability of power grid components ⁶¹ .	61,76-78
FSPro	U.S. Forest Service	Estimating fire spread probability from a known ignition location	Monte Carlo simulations, probabilistic fire spread maps, embedded within the Wildland Fire Decision Support System (WFDSS).	Assesses potential fire growth under various conditions, producing a range of possible fire spread scenarios.	High computational cost, results can be less precise due to probabilistic nature	No	79-82

² <https://technosylva.com/>

³ <https://www.canadawildfire.org/burn-p3-english>

⁴ Eulerian Level set Model of FIRE spread: <https://elmfire.io/>

⁵ <https://www.firelab.org/project/flammap>

⁶ <https://www.fs.usda.gov/research/treesearch/27413>

FSim ⁷	U.S. Forest Service	Probabilistic quantitative wildfire risk analysis	Physics-based model, simulates wildfire growth using geospatial data on fire history, weather, terrain, and fuel conditions.	Comprehensive risk analysis, probabilistic simulations	Complex to use, requires detailed input data	No	83–85
BehavePlus ⁸	U.S. Forest Service	Deterministic fire management applications	Raster-based, simulates surface fire spread and effects based on user inputs.	Flexible and user-defined simulations	Requires detailed input data, may be complex to use	No	86
SiroFire ⁹	CSIRO	Deterministic fire spread prediction in graphical environment	Huygens, Graphical user interface, GIS-derived databases, wave dissemination models	Graphical user interface, accurate fire spread prediction, simulates wind velocity, relative moisture, and temperature variation.	Runs from 9 am to 9 am next day, requires GIS data, unresolved fire edge issues, needs advanced GIS skills for input preparation, complex fuel layers.	No	62
WRF-Fire ¹⁰	UCAR	Wildland surface fire simulation platform within the Advanced Research WRF (ARW) dynamical core	Physics-based model, coupled atmosphere-fire model, surface fire, data assimilation, Rothermel's ROS, realistic wildfire propagation.	Combines weather data with fire modeling, data assimilation (input of additional data while the model is running)	Complex setup, high computational cost, requires detailed input data	No	63
FIRETEC ¹¹	Los Alamos National Laboratory	3D two-phase transport model for deterministic fire behavior	Physics-based computational fire model, coupled fire-atmosphere interaction (the wind's impact on the fire and vice versa), Large Eddy Simulation (LES) approach.	3D modeling, Coupled fire-atmosphere model, high accuracy	Requires detailed input data, high computational cost	No	64
WFDS	NIST ¹²	Numerical simulation of smoke and heat transport	Physics-based fire model, Navier–Stokes equations, wildland fuel sub-models.	Numerical simulation of smoke and heat transport	Early stages for full-scale wildfires, ongoing validation, requires detailed input data.	No	65
FIRESTAR	University Aix-Marseille	2D Simulate wildfires at a large scale	Physics-based computational fire model, implicit solver, combustion reaction rate calculation	Large-scale wildfire simulation, includes various fuel particle types in the same grid cell	Large-scale simulation may be complex, requires detailed input data	No	65

3. Interaction Between Wildfire and Power Systems

Wildfires can significantly damage electric infrastructure, causing widespread blackouts, while the electric infrastructure itself can also ignite wildfires, impacting human life, infrastructure, and society. Fig. 3 illustrates these complex interactions, emphasizing climate change's role in creating conditions like high wind speeds, dry fuels, low humidity, and a high fire potential index, which increases wildfire activity. This section explores past blackouts caused by wildfires, the electric infrastructure at risk, and wildfire ignition sources within the power system, highlighting the history of wildfires ignited by electric infrastructure.

3.1. Wildfire Impacts on Power Systems and Wildfire-Induced Blackouts

Overhead power lines span vast areas of flammable forests and grasslands, making them both ignition sources and vulnerable infrastructure during wildfires. Studies have shown a notable increase in powerline failures causing fires over the past 71 years due to inadequate maintenance and grid expansion⁸⁷. Wildfires can cause both temporary and permanent damage to electric power infrastructure, leading to significant blackouts globally. For instance, the Australian fires between December 2019 and January 2020 caused over 80,000 outages across the National Electricity Market⁸⁸. In 2007, the Tatong bushfire in Victoria, Australia, cut power to 620,000 households, causing

⁷ <https://firelab.org/project/fsim-wildfire-risk-simulation-software>

⁸ <https://www.firelab.org/project/behaveplus>

⁹ https://www.iklimnet.com/hotelfires/fire_modelling_software_17.html

¹⁰ <https://unr-wrf-fire.readthedocs.io/en/latest/>

¹¹ <https://www.lanl.gov/orgs/ees/ees16/FIRETEC.shtml>

¹² <https://www.nist.gov/el/fire-research-division-73300>

A\$234 million in economic losses. Similarly, in 1985, a brush fire in southern Florida left 3.5 million people without power for hours⁸⁹. In 2023, a brush fire in Argentina led to a significant power outage affecting large sections of the country, including the capital, when it impacted transmission lines near a nuclear power plant, causing the plant to go offline⁹⁰. That same year, forest fires in Quebec, Canada, left 500,000 customers without power when three transmission lines became unavailable⁹¹.

Transmission and distribution lines are particularly vulnerable as they often pass through flammable areas. Wildfires affect the power system in various ways^{49,57,66,69,71,92–95}:

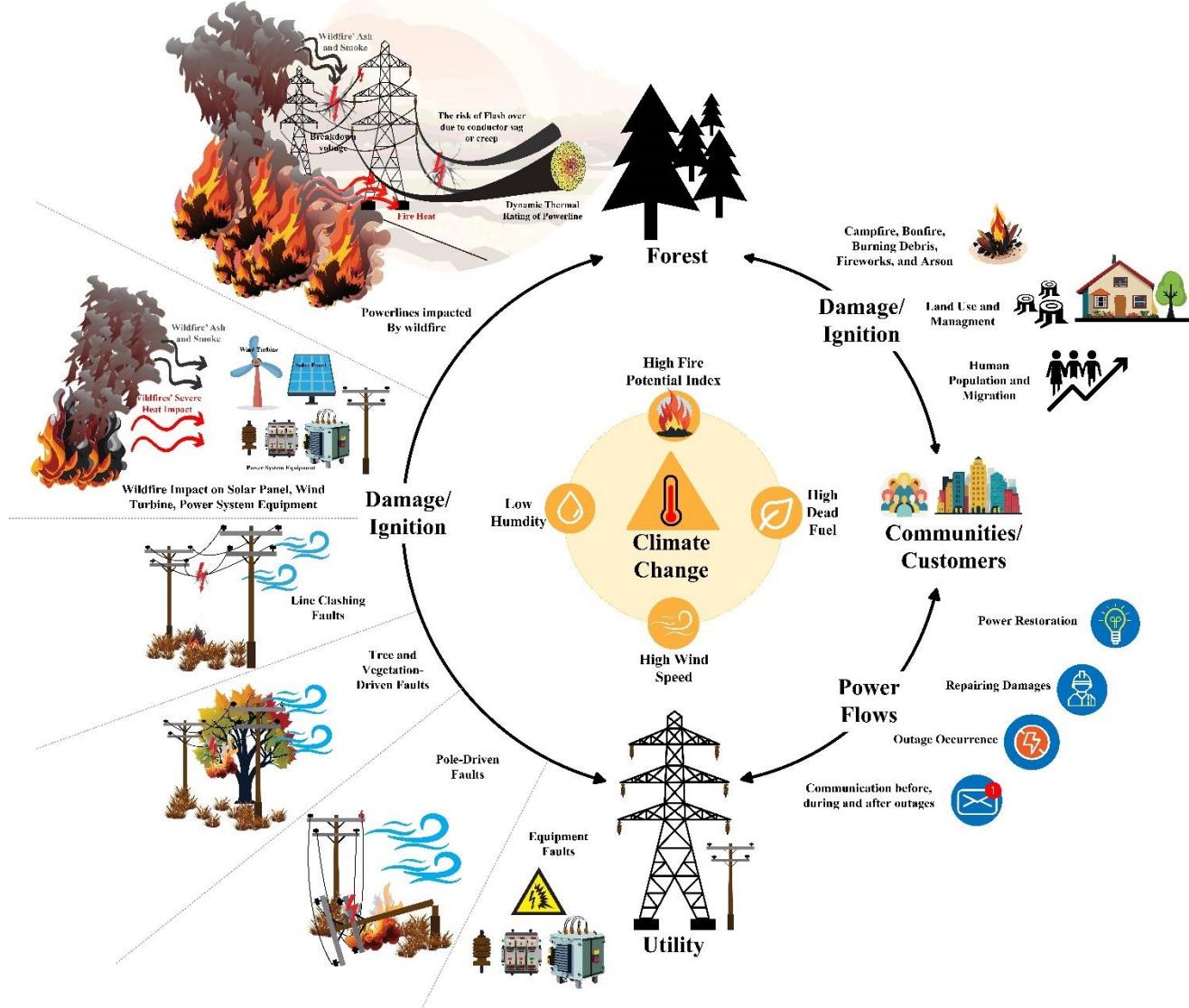


Fig. 3: Wildfire and Power system Interaction. This demonstrates the interaction between wildfire, power system, and customers, combining some subfigures illustrating how wildfire impacts power system operations and infrastructure, how the power system ignites wildfire and impacts wildfire response. It highlights human activities, like campfires and debris burning, that increase wildfire risk, and the impact of outages on communities, including power restoration efforts.

Powerlines: Wildfires can damage powerlines through exposure to smoke, ash, and high heat. Burning wooden poles/towers can collapse transmission and distribution networks⁴⁹. Radiant heat can raise conductor temperatures, reducing their thermal ratings, causing sag and creep, and increasing flashover risk. Conductor annealing may necessitate line replacement^{71,96}. Ash on insulators can create conductive paths, causing shutdowns and reducing breakdown voltage⁹⁶. Smoke can ionize air,

causing arcing and outages, potentially igniting new fires^{70,97}. Research is needed to develop fragility curves for smoke, ash, and temperature impacts⁹⁸.

Solar PVs: Wildfire smoke can reduce the output power of PV solar panels by decreasing visibility and irradiance levels, affecting grid stability^{94,95,99,100}. The impact varies depending on the solar cell material⁹⁵. The "Wiggle Effect," caused by smoke, jeopardizes grid stability⁹⁹. Understanding this impact and developing mitigation plans is crucial. Future work could predict the smoke impact on PV generation using weather data and satellite image processing-based models¹⁰¹. Ongoing research aims to develop a wildfire smoke surrogate model to estimate changes in Aerosol Optical Depth from increased smoke¹⁰².

Wind Turbines: Wildfires can destroy wind turbines and reduce their efficiency by depositing soot or ash on blades, decreasing their smoothness and power output⁹⁴. Further research is needed to examine interactions between soot, ash, and turbine blades¹⁰³.

Power Equipment: Wildfire heat can soften plastic insulation¹⁰⁴, fracture ceramic insulators, and damage components like transformers, switches, clamps, bushings, capacitors, and surge arrestors¹⁰⁵. High temperatures can cause explosions and accelerate insulation aging in transformers, increasing failure risk¹⁰⁶. Extreme heat also accelerates chemical reactions, heightening the risk of malfunctions such as arcing and loss of control signals.

In summary, wildfires impact power systems in various ways, both immediately and in their aftermath. A comprehensive model must consider the fault probability of different system components, the impact on distributed energy resources, reserve allocations, and electric demand. Considering probability density functions of weather factors and fuel types across scenarios can help utilities make optimal operational and planning decisions^{49,67,107}.

3.2. Wildfire Ignition by Power Systems

Power lines and equipment can ignite wildfires through downed lines, conductor slaps, recurring faults, and component failures^{19,108}. These ignitions account for 10% of the acres burned by wildfires in California¹⁰⁹. PG&E reported that the electricity grid caused 414 wildfires in California between 2015 and 2017¹¹⁰. Distribution lines pose nearly three times the ignition risk compared to transmission lines due to vegetation for distribution and animal interactions for transmission. In Texas, power lines caused over 4,000 wildfires between 2010 and 2014, costing hundreds of millions of dollars^{111,112}. Notable wildfires in California caused by power grid infrastructure include the 2018 Camp Fire and 2007 Witch Fire⁴⁸. In Alaska, major fires caused by power lines include the 2014 Tyonek Fire, 2015 Twin Creeks Fire, and 2019 McKinley Fire¹¹³. A downed power line likely caused the Maui Fire in Hawaii in 2023¹¹⁴.

The prevalence of severe fire weather, defined by factors like temperature, moisture, vegetation, and wind, along with increased load on power lines and aging infrastructure, contribute to fire ignitions from power systems¹⁰⁵. High wind conditions are particularly crucial, especially during droughts and hot weather^{105,115–117}. At least five of the 20 most destructive wildfires in California were caused by power systems^{118,119}.

Tree and Vegetation-Driven Faults (Indirect Wind-Related Faults): These are significant causes of issues in power systems. In California, vegetation contact causes 53.5% of power utility ignitions¹²⁰. Faults occur when a conductor breaks and contacts the ground, leading to high-temperature arcing, a

common cause of wildfires in Texas¹²¹. Broken trees or limbs falling on power lines can result in single-phase-to-ground faults, while high winds can cause conductors to swing into nearby vegetation, leading to earth or phase-to-ground faults^{122,123}. High-impedance faults, where high voltage current passes through vegetation without exceeding protection device thresholds, pose significant detection challenges and ignition risks^{124–126}.

Conductor Clashing Faults (Direct Wind-Related Faults): These occur when two bare conductors contact due to high winds, causing current flow between them. This can heat the lines to the point of melting and potentially eject heated particles or molten droplets that can ignite fuels upon contact with the ground¹. Thermal expansion from high temperatures leads to conductor sagging^{94,127,128}. To prevent ignitions during extreme conditions, utilities in California have implemented Public Safety Power Shutoff (PSPS) events.

Pole-Driven Faults: Wildfires can be caused by pole issues, particularly in the distribution network^{105,108}. Common failure modes include corrosion and various pole component issues¹²⁹. Breakdown mechanisms of insulators, framing configurations, and environmental contamination contribute to pole fire incidents¹³⁰. Wooden poles are particularly susceptible to pollution-induced leakage currents^{131,132}. Mitigation plans include using new metallic structures with insulation coordination gaps, fully bonded structures, modified insulators, regular maintenance practices, and replacing equipment with fiberglass alternatives¹³⁰. Steel poles, though more resistant, are costly and susceptible to corrosion¹⁰³. High winds and car accidents can also cause aging distribution poles to fall, leading to line clashing or vegetation-driven faults¹⁰⁸. There is a gap in research on the role of preventive maintenance in preventing wildfires caused by aging power pole infrastructure.

Equipment Faults: Transmission and distribution transformers, as well as failures of switches, breakers, bushings, clamps, capacitors, or surge arrestors, can initiate wildfires through overheating, arcing, or explosion^{133–135}. Transformers are increasingly causing fires due to their inability to handle new strains in the North American power grid¹⁰⁵. For example, a transformer malfunction in Killeen, Texas, sparked a fire that destroyed 50 acres of land¹³⁶, and the Thomas Fire started from a transformer explosion¹³⁷. Older transformers with degraded insulation are more prone to failures. Replacing oil-immersed transformers with dry-type equivalents is one mitigation method, but the risk of transformer explosions during wildfires persists^{105,138}. Research in power transformer explosions is still in its early stages.

In summary, wind significantly impacts powerline-related wildfires, either by directly interacting with lines or indirectly causing foreign objects to interact with them¹. Transmission conductors are vulnerable to wind hazards, which are expected to worsen due to climate change. Analysis of San Diego Gas & Electric's data shows outages are ten times more likely with every 25 km/h wind speed increase¹¹⁷. The American Society of Civil Engineers advocates for adaptive infrastructure to mitigate the adverse effects of powerline-induced ignition¹³⁹. California utilities use PSPS events to prevent ignitions but must balance the risks of wildfires and blackouts¹⁴⁰. Research is needed on preventive maintenance to reduce wildfire risks from aging power infrastructure and other fire-causing components.

4. Wildfire Risk Management: Proactive, Real-Time Mitigation Response, and Recovery Plans

Wildfire risk management in the context of electric grid operations can be split into three aspects: Proactive plans to mitigate long-term risk, real-time response to high-risk events, and recovery after the fire and/or high-risk event has passed. These aspects are summarized in table 2, which provides an overview of the current wildfire risk management strategies and categorizes them into proactive, real-time mitigation response, and recovery plans. Each method, technology, principle, and its associated advantages and challenges are discussed in detail in the following subsections.

Mitigating electric grid-caused wildfires has been of utmost importance to utilities. Utilities understand the importance of reducing electric grid-initiated wildfires and reducing wildfire impacts on humanity. Utilities also have seen significant lawsuits¹⁰ related to electric grid-ignited wildfires. For example, PacifiCorp's settlement for the 2020 Archie Creek fire in Oregon and PG&E's large settlements for the California fires, 2018 Camp Fire, 2020 Zogg fire, and 2021 Dixie Fire⁴⁸.

Table 2: Wildfire Risk Management

Category	Methods and Technologies	Advantages	Challenges	References
Proactive Plans	Line Undergrounding and Covered Conductors: Replacing bare wires, prioritizing high-risk areas	Reduces faults and ignitions, protects lines from fire	Extremely expensive, changes in electrical/mechanical properties	50,141,142
	Protection Equipment: Fuses, relays, circuit breakers, FCLs	Timely detection and fault prevention	High-impedance faults challenging to detect, costly	105,143–145
	New Technologies: REFCL, GFN, ASC, machine learning algorithms	Reduces fault energy, predictive fault detection	Implementation costs, requires extensive planning	146,147
	Asset Management: UAVs for inspection, digital monitoring, transformer aging calculation	Prevents faults, improves reliability	Requires advanced technologies and expertise	138,148–150
	Vegetation Management: Trimming encroaching vegetation, using LiDAR and UAVs for inspection	Reduces risk of ignitions, cost-effective long-term	Requires ongoing maintenance, high initial costs	50,151,152
Real-Time Mitigation Response Plans	Situational Awareness and Forecasting: Remote sensing, IoT, advanced wildfire simulation tools	Real-time risk management, improved decision-making	Data integration challenges, requires advanced technology	116,152–154
	Proactive De-energizations: EPSS, PSPS	Reduces wildfire risk during severe weather	Public disruptions, economic impact	3,147,155,156
	Proactive Protection and Operation Strategies: Adjusting reclosers, circuit breaker settings	Reduces ignition risk, improves safety	Longer outages, increased tripping frequency	49,66,69,71,157
	Firefighting Methods: UAVs for early suppression, efficient tactics	Effective suppression, operational in hazardous environments	Requires coordination, high operational costs	158–160
Recovery Plans	Recovery Logistics: Resource mobilization, strategic stockpiles, PSSSP	Efficient recovery, optimized resource use	Limited research specific to wildfires, complex planning	161–165
	Microgrids & Emergency Power: Mobile generators, power storage, DER-based microgrids	Ensures electricity supply to critical facilities	High costs, regulatory challenges	166–169
	Financial Recovery Strategies: Self-insurance, commercial insurance, catastrophe bonds	Ensures financial stability and recovery	Lack of literature on effectiveness, complex financial planning	170–172

4.1. Proactive Plans

Proactive plans are essential for utilities to reduce wildfire ignition risks. While utilities cannot control the fire threat from the surrounding landscape, they can focus on mitigating ignition risks through various proactive measures. These measures include vegetation management, equipment upgrades, grid design improvements, system hardening, and the adoption of advanced technologies for better risk assessment, asset management, and situational awareness. Comprehensive mitigation plans ensure safety and cost efficiency⁶⁰. Utilities can enhance system resiliency through grid design and system hardening.

Line Undergrounding and Covered Conductor: Undergrounding power lines is highly effective in reducing power line faults and preventing wildfire ignitions, improving reliability, and protecting lines from fire. However, it is prohibitively expensive on a large scale. For example, PG&E in California increased electricity rates by an average of 13% primarily to fund wildfire mitigation efforts¹⁴². For smaller electric cooperatives, the cost of undergrounding, especially in rural areas, may be too high. An alternative is using covered conductors, which replace bare wires with conductors covered in insulating material to reduce ignition probability¹⁴¹. PG&E prioritizes replacing conductor segments of

transmission circuits in High Fire Threat District regions to further decrease the risk of asset failure-triggered fires⁵⁰. However, the insulating material may alter the electrical and mechanical properties of the line and could be susceptible to burning.

Protection Equipment and Wildfire Ignition Mitigation Strategies: Timely detection of faults capable of causing fires, voltage reduction, and limiting fault current is essential to prevent wildfires¹⁹. Fast detection is critical, as low impedance faults with high amplitudes can ignite wildfires but are detectable by fuses, relays, fast circuit breakers, and fault current limiters. High-impedance faults, however, are challenging to detect due to their low current amplitude and are a major driver of large-scale wildfires caused by power grids¹⁰⁵. Current practices focus on detecting faults once they occur^{105,143,144}, but there is a research gap in predicting these faults to enable proactive prevention. Novel protective relays using traveling wave technology with machine learning techniques are under development to significantly reduce arc fault time, directly reducing fire ignition probability¹⁴⁵. These new protection algorithms can detect low-impedance faults in less than a quarter cycle and high-resistive faults in less than a cycle. Moreover, expulsion fuse retrofits with non-expulsion fuse designs can reduce ignition chances due to less molten particle emission¹⁴¹. However, the reliability and potential peripheral ignition concerns of these replacement technologies need to be proven over time.

Rapid Earth Fault Current Limiters (REFCL), Ground Fault Neutralizers (GFN), and Arc Suppression Coils (ASC) can reduce fault energy and wildfire ignition probability. REFCL technology in Victoria, Australia, has reduced fire starts by 30-35% over ten years through mitigation risk plans, including digital monitoring systems, smart meters, and REFCLs. SCE has tested many of these technologies and summarized their findings¹⁴⁶. Utilities like PG&E have implemented further protective measures such as installing animal and bird guards, clearing poles, and replacing non-exempt equipment¹⁴⁷. These actions add another layer of protection in comprehensive wildfire mitigation programs but are costly and require extensive multi-year planning and regulatory approval.

Asset Management and Inspection: Efficient asset management and preventive maintenance can prevent fire-causing faults. Indirect wind-related faults, line clashing, pole-driven, and equipment faults pose wildfire risks. Transformer explosions are a known risk with preventive studies^{138,148,149}, but gaps remain in addressing aging infrastructure. PG&E developed transformer failure inspection by incorporating transformer oil temperature and aging calculations⁵⁰. Unmanned aerial vehicles (UAVs) and digital cameras are cost-effective for power line inspection, with vision-based analysis using machine learning and deep learning methods¹⁵¹. However, challenges include limited data, computational efficiency requirements, and complexities in detector performance¹⁵¹. Developing robust real-time detectors is crucial. PG&E uses aerial and intrusive inspections for comprehensive pole inspection (CPI) to prioritize repairs. SCE improves grid safety and reliability with the Deteriorated Pole and Pole Loading Program⁵¹, enhancing pole resilience with fire-resistant composite poles. SCE's Long Span Initiative uses LiDAR to identify conductor clash risks, remedying them with line spacers and covered conductors.

Vegetation Management: As discussed in the subsection "Tree and Vegetation-Driven Faults," indirect wind-related faults are a substantial issue in power systems. Utilities and cooperatives worldwide invest significantly in vegetation management, a key strategy to mitigate wildfire ignition. This entails extensive vegetation trimming, particularly in high-fire threat areas, to decrease costs and lower fire ignition risk. LiDAR is used to determine tree height and predict power outages along utility lines¹⁵². High-resolution imagery from UAVs and LiDAR can be fused to calculate tree clearance

anomalies¹⁷³ predict tree incursion, and forecast tree growth, delineated by species, to time trimming cycles. Image segmentation and deep learning algorithms such as UNet detect tree mortality¹⁷⁴ and can further predict treefall interactions with power lines. Integrating data from drone and satellite inspections with advanced models improves the identification and timing of vegetation management practices.

4.2. Real-time Mitigation Response Plans

While proactive plans address long-term wildfire risk mitigation, this section focuses on adopting forward-looking strategies during high-risk periods and risk-informed strategies during actual wildfires to efficiently manage resources and minimize damage^{1,2,19,116,116,147}. This includes weather-driven responses like Enhanced Powerline Safety Settings (EPSS) and PSPS to prevent ignitions and adaptive grid operations to minimize damage during wildfires. Key areas examined include situational awareness and forecasting, proactive power line shutdowns, firefighting methods, wildfire monitoring systems, and emergency management procedures for power grids during wildfires.

Situational Awareness and Forecasting: Situational awareness and forecasting are vital components of Mitigation Response Plans, enabling utilities to continuously predict, monitor, and manage wildfire risks in real-time through advanced technologies and data analysis¹¹⁶. This approach includes wildfire detection, prediction, and tracking using advanced simulation tools, remote sensing, and IoT. Integrating meteorological data and vegetation conditions, wildfire prediction models assess risk effectively¹⁵³. High-resolution satellite sensors and UAVs enable detailed observations, aiding in wildfire tracking, severity mapping, and assessment¹⁶⁶. Fire severity mapping, achieved through advanced algorithms analyzing satellite imagery, offers efficient estimations of fire extent and severity¹⁶⁸. Programs like the New South Wales Fire Extent and Severity Mapping (FESM) and the Monitoring Trends in Burn Severity (MTBS) utilize remote sensing for comprehensive fire severity assessments^{179,180}. For example, the Bootleg fire in Oregon (2021) severity map was derived from MODIS and Landsat imagery (Fig. 4), and classified into severity levels using the USGS threshold. Overlaying this map with power lines provides a further assessment of risks to infrastructure^{107,116}. Remote sensing technologies identify fire hazards near infrastructure and assess power grid vulnerability¹¹⁵. Advanced techniques, like the coarse-to-fine approach using public airborne LiDAR data for preliminary analysis and drone LiDAR for detailed inspections, enhance risk evaluation along high-voltage power lines¹⁸¹. Indices such as the Fire Potential Index (FPI) and the Fosberg Fire Weather Index (FFWI) evaluate fuel characteristics and wildfire risk, informing decisions like PSPS^{116,147}. Monitoring fuel moisture content (FMC) through satellite observations is also crucial¹⁵⁴ in this context.

Wildfire detection, achieved by fusing MODIS, GOES, and VIIRS thermal satellite imagery, is visualized for situational awareness during events. These detections serve as ignition inputs for wildfire spread models, forecasting fire extent and direction¹⁷³. The commercial development of thermal satellite constellations aims for higher resolution, with 50m resolution images expected by 2026 at a 15-minute revisit rate¹⁸². Researchers emphasize predicting wildfire scales using meteorological data and neural networks¹⁸³, employing Poisson regression models for fire activity predictions based on satellite data¹⁸⁴, adaptive neuro-fuzzy inference systems¹⁸⁵, IoT-fog-cloud frameworks¹⁸⁶, and combining fault probability with vegetation ignition likelihood¹⁸⁷.

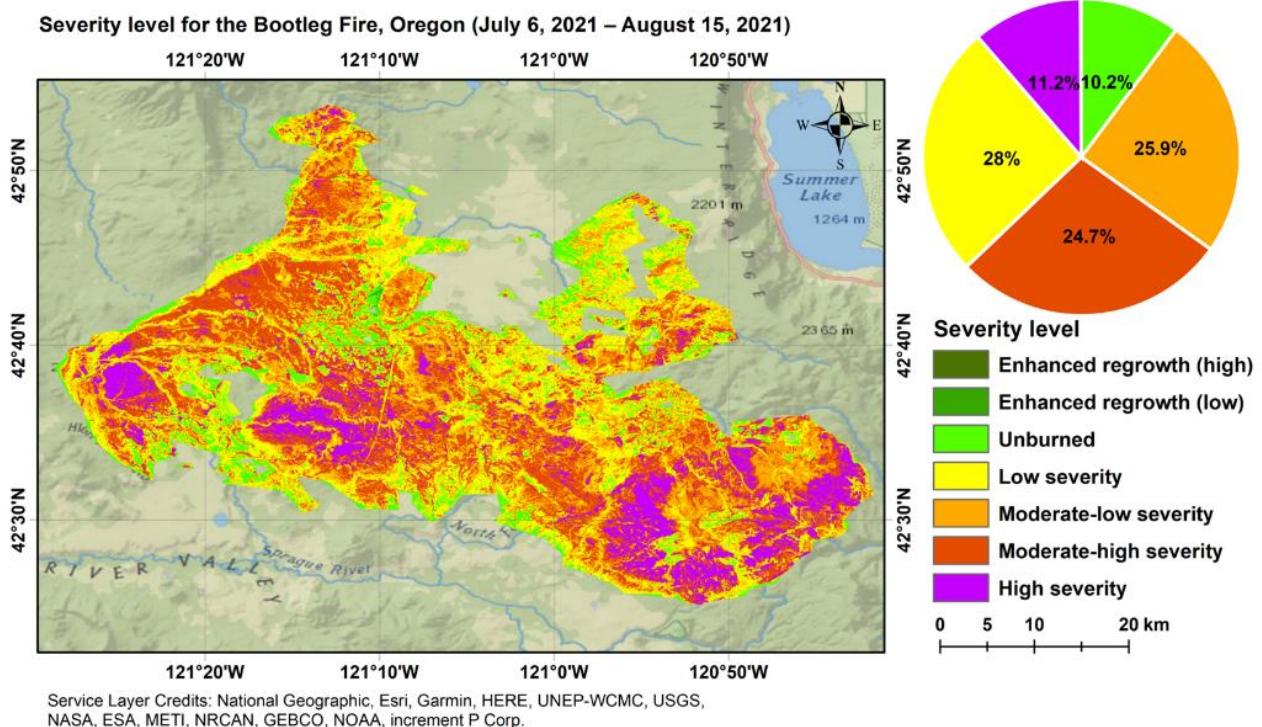


Fig. 4 Wildfire Severity Map for the Bootleg Fire, Oregon (July 6, 2021 – August 15, 2021)

Proactive De-energizations: Selective de-energization of power lines, like EPSS and PSPS, reduces wildfire risk during severe weather. EPSS, an enhanced PSPS by PG&E¹⁴⁷, rapidly detects faults and shuts off the power, while PSPS is a last resort measure during severe weather. Despite their effectiveness, they can disrupt public life, as seen in California's 2019 PSPS affecting nearly a million customers for a week¹⁵⁵. The research aims to maximize power delivery while minimizing wildfire risk¹⁵⁶. PSPS triggers vary but often include wind speed, fuel conditions, humidity, and temperature. Integrating engineering solutions with socio-economic sciences is crucial for future PSPS studies^{3,116}. EPSS criteria include adjusting device sensitivity, utilizing fire-risk mapping, and responding promptly to outages¹⁴⁷. Utilities like PG&E explore options like providing backup batteries to susceptible customers to reduce PSPS and EPSS impact, though cost remains a concern. Recent research comprehensively reviewed PSPS, suggesting the need for integrated solutions³.

Proactive Protection and Operation Strategies: Grid operations during wildfires focus on mitigating distribution network impacts¹⁵⁷, estimating conductor temperature^{49,66}, assessing vulnerability⁶⁶, optimizing grid operations^{49,66,67}, optimizing grid operations^{57,68,72}, evaluating insulator performance¹⁸⁸, enhancing resilience⁶⁸, studying reliability^{69,71}, developing early warning systems⁷⁰, and analyzing rate impacts^{49,57,71}. Proposed optimization frameworks assess wildfire dynamics to help operators strategize before fires reach distribution lines⁵⁶. Reinforcement learning approaches enable proactive power system operations by providing setpoints for power generation resources¹⁸⁹. Geographical data correlates wildfire risk with power network models, demonstrating that microgrid-equipped systems can sustain operations during severe fires, reducing overall outages¹⁹⁰. Studies analyze power line aging due to forest fires⁶⁹, develop line outage models based on air gap voltage breakdown and wildfire prediction⁷¹, and propose combined outage probability models⁷⁰. Settings for reclosers and circuit breakers can be adjusted to reduce wildfire ignition risk. Disabling reclosers, reducing reclose attempts,

or increasing reclose time after a fault during high-risk conditions can reduce fire risk but may result in longer outages. Adjusting circuit breaker time-over-current settings can also reduce fire risk but may increase tripping frequency. Implementing both adjustments can improve protection but may lead to more frequent and longer outages, potentially affecting customer satisfaction.

Firefighting Methods: Aerial vehicles play a critical role in wildfire suppression due to their range and maneuverability, offering advantages over manned aircraft^{19,116}. UAVs are effective for early targeted suppression, operating in smoky, hazardous environments¹⁵⁸. Efficient wildfire suppression tactics are addressed in publications like the National Wildfire Coordinating Group's Wildland Fire Suppression Tactics Reference Guide¹⁵⁹. Limited descriptive analytics of suppression operations have led to an increased focus on predictive analytics for decision-making support¹⁹. Recent work evaluates current suppression practices for large wildfires in Victoria, Australia, emphasizing the need for more research on efficient suppression tactics, especially concerning wildfires caused by power grids¹⁶⁰.

4.3. Recovery Plans

The role of recovery preparedness is crucial in enhancing system resilience and facilitating efficient recovery from wildfires. This section emphasizes comprehensive recovery logistics, energy contingency plans, disaster risk financing mechanisms, and community engagement for effective post-disaster recovery.

Recovery Logistics: Recovery logistics are vital in disaster risk management, encompassing personnel, equipment, transportation, inventory management, planning, and technology¹⁹. Utilities must proactively assess wildfire impacts, plan for resource mobilization, and maintain strategic equipment stockpiles. The research introduced the Power System Stochastic Storage Problem (PSSSP)¹⁶¹, optimizing stockpiling and distribution of power system supplies to maximize power delivery during disaster recovery. Operations research in disaster logistics¹⁶² and models for recovery logistics during hurricanes^{163–165} can be adapted for wildfires, though specific research on wildfire recovery logistics is limited.

Microgrids & Emergency Power: Recovery from wildfires can take days to months, depending on infrastructure damage. Contingency plans to ensure electricity supply to critical facilities and vulnerable communities are essential. Long-term solutions include adopting microgrids to improve resilience^{166,167}, while emergency responses can involve mobile generators¹⁶⁸ and power storage units¹⁶⁹. Research gaps exist in energy contingency planning for wildfires¹⁹. A study suggested an operational mechanism for restoring critical loads via microgrids and automatic switches, using a distributed multi-agent coordination model¹⁹¹. Another study used Monte Carlo simulations to assess microgrid impacts on power system resilience¹⁹². PG&E distributes batteries and subsidized generators to customers, but local generators pose hazards like air quality issues and fuel risks¹⁶⁶. Transporting replacement fuel during wildfires is dangerous, prompting some sites to invest in large underground storage for enhanced resilience. Microgrid deployment is gaining traction globally as a solution against wildfires and extreme events. For example, the Blue Lake Rancheria microgrid in California, with 500 kW of photovoltaic (PV) power, a 1-MW/2-MWh battery bank, and a 1-MW backup generator, provides critical services during outages, demonstrating the value of microgrids in enhancing resilience. Additionally, PG&E and other utilities are encouraged to develop temporary mobile substation generator projects and community microgrid programs¹⁶⁶. Programs in Australia, Canada, Hawaii, and Japan highlight the opportunities and challenges of using distributed energy resources (DER) and microgrids for resilience^{166,215,195}. Designing an optimal DER portfolio against wildfires requires a robust methodology

considering uncertainties. A proposed approach in the UK adopts a risk-based probabilistic techno-economic framework¹⁹⁶. A practical DER design involves both preventive measures (such as upfront investments in DER equipment) and corrective measures (such as immediate and delayed actions) to mitigate the impact of wildfires¹⁶⁶.

Financial Recovery Strategies: The economic impact of wildfires can be destructive, threatening utilities' financial health and solvency¹⁷⁰. Developing disaster risk financing strategies and integrating operational and financial preparedness is essential for resilient infrastructure¹⁷¹. Various disaster risk financing mechanisms^{19,170,171} help utilities cover wildfire risks, including funded self-insurance, commercial insurance, catastrophe bonds, captives, risk pooling, and recovery bonds. Funded self-insurance involves setting aside reserves to cover losses, while commercial insurance spreads coverage costs to ratepayers¹⁷². Catastrophe bonds transfer risk to investors, and captives offer insurance to parent companies. Risk pooling shares risk among participants, and recovery bonds provide post-disaster financing for reconstruction. Combining these mechanisms ensures adequate coverage for different wildfire scenarios, though the literature on their effectiveness in power grid infrastructure resilience is scarce¹⁷⁰.

Community resilience: Community resilience and engagement are vital for wildfire readiness and recovery¹⁹. Enhancing community resilience involves five steps: reducing risk and addressing vulnerabilities, engaging communities in mitigation, building networks for resource mobilization, boosting social supports post-disaster, and promoting flexibility and effective communication¹⁹⁷. Ongoing engagement by utilities and local governments is crucial for smooth recovery. Studies highlight the importance of social capital and community engagement in recovery¹⁹⁸. For example, a study analyzing tweets during Hurricane Irma revealed high activity and coordination roles of local agencies in communication and mass care¹⁹⁹. PG&E implements various programs to help communities prepare for and recover from wildfire-related power outages, offering resources such as portable batteries, generator rebates, backup power meters, online safety information, local resource partnerships, and meal replacements for impacted residents¹⁴⁷.

5. Outlook

Addressing the escalating challenges posed by wildfires and their impact on power systems requires a collaborative and comprehensive approach. Our Power System Resilience Roadmap against Wildfire (Fig. 5) outlines a structured pathway through three pivotal steps: Wildfire Resilience Foundation, Planning & Strategy Development, and Plan Adoption, Implementation, and Evaluation.

The foundation of wildfire resilience begins with understanding the geographic regions and infrastructures most at risk. This involves analyzing global and regional wildfire patterns, considering climate impacts, and developing a flexible wildfire model tailored to specific conditions. Visualization through maps and charts aids in understanding the scope and intensity of wildfire threats.

Planning & Strategy Development focuses on proactive measures, mitigation responses, and recovery planning as detailed in section 4. This includes implementing proactive plans such as line undergrounding, advanced protection equipment, asset management, and vegetation control. Mitigation response plans emphasize situational awareness, forecasting, proactive de-energizations, and firefighting methods. The integration of real-time monitoring and remote sensing technology is critical, alongside enhancing grid operation optimization and emergency management procedures.

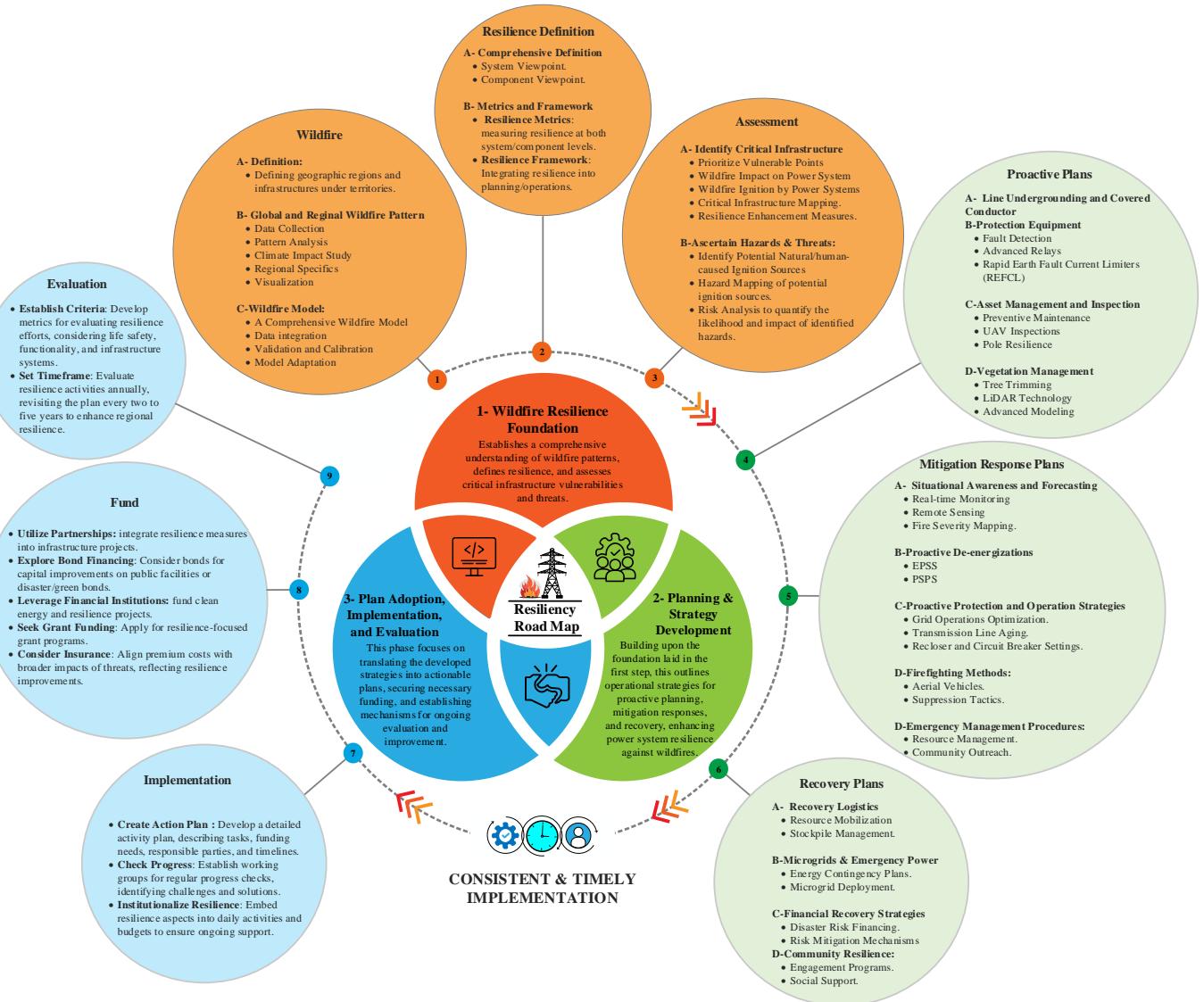


Fig. 5: Power System Resilience Roadmap against Wildfire.

The third step, Plan Adoption, Implementation, and Evaluation, ensures that strategies are effectively put into practice. This includes creating detailed action plans, checking progress through regular assessments, and embedding resilience into daily operations²⁰⁰. Funding is crucial, requiring partnerships, bond financing, and leveraging financial institutions. Evaluating the efficacy of these plans involves establishing criteria and setting timeframes for periodic reassessment.

A key emphasis of this roadmap is the proactive prevention of wildfires, especially concerning aging power infrastructure. Significant new investments in research and development are paramount to minimize the impacts of wildfires on power system resilience, safety, and security.

Future work will explore operational risks associated with electric power infrastructure during wildfires. Developing an Operational Risk Management System (ORMS) for real-time grid management will be a focal point, aiming to enhance the resilience of power systems by providing real-time data and decision-making tools to mitigate risks effectively.

In conclusion, the Power System Resilience Roadmap against Wildfire underscores the necessity of a multifaceted approach, combining proactive planning, strategic development, and diligent implementation and evaluation. Through collaborative efforts and targeted investments, we can significantly enhance the resilience of power systems against the increasing threat of wildfires.

References:

1. Jahn, W., Urban, J. L. & Rein, G. Powerlines and Wildfires: Overview, Perspectives, and Climate Change: Could There Be More Electricity Blackouts in the Future? *IEEE Power and Energy Magazine* **20**, 16–27 (2022).
2. Chiu, B., Roy, R. & Tran, T. Wildfire Resiliency: California Case for Change. *IEEE Power and Energy Magazine* **20**, 28–37 (2022).
3. Huang, C. *et al.* A Review of Public Safety Power Shutoffs (PSPS) for Wildfire Mitigation: Policies, Practices, Models and Data Sources. *IEEE Transactions on Energy Markets, Policy and Regulation* **1**, 187–197 (2023).
4. Change, I. Climate change 2007: The physical science basis. *Agenda* **6**, 333 (2007).
5. 2023: A year of intense global wildfire activity. <https://atmosphere.copernicus.eu/2023-year-intense-global-wildfire-activity> (2024).
6. *Monthly National Climate Report for Annual 2023*.
<https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202313> (2024).
7. *Monthly Wildfires Report for Annual 2023*.
<https://www.ncei.noaa.gov/access/monitoring/monthly-report/fire/202313>. (2024).
8. Varga, K. *et al.* Megafires in a warming world: what wildfire risk factors led to California's largest recorded wildfire. *Fire* **5**, 16 (2022).
9. Seto, D. *et al.* Simulating potential impacts of fuel treatments on fire behavior and evacuation time of the 2018 Camp Fire in northern California. *Fire* **5**, 37 (2022).
10. Penn, I. 'PG&E says wildfire victims back settlement in bankruptcy. *The New York Times* (2020).
11. *Monthly National Climate Report for March 2024*.
<https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202403> (2024).
12. *Climate-Exacerbated Wildfires Cost the U.S. between \$394 to \$893 Billion Each Year in Economic Costs and Damages*. 1–5 https://www.jec.senate.gov/public/_cache/files/9220abde-7b60-4d05-ba0a-8cc20df44c7d/jec-report-on-total-costs-of-wildfires.pdf (2023).
13. Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The costs and losses of wildfires. *NIST special publication* **1215**, 1–72 (2017).

14. *Presidential Policy Directive -- Critical Infrastructure Security and Resilience.* <https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil> (2013).
15. Li, S. & Banerjee, T. Spatial and temporal pattern of wildfires in California from 2000 to 2019. *Scientific reports* **11**, 8779 (2021).
16. Mohler, M. CAL FIRE investigators determine cause of the camp fire. *CAL FIRE News release.* https://www.fire.ca.gov/media/5121/campfire_cause.pdf (2019).
17. Mejia, B. Southern California Edison to pay \$80 million over deadly 2017 Thomas fire. *Los Angeles Times* (2017).
18. Newburger, E. *More than 2 Million People Expected to Lose Power in PG&E Blackout as California Wildfires Rage.* <https://www.cnbc.com/2019/10/26/pge-will-shut-off-power-to-940000-customers-in-northern-california-to-reduce-wildfire-risk.html> (2019).
19. Arab, A., Khodaei, A., Eskandarpour, R., Thompson, M. P. & Wei, Y. Three Lines of Defense for Wildfire Risk Management in Electric Power Grids: A Review. *IEEE Access* **9**, 61577–61593 (2021).
20. E.On boss: Remove green levies to cut energy bills. *BBC* (2021).
21. Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. *International Journal of Wildland Fire* **22**, 1003–1020 (2013).
22. Moritz, M. A., Morais, M. E., Summerell, L. A., Carlson, J. & Doyle, J. Wildfires, complexity, and highly optimized tolerance. *Proceedings of the National Academy of Sciences* **102**, 17912–17917 (2005).
23. Bessie, W. & Johnson, E. The relative importance of fuels and weather on fire behavior in subalpine forests. *Ecology* **76**, 747–762 (1995).
24. Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. J. Future area burned in Canada. *Climatic change* **72**, 1–16 (2005).
25. Jones, M. W. *et al.* Global and regional trends and drivers of fire under climate change. *Reviews of Geophysics* **60**, e2020RG000726 (2022).
26. Shuman, J. K. *et al.* Reimagine fire science for the anthropocene. *PNAS nexus* **1**, pgac115 (2022).
27. Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. *Geophysical Research Letters* **46**, 326–336 (2019).

28. Lindsey, R. & Dahlman, L. *Climate Change: Global Temperature*. <https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature> (2024).
29. Dariane, A. B. & Behbahani, M. R. M. Maximum energy entropy: A novel signal preprocessing approach for data-driven monthly streamflow forecasting. *Ecological Informatics* **79**, 102452 (2024).
30. Climate Change 2021—The Physical Science Basis. **43**, 22–23 (2021).
31. *Global Climate Report for April 2024*. <https://www.climate.gov/news-features/understanding-climate/global-climate-report-april-2024> (2024).
32. Giglio, L., Randerson, J. T. & Van Der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). *Journal of Geophysical Research: Biogeosciences* **118**, 317–328 (2013).
33. Jolly, W. *et al.* Climate-induced variations in global wildfire danger from 1979 to 2013, *Nat. Commun.*, **6**, 7537. (2015).
34. Abram, N. J. *et al.* Connections of climate change and variability to large and extreme forest fires in southeast Australia. *Communications Earth & Environment* **2**, 1–17 (2021).
35. Carnicer, J. *et al.* Global warming is shifting the relationships between fire weather and realized fire-induced CO₂ emissions in Europe. *Scientific Reports* **12**, 10365 (2022).
36. Urbieta, I. R. *et al.* Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. *Environmental Research Letters* **10**, 114013 (2015).
37. Samborska, V. & Ritchie, H. *Explore Global and Country-Level Data on the Extent of Wildfires and How They've Changed over Time*. <https://ourworldindata.org/wildfires> (2024).
38. *Evaluation of Wildfire Risk Assessment and Wildfire Smoke Datasets, Models, Tools, and Services*. <https://www.epri.com/research/products/00000003002030467> (2024).
39. Trouet, V. *et al.* A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. *Environmental Research Letters* **8**, 024008 (2013).
40. Reidmiller, D. R. *et al.* Impacts, risks, and adaptation in the United States: Fourth national climate assessment, volume II. (2017).
41. Fettig, C. J. *et al.* Trends in bark beetle impacts in North America during a period (2000–2020) of rapid environmental change. *Journal of Forestry* **120**, 693–713 (2022).

42. Iglesias, V., Balch, J. & Travis, W. US fires became larger, more frequent, and more widespread in the 2000s, *Sci. Adv.*, 8, eabc0020. (2022).
43. Crimmins, A. R. *et al.* Fifth National Climate Assessment. (2023).
44. Abatzoglou, J. T. *et al.* Projected increases in western US forest fire despite growing fuel constraints. *Communications Earth & Environment* **2**, 1–8 (2021).
45. Hawkins, L. R., Abatzoglou, J. T., Li, S. & Rupp, D. E. Anthropogenic influence on recent severe autumn fire weather in the west coast of the United States. *Geophysical Research Letters* **49**, e2021GL095496 (2022).
46. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. *Proceedings of the National Academy of sciences* **113**, 11770–11775 (2016).
47. Zuzak, C. *et al.* National Risk Index technical documentation. Federal Emergency Management Agency, Washington, DC. (2024).
48. California Wildfires. <https://www.fire.ca.gov/our-impact/statistics> (2024).
49. Choobineh, M., Ansari, B. & Mohagheghi, S. Vulnerability assessment of the power grid against progressing wildfires. *Fire Safety Journal* **73**, 20–28 (2015).
50. *2025 Wildfire Mitigation Plan Update*. <https://www.pge.com/en/outages-and-safety/safety/community-wildfire-safety-program.html?vnt=wildfiremitigationplan#accordion-99016a73ab-item-c788794778> (2024).
51. *2023-2025 Wildfire Mitigation Plan (Southern California Edison)*. https://www.sce.com/sites/default/files/AEM/Wildfire%20Mitigation%20Plan/2023-2025/2023-03-27_SCE_2023_WMP_R0.pdf (2023).
52. *2023-2025 Wildfire Mitigation Plan (San Diego Gas & Electric)*. https://www.sdge.com/sites/default/files/regulatory/2025-04-02_SDGE_2023_WMP_R4_redacted.pdf (2023).
53. *Bear Valley Electric Service 2023-2025 Wildfire Mitigation Plan*. https://www.bvesinc.com/assets/documents/wildfire-mitigation-plan/392023wmp/2023-05-08_bves_2023_wmp_r0.pdf (2023).
54. *Liberty 2023 Wildfire Mitigation Plan*. https://california.libertyutilities.com/uploads/2023-05-19_Liberty_2023_WMP_R1.pdf (2023).
55. *Wildfire Mitigation Plan 2022 Annual Report*. https://www.xcelenergy.com/staticfiles/xe-responsive/Company/Rates%20&%20Regulations/Regulatory%20Filings/Wildfire%20Mitigation%20Plan%202022%20Annual%20Report_FINAL_05-31-23.pdf (2023).

56. Nazemi, M. & Dehghanian, P. Powering through wildfires: An integrated solution for enhanced safety and resilience in power grids. *IEEE Transactions on Industry Applications* **58**, 4192–4202 (2022).
57. Trakas, D. N. & Hatziargyriou, N. D. Optimal distribution system operation for enhancing resilience against wildfires. *IEEE Transactions on Power Systems* **33**, 2260–2271 (2017).
58. Warner, C., Callaway, D. & Fowlie, M. Risk-Cost Tradeoffs in Power Sector Wildfire Prevention. (2024).
59. Tymstra, C. *Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model*. (Northern Forestry Centre, 2009).
60. Severino, G., Fuentes, A., Valdivia, A., Auat-Cheein, F. & Reszka, P. Assessing wildfire risk to critical infrastructure in central Chile: application to an electrical substation. *International Journal of Wildland Fire* **33**, (2024).
61. Sohrabi, B. Data-Driven Approaches for Enhancing Power Grid Reliability. (2024).
62. Coleman, J. R. & Sullivan, A. L. A real-time computer application for the prediction of fire spread across the Australian landscape. *Simulation* **67**, 230–240 (1996).
63. Shamsaei, K. et al. Coupled fire-atmosphere simulation of the 2018 Camp Fire using WRF-Fire. *International journal of wildland fire* **32**, 195–221 (2023).
64. Pimont, F., Dupuy, J.-L. & Linn, R. Fire effects on the physical environment in the WUI using FIRETEC. *Chapter* (2014).
65. Morvan, D. Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. *Fire technology* **47**, 437–460 (2011).
66. Choobineh, M. & Mohagheghi, S. Power grid vulnerability assessment against wildfires using probabilistic progression estimation model. in 1–5 (IEEE, 2016).
67. Choobineh, M. *Optimal Operation and Management of Energy Systems under Extreme Temperature Conditions*. (Colorado School of Mines, 2019).
68. Nazemi, M., Dehghanian, P., Alhazmi, M. & Darestani, Y. Resilience enhancement of electric power distribution grids against wildfires. in 1–7 (IEEE, 2021).
69. Guo, Y. et al. Determination of the power transmission line ageing failure probability due to the impact of forest fire. *IET Generation, Transmission & Distribution* **12**, 3812–3819 (2018).
70. Dian, S. et al. Integrating Wildfires Propagation Prediction Into Early Warning of Electrical Transmission Line Outages. *IEEE Access* **7**, 27586–27603 (2019).

71. Khan, I. & Ghassemi, M. A probabilistic approach for analysis of line outage risk caused by wildfires. *International Journal of Electrical Power & Energy Systems* **139**, 108042 (2022).
72. Umunnakwe, A., Parvania, M., Nguyen, H., Horel, J. D. & Davis, K. R. Data-driven spatio-temporal analysis of wildfire risk to power systems operation. *IET Generation, Transmission & Distribution* **16**, 2531–2546 (2022).
73. Finney, M. A. Fire growth using minimum travel time methods. *Canadian Journal of Forest Research* **32**, 1420–1424 (2002).
74. Yavuz, M., Sağlam, B., Küçük, Ö. & Tüfekçioğlu, A. Assessing forest fire behavior simulation using FlamMap software and remote sensing techniques in Western Black Sea Region, Turkey. *Kastamonu University Journal of Forestry Faculty* **18**, 171–188 (2018).
75. Mallinis, G., Mitsopoulos, I., Beltran, E. & Goldammer, J. G. Assessing wildfire risk in cultural heritage properties using high spatial and temporal resolution satellite imagery and spatially explicit fire simulations: The case of Holy Mount Athos, Greece. *Forests* **7**, 46 (2016).
76. Weise, D. R. & Martin, R. E. *The Biswell Symposium: Fire Issues and Solutions in Urban Interface and Wildland Ecosystems*. (USDA. Forest Service. Pacific Southwest Research Station, 1995).
77. Finney, M. A., Seli, R. C. & Andrews, P. L. Modeling post-frontal combustion in the FARSITE fire area simulator. in 16–20 (2003).
78. Starešinić, D., Biljaković, K., Šamanović, S., Miloslavić, M. & Vinković, M. Validation and calibration of Farsite vegetation fire growth simulation software on several Adriatic islands. in 119–126 (2008).
79. Finney, M. A. *et al.* A method for ensemble wildland fire simulation. *Environmental Modeling & Assessment* **16**, 153–167 (2011).
80. Calkin, D. E., Thompson, M. P., Finney, M. A. & Hyde, K. D. A real-time risk assessment tool supporting wildland fire decisionmaking. *Journal of Forestry* **109**, 274–280 (2011).
81. Wei, Y., Thompson, M., Scott, J., O'Connor, C. & Dunn, C. Designing Operationally Relevant Daily Large Fire Containment Strategies Using Risk Assessment Results. *Forests* **10** (4), 311. (2019).
82. O'Mara, T., Meador, A. S., Colavito, M., Waltz, A. & Barton, E. Navigating the Evolving Landscape of Wildfire Management: A Systematic Review of Decision Support Tools. *Trees, Forests and People* **100575** (2024).
83. Ager, A. A. *et al.* Network analysis of wildfire transmission and implications for risk governance. *PLoS One* **12**, e0172867 (2017).

84. Ager, A. A., Houtman, R. M., Seli, R., Day, M. A. & Bailey, J. Integrating large wildfire simulation and forest growth modeling for restoration planning. in 129 (2017).

85. Riley, K. L., Thompson, M. P., Scott, J. H. & Gilbertson-Day, J. W. A model-based framework to evaluate alternative wildfire suppression strategies. *Resources* **7**, 4 (2018).

86. Heinsch, F. & Andrews, P. BehavePlus fire modeling system, version 5.0: design and features. General Technical Report RMRS-GTR-249. (2010).

87. Keeley, J. E. *et al.* Ignitions explain more than temperature or precipitation in driving Santa Ana wind fires. *Science advances* **7**, eabh2262 (2021).

88. *Bushfire Recovery – More than Just New Poles.*
<https://www.energynetworks.com.au/news/energy-insider/2020-energy-insider/bushfire-recovery-more-than-just-new-poles/> (2020).

89. Taylor, J. A power failure caused by a brush fire blacked... *UPI* (1985).

90. Blackouts hit large parts of Argentina after fire damages power line amid heat wave. *Global News* (2023).

91. Thousands of Quebecers still without power, due to Thursday's storm. *City News Everywhere* (2023).

92. Rossi, J. L., Simeoni, A., Moretti, B. & Leroy-Cancellieri, V. An analytical model based on radiative heating for the determination of safety distances for wildland fires. *Fire Safety Journal* **46**, 520–527 (2011).

93. Xu, L. *et al.* Resilience of renewable power systems under climate risks. *Nature Reviews Electrical Engineering* **1**, 53–66 (2024).

94. Saeed, Q. A. & Nazaripouya, H. Impact of Wildfires on Power Systems. in 1–5 (2022). doi:10.1109/EEEIC/ICPSEurope54979.2022.9854777.

95. Ali, A. J., Zhao, L. & Kapourchali, M. H. Data-Driven-Based Analysis and Modeling for the Impact of Wildfire Smoke on PV Systems. *IEEE Transactions on Industry Applications* **60**, 2076–2084 (2024).

96. Huang, D., Lu, W., Long, M. & Li, P. Influence of the typical vegetation ashes/particles on discharge characteristics of conductor-plane air gap. *The Journal of Engineering* **2019**, 3214–3218 (2019).

97. Chrzan, K. L. & Wróblewski, Z. The threat caused by fires under high voltage lines. in (2004).

98. Panossian, N. & Elgindy, T. Power System Wildfire Risks and Potential Solutions: A Literature Review & Proposed Metric. (2023).

99. Ali, A. J., Zhao, L., Kapourchali, M. H. & Lee, W. J. Predictive Analysis of Wildfire Smoke-Induced Wiggle Effect on Low-Inertia Trending Power Grids. *IEEE Transactions on Industry Applications* **60**, 2716–2724 (2024).

100. Ford, E., Peters, I. M. & Hoex, B. Quantifying the impact of wildfire smoke on solar photovoltaic generation in Australia. *iScience* **27**, 108611 (2024).

101. Antonanzas-Torres, F., Urraca, R., Polo, J., Perpiñán-Lamigueiro, O. & Escobar, R. Clear sky solar irradiance models: A review of seventy models. *Renewable and Sustainable Energy Reviews* **107**, 374–387 (2019).

102. Protecting Our Electric Grid from Wildfires and Eliminating Grid Initiated Wildfires.

103. Khalfallah, M. G. & Koliub, A. M. Effect of dust on the performance of wind turbines. *Desalination* **209**, 209–220 (2007).

104. Choudhary, M. *et al.* A review of aging models for electrical insulation in power cables. *Energies* **15**, 3408 (2022).

105. Jazebi, S., León, F. de & Nelson, A. Review of Wildfire Management Techniques—Part I: Causes, Prevention, Detection, Suppression, and Data Analytics. *IEEE Transactions on Power Delivery* **35**, 430–439 (2020).

106. Zhuravleva, N., Reznik, A., Tukacheva, A., Kiesewetter, D. & Smirnova, E. The study of thermal aging components paper-impregnated insulation of power transformers. in 747–751 (2016). doi:10.1109/EIConRusNW.2016.7448288.

107. Sayarshad, H. R. & Ghorbanloo, R. Evaluating the resilience of electrical power line outages caused by wildfires. *Reliability Engineering & System Safety* **240**, 109588 (2023).

108. Russell, B. D., Benner, C. L. & Wischkaemper, J. A. Distribution feeder caused wildfires: Mechanisms and prevention. in 43–51 (2012). doi:10.1109/CPRE.2012.6201220.

109. Wegman, S. Corporate Social Responsibility and California Wildfires: Mitigative Obligations of State Energy Utilities. (2022).

110. Gas, P. *Electric Company,“Pacific Gas and Electric Company Amended 2019 Wildfire Safety Plan,”*. (2019).

111. HOW DO POWER LINES CAUSE WILDFIRES?
<https://wildfireremitigation.tees.tamus.edu/faqs/how-power-lines-cause-wildfires> (2014).

112. Bayani, R. & Manshadi, S. D. Resilient Expansion Planning of Electricity Grid Under Prolonged Wildfire Risk. *IEEE Transactions on Smart Grid* **14**, 3719–3731 (2023).
113. Help report danger trees – DOF has responded to 202 power line fires since 2014. <https://akfireinfo.com/2023/05/12/help-report-danger-trees-dof-has-responded-to-202-power-lines-fires-since-2014/> (2023).
114. Bogel-Burroughs, N., Kovaleski, S. F., Hubler, S. & Mellen, R. How Fire Turned Lahaina Into a Death Trap. *The New York Times* (2023).
115. Teague, B., McLeod, R. & Pascoe, S. Final report, 2009 Victorian bushfires royal commission. *Parliament of Victoria, Melbourne Victoria, Australia* **1**, (2010).
116. Vazquez, D. A. Z., Qiu, F., Fan, N. & Sharp, K. Wildfire mitigation plans in power systems: A literature review. *IEEE Transactions on Power Systems* **37**, 3540–3551 (2022).
117. Mitchell, J. W. Power line failures and catastrophic wildfires under extreme weather conditions. *Engineering Failure Analysis* **35**, 726–735 (2013).
118. Wang, X. & Bocchini, P. Predicting wildfire ignition induced by dynamic conductor swaying under strong winds. *Scientific Reports* **13**, 3998 (2023).
119. Keeley, J. E. & Syphard, A. D. Historical patterns of wildfire ignition sources in California ecosystems. *International journal of wildland fire* **27**, 781–799 (2018).
120. CPUC-SED. *SED-CAL FIRE Joint Assessment and Recommendation Report*. https://www.cpuc.ca.gov/-/media/cpuc-website/files/uploadedfiles/cpuc_public_website/content/safety/r-15-05-006-sed-cal-fire-joint-assesment-and-recommendation-report-9-19-2018.pdf (2018).
121. Chuvieco, E. & Congalton, R. G. Application of remote sensing and geographic information systems to forest fire hazard mapping. *Remote sensing of Environment* **29**, 147–159 (1989).
122. Corporation, N. A. E. R. *Transmission Vegetation Management Standard FAC-003-2 Technical Reference*. https://www.nerc.com/pa/Stand/Project%20200707%20Transmission%20Vegetation%20Management/FAC-003-2_TR_December_17_2010.pdf (2010).
123. Moon, S. California’s second-largest wildfire was sparked when power lines came in contact with a tree, Cal Fire says. *CNN* (2022).
124. Kandanaarachchi, S., Anantharama, N. & Muñoz, M. A. Early Detection of Vegetation Ignition Due to Powerline Faults. *IEEE Transactions on Power Delivery* **36**, 1324–1334 (2021).

125. Marxsen, T. Vegetation conduction ignition test report-final. *Marxsen Consulting Pty Ltd., Department of Economic Development Jobs Transport and Resources* (2015).
126. Ghaderi, A., Ginn III, H. L. & Mohammadpour, H. A. High impedance fault detection: A review. *Electric power systems research* **143**, 376–388 (2017).
127. Douglass, D. A. & Thrash, F. R. Sag and tension of conductor. in *Electric power generation, transmission, and distribution* 15-1-15–42 (CRC Press, 2018).
128. Zengin, A. T., Erdemir, G., Akinci, T. C. & Seker, S. Measurement of Power Line Sagging Using Sensor Data of a Power Line Inspection Robot. *IEEE Access* **8**, 99198–99204 (2020).
129. Beutel, A. *et al.* Risk mitigation of medium voltage overhead distribution lines. *Cigre Sci. Eng* 5–11 (2016).
130. (ESA), E. S. A. *Mitigation of Pole Top Fires Best Practice*. <https://esasafe.com/assets/files/esasafe/pdf/Utilities/Mitigation-of-Pole-Top-Fires-Best-Practicel-V.pdf> (2017).
131. Thejane, K. V. *et al.* Pole top fires: Review of work to date and a case for further research. in 1–6 (2012). doi:10.1109/PowerAfrica.2012.6498657.
132. Darveniza, M. *Electrical Properties of Wood and Line Design*. (University of Queensland Press, 1980).
133. Stevens, M., Rojas, R. & Fortin, J. New York sky turns bright blue after transformer explosion. *The New York Times* (2018).
134. Mass, C. F. & Ovens, D. The Northern California wildfires of 8–9 October 2017: The role of a major downslope wind event. *Bulletin of the American Meteorological Society* **100**, 235–256 (2019).
135. MCCALLUM, K. Damaged PG&E equipment found near origins of North Bay fires. *The Press Democrat* (2018).
136. Cano, A. Killeen: Large wildfire threatens homes. *KWTX*.
137. Stoltz, K. Thomas Fire Had Two Origins. *Independent* (2017).
138. Muller, S. bastien, Brady, R., De Bressy, G. I, Magnier, P. & Pe’rigaud, G. Prevention of transformer tank explosion: Part 1—experimental tests on large transformers. in vol. 48272 357–365 (2008).
139. Climate, C. on A. to a C. Adapting infrastructure and civil engineering practice to a changing climate. in (American Society of Civil Engineers, 2015).

140. Morris, J. D. PG &E outages: Historic blackout under way, 1.3 million in Bay Area without power (2019). *San Francisco Chronicle* (2019).

141. *Wildfire Risk Reduction Methods—2024*.
<https://www.ePRI.com/research/products/000000003002030230> (2024).

142. Wolfe, S. PG&E gets approval to raise rates nearly 13% for wildfire mitigation, reliability, capacity upgrades. (2023).

143. Namdari, F. & Bahador, N. Modeling trees internal tissue for estimating electrical leakage current. *IEEE Transactions on Dielectrics and Electrical Insulation* **23**, 1663–1674 (2016).

144. Ozansoy, C. & Gomes, D. P. Volatility diagnosis in phase-to-phase fault detection for branch across wire faults. *IEEE Transactions on Power Delivery* **36**, 19–29 (2020).

145. Jimenez-Aparicio, M., Patel, T. R., Reno, M. J. & Hernandez-Alvidrez, J. Protection Analysis of a Traveling-Wave, Machine-Learning Protection Scheme for Distribution Systems With Variable Penetration of Solar PV. *IEEE Access* (2023).

146. Rorabaugh, J. *Rapid Earth Fault Current Limiter (REFCL) Projects at Southern California Edison*. [https://www.sce.com/sites/default/files/AEM/Supporting%20Documents/2023-2025/Rapid%20Earth%20Fault%20Current%20Limiter%20\(REFCL\)%20Projects%20at%20Southern%20California%20Edison.pdf](https://www.sce.com/sites/default/files/AEM/Supporting%20Documents/2023-2025/Rapid%20Earth%20Fault%20Current%20Limiter%20(REFCL)%20Projects%20at%20Southern%20California%20Edison.pdf) (2022).

147. *Near-Term, Risk-Informed Wildfire Mitigation Strategies Guidebook for Utilities*.
<https://media.licdn.com/dms/document/media/D4D1FAQGULve-t-TV7Q/feedshare-document-pdf-analyzed/0/1716324832271?e=1717027200&v=beta&t=1aRik3fKTcdYwTqooe9EqNQNBainJBXKWQG3VBw82co> (2024).

148. Magnier, P. Method and device for prevention against explosion and fire of electrical transformers. (1999).

149. Wimmer, J., Tanner, M., Nunn, T. & Kern, J. Dry-Type-vs.-liquid-immersed transformers: Specification installation and operational impact in a marine environment. in 1–8 (IEEE, 2011).

150. Nunn, T. A comparison of liquid-filled and dry-type transformer technologies. in 105–112 (IEEE, 2000).

151. Sharma, P., Saurav, S. & Singh, S. Object detection in power line infrastructure: A review of the challenges and solutions. *Engineering Applications of Artificial Intelligence* **130**, 107781 (2024).

152. Wanik, D. W., Parent, J., Anagnostou, E. & Hartman, B. Using vegetation management and LiDAR-derived tree height data to improve outage predictions for electric utilities. *Electric Power Systems Research* **146**, 236–245 (2017).

153. Xiaozhi, Z. *et al.* Evaluation of wildfire occurrence along high voltage power line by remote sensing data: A case study in Xianning, Hubei, China. in 300–304 (IEEE, 2016).

154. Jia, S., Kim, S. H., Nghiem, S. V., Cho, W. & Kafatos, M. C. Estimating live fuel moisture in southern California using remote sensing vegetation water content proxies. in 5887–5890 (IEEE, 2018).

155. Gas, P. *Electric Company*, “Pacific Gas and Electric Company 2020 Wildfire Mitigation Plan Report,”. (2020).

156. Rhodes, N., Ntiamo, L. & Roald, L. Balancing wildfire risk and power outages through optimized power shut-offs. *IEEE Transactions on Power Systems* **36**, 3118–3128 (2020).

157. Bagchi, A., Sprintson, A. & Singh, C. Modeling the impact of fire spread on the electrical distribution network of a virtual city. in 1–6 (IEEE, 2009).

158. Shaffer, J. A., Carrillo, E. & Xu, H. Hierarchical application of receding horizon synthesis and dynamic allocation for uavs fighting fires. *IEEE Access* **6**, 78868–78880 (2018).

159. National Wildfire Coordinating Group. Wildland Fire Suppression Tactics Reference Guide. (1996).

160. Simpson, H., Bradstock, R. & Price, O. A temporal framework of large wildfire suppression in practice, a qualitative descriptive study. *Forests* **10**, 884 (2019).

161. Coffrin, C., Van Hentenryck, P. & Bent, R. Strategic stockpiling of power system supplies for disaster recovery. in 1–8 (IEEE, 2011).

162. Altay, N. & Green III, W. G. OR/MS research in disaster operations management. *European journal of operational research* **175**, 475–493 (2006).

163. Arab, A., Khodaei, A., Khator, S. K., Ding, K. & Han, Z. Post-hurricane transmission network outage management. in 1–6 (2013).

164. Arab, A. *et al.* Stochastic pre-hurricane restoration planning for electric power systems infrastructure. *IEEE Transactions on Smart Grid* **6**, 1046–1054 (2015).

165. Arab, A., Khodaei, A., Khator, S. K. & Han, Z. Electric power grid restoration considering disaster economics. *IEEE Access* **4**, 639–649 (2016).

166. Moreno, R. *et al.* Microgrids against wildfires: Distributed energy resources enhance system resilience. *IEEE Power and Energy Magazine* **20**, 78–89 (2022).

167. Wang, Y., Rousis, A. O. & Strbac, G. On microgrids and resilience: A comprehensive review on modeling and operational strategies. *Renewable and Sustainable Energy Reviews* **134**, 110313 (2020).

168. Lei, S., Wang, J., Chen, C. & Hou, Y. Mobile emergency generator pre-positioning and real-time allocation for resilient response to natural disasters. *IEEE Transactions on Smart Grid* **9**, 2030–2041 (2016).

169. Arghandeh, R., Pipattanasomporn, M. & Rahman, S. Flywheel energy storage systems for ride-through applications in a facility microgrid. *IEEE Transactions on smart grid* **3**, 1955–1962 (2012).

170. Kousky, C., Greig, K. & Lingle, B. Financing third party wildfire damages: Options for California's electric utilities. *Wharton Risk Management and Decision Processes Center* (2019).

171. Arab, A. & Khodaei, A. Climate Risk Financing in Electric Utilities Sector. *T&D Word*.

172. Lewis, T. & Nickerson, D. Self-insurance against natural disasters. *Journal of Environmental Economics and Management* **16**, 209–223 (1989).

173. Chen, C., Yang, B., Song, S., Peng, X. & Huang, R. Automatic clearance anomaly detection for transmission line corridors utilizing UAV-Borne LIDAR data. *Remote Sensing* **10**, 613 (2018).

174. Cheng, Y. *et al.* Scattered tree death contributes to substantial forest loss in California. *Nature communications* **15**, 641 (2024).

175. Veraverbeke, S. *et al.* Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. *Remote Sensing of Environment* **216**, 105–121 (2018).

176. Keerthiathan, P., Amarasingam, N., Hamilton, G. & Gonzalez, F. Exploring unmanned aerial systems operations in wildfire management: data types, processing algorithms and navigation. *International Journal of Remote Sensing* **44**, 5628–5685 (2023).

177. French, N. H. *et al.* Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. *International Journal of Wildland Fire* **17**, 443–462 (2008).

178. Chuvieco, E. *et al.* Satellite remote sensing contributions to wildland fire science and management. *Current Forestry Reports* **6**, 81–96 (2020).

179. White, L. A. & Gibson, R. K. Comparing fire extent and severity mapping between Sentinel 2 and Landsat 8 satellite sensors. *Remote Sensing* **14**, 1661 (2022).

180. Keane, R. E. *et al.* A fire severity mapping system for real-time fire management applications and long-term planning: the FIRESEV project. (2013).

181. Hernández-López, D., López-Rebollo, J., Moreno, M. A. & Gonzalez-Aguilera, D. Automatic processing for identification of forest fire risk areas along high-voltage power lines using coarse-to-fine LiDAR data. *Forests* **14**, 662 (2023).
182. Thangavel, K. *et al.* Autonomous satellite wildfire detection using hyperspectral imagery and neural networks: A case study on australian wildfire. *Remote Sensing* **15**, 720 (2023).
183. Liang, H., Zhang, M. & Wang, H. A neural network model for wildfire scale prediction using meteorological factors. *IEEE Access* **7**, 176746–176755 (2019).
184. Graff, C. A. *et al.* Forecasting daily wildfire activity using poisson regression. *IEEE Transactions on Geoscience and Remote Sensing* **58**, 4837–4851 (2020).
185. Jayakumar, A., Shaji, A. & Nitha, L. Wildfire forecast within the districts of Kerala using Fuzzy and ANFIS. in 666–669 (IEEE, 2020).
186. Kaur, H. & Sood, S. K. Energy-efficient IoT-fog-cloud architectural paradigm for real-time wildfire prediction and forecasting. *IEEE Systems Journal* **14**, 2003–2011 (2019).
187. Muhs, J. W., Parvania, M. & Shahidehpour, M. Wildfire risk mitigation: A paradigm shift in power systems planning and operation. *IEEE Open Access Journal of Power and Energy* **7**, 366–375 (2020).
188. Cui, L., Gorur, R. & Chipman, D. Evaluating flashover performance of insulators under fire fighting conditions. *IEEE Transactions on Dielectrics and Electrical Insulation* **24**, 1051–1056 (2017).
189. Kadir, S. U. *et al.* Reinforcement-Learning-Based Proactive Control for Enabling Power Grid Resilience to Wildfire. *IEEE Transactions on Industrial Informatics* **20**, 795–805 (2023).
190. Yang, W., Sparrow, S. N., Ashtine, M., Wallom, D. C. & Morstyn, T. Resilient by design: Preventing wildfires and blackouts with microgrids. *Applied Energy* **313**, 118793 (2022).
191. Chen, C., Wang, J., Qiu, F. & Zhao, D. Resilient distribution system by microgrids formation after natural disasters. *IEEE Transactions on smart grid* **7**, 958–966 (2015).
192. Younesi, A., Shayeghi, H., Safari, A. & Siano, P. Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation. *Energy* **207**, 118220 (2020).
193. Okoromah, A. B. Microgrids: advancing the resilience of Canada's future energy system. (2021).
194. Peters, A. New microgrids are helping Australia get power back after the fire. (2020).

195. Volkwyn, C. Micro grid solutions for Japan grow in the wake of 2011 tsunami. *Smart Energy* (2017).
196. Strbac, G. & Djapic, P. Review of distribution network security standards. *Extended Report, London, UK* (2015).
197. Norris, F. H., Stevens, S. P., Pfefferbaum, B., Wyche, K. F. & Pfefferbaum, R. L. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. *American journal of community psychology* **41**, 127–150 (2008).
198. McCaffrey, S. Community wildfire preparedness: A global state-of-the-knowledge summary of social science research. *Current Forestry Reports* **1**, 81–90 (2015).
199. Noor, N. *et al.* Social-media-based crisis communication: Assessing the engagement of local agencies in Twitter during Hurricane Irma. *International Journal of Information Management Data Insights* **4**, 100236 (2024).
200. Hotchkiss, E. L. & Dane, A. *Resilience Roadmap: A Collaborative Approach to Multi-Jurisdictional Resilience Planning*. (2019).

Acknowledgements

The authors thank Alireza Ghassemian and Joseph Dygert at the U.S. Department of Energy for providing technical support for this review. The authors also want to acknowledge the U.S. Department of Energy in providing some financial support for this work.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) under contract DE-NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed in the written work do not necessarily represent the views of the U.S. Government. The publisher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this written work or allow others to do so, for U.S. Government purposes. The DOE will provide public access to results of federally sponsored research in accordance with the DOE Public Access Plan.

Competing interests

The authors declare no competing interests.

Author contributions

Soroush Vahedi and Junbo Zhao conceived the article. All authors participated in the writing of the initial draft as well as discussions and finalization of the article.