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Abstract

Predictive Signal Phase and Timing (SPAT) message set is one
fundamental building block for vehicle-to-infrastructure (V2I)
applications such as Eco-Approach and Departure (EAD) at traffic
signal controlled urban intersections. Among the two complementary
communication methods namely short-range sidelink (PC5) and long-
range cellular radio link (Uu), this paper documents the work with
long-range link: the complete data chain includes connecting to the
traffic signals via existing backhaul communication network,
collecting the raw signal phase state data, predicting the signal state
changes and delivering the SPAT data via a geofenced service to
requests over HTTP protocols. An Application Programming
Interface (API) library is developed to support various cellular data
transmission reduction and latency improvement techniques. An
emulation-based algorithm is applied to predict the traffic signal state
changes to provide adequate prediction horizon (e.g., at minimum 2
minutes) for the cohort energy optimization. In fact, the same
connectivity and SPAT delivery methodology has been applied to
traffic signalized intersections nationwide in the United States upon
public agency approvals for access to their firewalled traffic control
network and signal control systems or directly to individual
controllers. This methodology proves its effectiveness and potential
for rapid growth of such SPAT deliveries at mass production scale
without needing infrastructure hardware retrofit or excessive
communication means. To support the energy optimization of light
and heavy-duty vehicle cohorts of mixed automation and propulsion
systems (EV, ICE and hybrid), the connection and SPAT deliveries at
two sites were completed, including public roads in Washtenaw
County, Michigan and closed track test sites at American Center for
Mobility (ACM) in Ypsilanti, Michigan. However, only closed test
track results at ACM will be presented in this paper. A
neuroevolution based optimizer is developed and implemented to
control the speed of a vehicle cohort with different propulsion
systems and automation levels. Closed track tests were presented and
showed significant energy savings of the cohort operation.

Introduction

Connected Vehicle applications including Eco-Approach and
Departure (EAD) requires Signal Phase and Timing (SPAT)
messages. EAD refers to a set of safety- or mobility-focused use
cases, such as Red Light Violation Warning, Green Light Optimized
Speed Advisory (GLOSA), eco-traffic signal timing and extension to
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vehicle cohort as coordinated platooning. Coupled with MAP [16]
messages, SPAT message supplies EAD applications with data
frames and elements including traffic signal controller operational
information such as preemption, current signal phase states of green-
amber-red and future timings of when the signal state will switch to
next. In general, the signal phase states are mandatory, while future
timings such as time to change are optional. It is well noted that
mandatory frames and elements may be sufficient for safety related
applications, while optional, future timings are necessary to support
applications, for example, GLOSA for both human drivers and
onboard computer systems to execute powertrain automations.

In literature and reported practices, two primary approaches exist to
deliver SPAT messages to vehicles: field broadcast from roadside
unit via Dedicated Short-Range Communication (DSRC) or C-V2X
channels [17], or infra-red [11], and public cellular network via
internet protocols from a backend cloud or edge-computing services.
Field broadcast would require retrofit of existing traffic signal
controls for installation and maintenance; this efforts would be
costly: an earlier benefit-cost analysis projected $27.3 billion to
upgrade both freeway and urban intersections in US alone [18]. Such
huge investment and expected long span of time contributed to the
vicious cycle of ‘chicken-egg’ problem stalling connected vehicle
service adoption in the auto industry, particularly Vehicle-to-
Infrastructure (V2I) applications. Roadside unit (RSU) deployment
has been the government and industry push, such as the SPAT
Challenge [19] and test tracks and pilot zones set up by different
municipalities across the globe [1]. While seeing increased growth
rates in some countries [1], such deployment pace is not satisfying
the auto OEM’s desire for mass production. In the autonomous
driving sector as represented by Waymo robotaxi and Tesla vehicles,
the individual vehicle relies solely on the onboard sensors mainly of
cameras to capture traffic signal head positions, analyze its current
color and make corresponding continue-driving or stop decisions
[10]. Some research explored smart phone apps to both capturing
traffic signal state changes and estimating their timing parameters by
switching time pattern analysis [13]. Understanding some traftic
signals only run pre-timed time-of-day plans, a few studies have
applied probe vehicle data mining techniques to derive the timing
plans and resulting SPATs [7, 8].

The second approach of cellular network delivery via internet
protocols involves collecting traffic signal control data by either
tapping into existing signal management systems or directly
communicating with traffic signal controllers via standard or



proprietary protocols, building the SPAT messages and relaying via
4G/LTE to target vehicles by Uu channels or mobile phone
applications [9]. Originating from pioneering work like ‘Travolution’
project by Audi AG [3, 18], the authors of this report have developed
a platform to deploy SPAT delivery mechanism via long range
communication and demonstrated as a viable path towards mass
market production [4, 16]. This approach is enabled by three main
technology advances: standardized traffic signal control with widely
available existing backhaul communication, continuous cellular
network improvement of enlarged bandwidth and reduced latencies,
and cloud/edge computing capabilities. The authors surveyed over
two thousand road operators in US and Canada, finding over 55% of
field traffic signals have backhaul communications allowing traffic
engineers to remotely manage and monitor the operations. Already
connecting to some of those networked traffic signals, one computing
clusters in US is hosting the SPAT generation of over 60,000
signalized intersections (www.traffictechservices.com), and new such
clusters are deployed in Europe and China connecting to traffic
signals locally for commercial services. Evidencing the cellular
communication capability for SPAT deliveries, a recent empirical
study has shown that the end-to-end communications can reach 40ms
as median value and maximum at 68 ms [14]. It is also worth noting
that automotive engineers have been considering in-vehicle
applications to be compatible in receiving data from either means.
For example, Ford China has enabled their production vehicles to
receive SPAT and MAP messages either from the Uu or PCS5 port,
while the in-vehicle applications would remain the same [9].

In this paper, the authors describe the data flow from traffic signal
infrastructure data access to SPAT delivery into vehicle cohort for
energy consumption optimization, and the intermediary steps and
enhanced SPAT characteristics to reach the needed service levels.
Various message delivery methods over internet protocol are
described with the focus on the Application Programming Interface
(API) one used in this study. The field study was conducted in both a
closed test track and open roads in the Detroit, Michigan region; in
this paper only the results from the closed test track at ACM are
presented The neural network optimizer-based cohort speed planning
output is implemented into a cohort of mixed automation levels and
powertrain types; its energy saving benefits are documented. This
paper is concluded with such SPAT delivery methods working for the
demonstrated cohort powertrain automation functions and proving its
potential of significant energy savings when introduced to mass
market.

Methodology and Application in Detroit
Michigan Region

The generation and delivery of SPAT for cohort energy optimization
workflow is depicted in the following chart (Figure 1). As this
workflow goes across multiple interfaces from traffic signal control,
cloud or edge computing services and then to the vehicle cohort, time
delays and performance is a challenge in this setup. It is important to
synchronize the clocks of the system and create time stamps so the
receiver can determine the delays due to the network, and
subsequently compensate for any transmission latency. We must also
note that while for many metro areas fiber optics are available in their
central intelligent transportation system (ITS) communications
including traffic signal control cabinets, other communications are
also common such as radio-based systems or Wi-Fi broadbands or
cellular modems.
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Figure 1. Generation and delivery of SPAT to support vehicle cohort energy
optimization.

Connection to Traffic Signals for Raw Data Collection

Connecting to traffic signal control infrastructure is the first step in
the SPAT generation workflow (Figure 1). The once-a-second data
polling queries the following data at a minimum from either the
signal controller directly or tied to the traffic signal control
management system at the agency traffic management center (TMC):

- current signal timing plan,

- cycle second (if running on a coordination plan),

- phase call or detection call (pedestrian, bicycle, vehicle
and/or transit), and

- emergency vehicle or railroad preemption status.

These data are used to feed into the SPAT data generator system. In
this study, both direct polling and management system connections
are used for two sites, respectively.

Direct Polling of Traffic Signals at American Center for
Mobility (ACM) Test Track

ACM is the study facility for closed track real world testing of the
cohort energy optimization algorithms. At its Smart Mobility Test
Center, a 2.3 mile (3.7 km) multi-lane highway loop is equipped with
two traffic signal controllers. An on-prem application developed by
the study team polls the signal state (red, yellow, green) data every
second for all phases from these two controllers. This polling is
enabled by the standard communication protocols NTCIP1202 [2]
supported by the two controllers. Relevant data objects are encoded
and transmitted to the SPAT generator through ACM network
firewalls.


http://www.traffictechservices.com/

Figure 2. American Center for Mobility (ACM) test track layout
(https://www.acmwillowrun.org/smart-mobility-test-center/); the traffic signal
head icons indicating the two controllers that enable direct polling of signal
state by NTCIP1202 protocol. The star icons represent virtual signals for lab
tests.

The study team developed a virtual signal technique to support lab
environment development efforts. By choosing a site where usually
less traffic is present such as at a stop sign or a parking lot junction,
the team set up a virtual signal on their backend to resemble the real-
world operations such as various signal phasing combinations and
protected-permissive sequences for in-vehicle application tests. In
this study, two such virtual signals were set up on the test track, as
depicted by star icons in Figure 2, with varying signal cycle lengths
to mimic driving along high-speed corridors encountering traffic
signals of different wait times.

Central Connection to Advanced Traffic Management
System (ATMS) for All Networked Signals at Washtenaw
County

To support a real-world environment with traffic flow and
congestion, an existing deployment from the study team was used in
nearby Washtenaw County, MI. The study team utilizes a software
module added to the existing traffic control management system at
the Traffic Management Center (TMC). This software module is built
using an API developed by the study team that collects, encodes, and
transmits traffic signal data to the SPAT generator. This system has
also supported other individual powertrain studies in the region [6].

Figure 3. Washtenaw County, MI real-world deployment. Each icon is
representing a signalized intersection on the SPAT generation and delivery
system.
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Prediction of Signal State Changes

SPAT data generation (2 in Figure 1) is located at the center of the
overall SPAT delivery system. SPAT generator conforms to an
industry standard, SAE J2735 [15], producing SPAT messages with
emphasis on the optional data elements, i.e., the next signal switch
times of likelyTime and associated confidence in the
TimeChangeDetails data frame. These are the key data elements to
support in-vehicle applications. Generating such data elements
becomes an essential task, particularly for actuated or adaptive traffic
signal control. Different methodologies were reported and validated
[5, 21], which share architectural common features, such as analysis
of historical and current traffic conditions including vehicle and
pedestrian or cyclist actuations, priority routines and emergency
vehicle or railroad preemption states. In this study, we adopt a
patented [5] method to emulate the operations of traffic signal
controllers (Figure 4).

Current Signal Status

(Observed) Control Logic Lacal Control

Parameters ., Future Detection Data
{Predicted}

Past Signal Status
(Archived)

Virtual Controller Emulation

Prediction

N Systerm
Future Signal Status

{Predicted)

Figure 4. Emulation-based signal state change prediction conceptual flow [5].

The emulation-based prediction system has its core replicating both
control logic as well as the localized parameters included in a timing
plan. Feeding it with the same input, the program will react similarly
to the field controllers and generate the outputs. These outputs will
include signal group state changes, which are translated into SPAT
messages. With predicted detection input, the prediction system can
fast-forward the emulation and thus generate future state changes.
These future state changes become the estimation of the LikelyTime
as part of SPAT. This system has been adopted and deployed in
different countries for powering various V2X applications [4].

One important aspect of the SPAT messages must be illustrated to
show its impact upon the service stability, that is the predicted signal
switch times (likelyTime) will need to be sufficiently long for the
EAD applications. This attribute can be characterized as a prediction
horizon, as illustrated in Figure 5. If the provided likelyTime is
outside the reach of the travel from the current vehicle position to the
stop line under speed limit, then the application will have no way to
plan its speed trajectories. On the contrary, if the prediction horizon
is provided sufficiently long, some typical applications can be
conveniently introduced and integrated together to achieve both
mobility and energy saving goals as well as safety benefits. By this
emulation approach, the prediction horizon is introduced by fast-
forwarding the process to more traffic signal cycles, fed by the
forecasted traffic patterns. A minimum horizon of two signal cycles
or two primary signal switches (red-green, green-amber-red) is
stipulated in the designed system, whichever may come later. For
example, if a signal cycle length is 60 seconds, then multiple



switches will be introduced as stacked in the SPAT as future
likelyTime arrays.
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Figure 5. An array of predicted likelyTime, spans the Prediction Horizon. Its
sufficiently long forecasts enable various EAD applications to reach their
speed trajectory planning goals.

Delivery of SPAT via Internet Protocols

After the predictions are generated, they are packaged together with
signal state and other controller operation status information and
formatted into SPAT messages [15]. By providing various
webservices in the cloud, any vehicle or mobile device that is
connected to the internet through a cellular network has the potential
to receive these SPAT messages. These webservices provide the
following core functions:

- map-match the vehicle or mobile device to the target
intersection and approach

- receive customized service requests and respond with only
data of interest, and

- maintain security and service integrity, while reducing the
risk of malicious attacks or misuse of the system

A REST webservice
(https://en.wikipedia.org/wiki/Representational state_transfer),
dubbed Prediction Relay, has been designed and developed to fulfill
such requirements. Its geo-referenced predictions web method
provides enhanced map-matching to anonymized GPS data (latitude,
longitude, heading), and then combines the current SPAT with the
corresponding MAP data. A fargeted prediction method is also
included in this webservice, which bypasses the map-matching to
fetch the latest SPAT from a particular target (as specified by an
intersection ID and approach). Various methods have been
incorporated into this Application Programming Interface (API)
library to support payload reduction so as to achieve minimal cellular
data rates and lowered transmission latency.

One important such technique is using a method called targeted
predictions. When the response from a geo-referenced prediction
request includes the target (as specified by an intersection ID and
approach) of its last match, the targeted prediction will then allow the
users only to specify the same information to get the select SPAT
components for only the intersection and approach of interest.

The following two example requests showcase the geo-fenced and
targeted prediction requests. For demonstration purposes, actual
domain name, IP addresses and port numbers are omitted.
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https://DOMAIN:port/APhA/Services/GeoReferencedPredictions?ses
sionCode=*&latitude=42.248365&longitude=-
83.647604&heading=0...

https://DOMAIN:port/APhA/Services/TargetedPredictions?sessionC
ode=*&targetRegion=Washtenaw%20County&targetSCNr=9036&ta
rgetApproach=903603...

As the first request will map-match to the same intersection in
Washtenaw County as targeted by the second, the Prediction Relay
service responses will filter data to include the same relevant phases,
that is, the northbound through phase 8 and left turn phase 3. Figure
6a shows the example signal location and partial MAP and SPAT
(Phase 3 and 8) visualization on the SPAT generation system. Main
body of the API response is shown for the request time indicated in
the response (Figure 6b).
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Figure 6. SPAT generation and delivery via Prediction Relay API web
service, example signal location Washtenaw Avenue and N Hewitt Rd in
Washtenaw County. (a) SPAT generation system on the cloud backend; (b)
main body of the Prediction Relay API response from both geofencing and
targeted prediction requests are the same.

Application & Demonstration in Energy
Optimization for Vehicle Cohort

Application Setup

The Gen II Chevrolet Volt and Gen I Chevrolet Bolt were used in the
cohort testing of this investigation and were outfitted with a drive-by-
wire system. The Connected and Automated vehicle cohort is formed
around SAE Level 2 vehicles enabling Adaptive Cruise Control
(ACC), Lane Keep Assist (LKA) and Lane Centering Assist (LCA).
The signalized intersections SPAT messages are only communicated
to the cohort’s lead vehicle. The processing unit of each vehicle is
comprised of a dSpace MicroAutoBox II (MAB II) which is a real-
time system for performing in vehicle rapid control prototyping. For
the purposes of this investigation the MAB II serves as an I/O
microcontroller to interface with the cloud compute platform housing
the neuroevolution controller and real-time vehicle cohort simulation.
The MAB II receives vehicle CAN, GPS and drive-by-wire data and
sends to the cloud and receives prediction horizon speed profiles with
approximate 200 ms communication loop time for automated
longitudinal driving. The lead vehicle in the cohort receives the
optimized speed control while the follower vehicles are continuously
receiving speed profile changes to achieve a constant gap target
determined from GPS positioning. Each test vehicle utilized OEM
proprietary CAN data for energy consumption calculations as well as
vehicle and propulsion system dynamic tracking. Single antenna GPS
units were utilized on the Volts, while a dual GPS and IMU were used
on the Bolt. The MAB II speed controller and the drive-by-wire system



interface via the vehicle CAN channels and various instruments are
shown in Figure 7.

The Neuroevolved controller developed in MATLAB Simulink was
compiled to C code and uploaded to the MAB II. The stochastic-based
development of the Neuroevolved controller was performed over
thousands of use cases which enables it to be integrated and readily
usable without additional tuning. The Neuroevolution process allows
the controller to adapt to any variations of its inputs from the vehicle
system, including delays due to latency, allowing for a seamless
transfer learning from simulation to its hardware application. The
neurocontroller is trained over a large set of scenarios where speed,
vehicle distances, traffic timing and cohort length are varied
dynamically. The process enables the neurocontroller to infer the
impact of any dynamic variations over its global objective function and
therefore enable real time adaptive behavior, where changing
boundary conditions will trigger a new behavior. This process
improves the robustness of the controller from variation that may
emanate from the communication or sensor systems latency, just as it
handles the planned and unplanned environmental variations that
forms the real-world test operation domain.

Laptop &

Neuroevolved
Controller

Figure 7. Neuroevolution controller integration into the cohort vehicles and
ACM closed track test.

The SAE Level 2 Automated Cruise Control (ACC) capability enables
the follower vehicle to stay at a safe distance from each other while the
lead vehicle follows the optimum cohort speed target based on the
SPAT inputs, received from the cellular network. In doing so, the
Neuroevolved controller achieves a “Green Wave” through the traffic
network which is designed to minimize the overall cohort energy
usage. In doing so, the Neuroevolution process considers the cohort’s
dynamic length variation as the lead vehicle target speed change and
the follower ACC systems adjust to a safe distance (Figure 8).
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Figure 8. Light and heavy-duty vehicle cohort characteristics.
The simulation-based training of the controller through the stochastic
process considers the following inputs, which abstract the CAV cohort

into one entity — and maintain its integrity across the traffic network:

e  Dynamic Cohort Length
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e Time to green

e  Time to red

e  Minimum possible acceleration of the cohort (bounded by
the lowest performance vehicle)

e A fix “comfortable deceleration” factor

e  Current road speed limit

It is to be noted that the target velocity of the lead vehicle does not
overwrite the ACC safety limitation. The Neuroevolved controller
adapts accordingly when the cohort is not able to achieve the targeted
speed for some reason such as safety. To achieve this optimal and
adaptive behavior, the training involved the use of an agent-based
simulation model as described in [12] which allowed for a wide array
of scenario and variations to learn upon (Figure 9 as example).
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. CAV cohort
£ L = » R
;‘ 3000 @t=60s Feasible time to red >
= —Feasibleime togreen »
3
2 2000 - Distance )
[S] to light Unconnected vehicle
in same scenario
1000
0 ! ! ! i i i 4
0 50 100 150 200 250 300 35

Time [s]

Figure 9. Example successful scenario with an eight-vehicles cohort (L is
around 200m).

Test Results

Results from closed loop track testing are summarized Table 1 and the
corresponding vehicle dynamics of baseline and optimized testing are
shown in Figures 10 and 11. The tests were performed at the American
Center for Mobility (ACM). Two virtual traffic lights were set up along
the highway loop. Different cohorts were tested, changing vehicle
order and type. The energy baseline for each scenario was human
drivers behaving as normal driving, while the optimized scenarios
were conducted with the automated longitudinal driving control
enabled and governed by the speed profile generated by
neuroevolution controller. In all the test scenarios presented, the Bolt
was always running is charge depletion (CD) mode as the Bolt is a
BEV, while the Volts were run in charge sustaining (CS) mode so that
the impact on battery and fuel energy could be gleaned from an
abbreviated matrix of test scenarios. With the Volts running in CS
mode, battery SOC at the start and end of testing were not always
equal. To compensate total propulsion system energy consumption at
the end of the test, the delta SOC in the battery was converted to kWh,
then made equivalent to fuel energy using the EPA specified 33.7
kWh/gallon of gasoline equivalency and then converted to gasoline
energy consumption with an LHV of 41.28 MJ/kg.

Table 1 summary results for three test scenarios shows energy savings
ranging for 7 to 22% and minimal savings of transit time. With the
PHEV Volt operating in CS mode and leading the cohort, a 22%
reduction in energy consumption was achieved. With the BEV Bolt
leading, energy savings were in the low 7% range. It can be noted that
higher cohort energy savings is realized with the PHEV in CS mode
leading vs. following is related to the sufficiency of cloud based ACC




gap control of follower vehicles. Due to latency in the vehicle to cloud
communication loop and latency in the vehicle drive-by-wire systems
to commanded speed profile, the cloud based ACC gap control was
less than idea in these initial test results, reducing the energy
consumption benefit for the two follower vehicles in the cohort.
Unnecessary accelerations and decelerations were noted for the
follower vehicles leading to suboptimal energy consumption, whereas
the lead vehicle’s neuroevolution controlled speed profile is very
smooth, producing near optimal energy consumption relative to traffic
infrastructure. Obviously with fuel energy at nearly a 3X premium than
battery, anytime there are unnecessary vehicle dynamics for the
follower vehicles involving an ICE torque fluctuation will compound
and lead to increased energy consumption. However, even with a non-
ideal performing cloud ACC controller, reduced energy consumption
was still realized. The non-ideal behavior of the cloud ACC control
will be mitigated with the refinements of the current drive-by-wire
system autonomous stack and an enhanced tuning to the vehicle
following algorithm running in parallel with the neuroevolution
controller. Another set of tests are being conducted to overlay the
archived MAP and SPAT data from five signals on Plymouth Rd at
Washtenaw County, which coincides in the length to the ACM test
track.

Table 1. Individual and cohort level energy and time saving during close loop
track testing at ACM using random traffic light phasing and timing.

Speed Limit Total Distance 3 Vehicles Energy Saved Enef;;flc;atve d Travel Time
(mph) (km) Cohort Y% % Saved %

6.70 Volt PHEV 29%

Test 1 45 6.70 Bolt 20% 22.0% 0.4%
6.72 Volt PHEV 16%
6.65 Bolt 16%

Test 2 45 6.67 Volt PHEV 12% 74 1.2%
6.70 Volt PHEV 0%
6.65 Bolt 16%

Test 3 45 6.67 Volt PHEV 7% 73 0.5%
6.69 Volt PHEV 4%

The comparison of the human driven baseline scenario and optimized
automated testing of a three vehicle cohort traversing a three traffic
light 6.7 km track are shown in Figures 10 (Test 1) and 11 (Test 2).
In Figure 10, the baseline scenario, the cohort is stopped by all three
traffic lights (top) while in the optimized scenario, the connectivity
and neuroevolution optimization slows the cohort before each traffic
light, but maintains highest possible speed. As discussed previously,
the non-optimal cloud ACC results in excessive dynamics,
particularly for the second follower vehicle, in this case the Volt in
CS mode, causing a noticeable increase in cumulative energy
consumption relative to the leader-follower in the baseline scenario.
However, the net cohort energy savings was 22%.
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Figure 10. Test 1, 45 mph, Volt in CS mode leading cohort, with Bolt and
Volt in CS mode following, with baseline, human-driven control (top) vs.
connected, automated, optimized control (bottom).

For test 2, see Figure 11, the baseline scenario was two traffic light

stops and one slow down and zero stops for the connected and
optimized scenario. A moderate energy reduction is noted for the
first follower Volt in CS mode, but a near zero cumulative energy
savings for the second follower Volt in CS mode. An overall energy
savings for the cohort was still realized of 7.4%.
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Figure 11. Test 2, 45 mph, Bolt leading cohort, two Volts following in CS
mode, with baseline, human-driven control (top) vs. connected, automated,
optimized control (bottom).

Conclusions

This paper first documents the group efforts of representing
infrastructure owners, traffic signal control and management
technology vendors and the study team themselves as information
service providers to generate and deliver SPAT over cloud-
computing platform and 4G/LTE cellular network for connected
vehicle applications. The second part describes the development of a
neurovolution based vehicle speed controller implemented to a
vehicle cohort of various automation levels and powertrain types and
tests at a close track, with the delivered SPAT messages as one
sensory input to the neural network. The test results not only
showcased the significant energy saving potentials of the entire
experimental system, but also provide evidence that such SPAT
information service provisions can be rapidly expanded to mass
market deployment with existing ITS infrastructure and current
cellular network technology. Note that the telecommunications
industry is evolving the 5G and edge computing stacks that could
further improve the reliability and reduce the latency of SPAT
generation and transmission; with the delivery method described in
this paper, such SPAT generation and delivery would enable both
safety and mobility use cases. The study in this direction is beyond
the scope of this paper and future research is needed.
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ACM American Center for Mobility
BEV Battery Electric Vehicle
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CD

CS

DSRC

V21

C-v2X

EAD

EV

GLOSA

ICE

ITS

LTE

MPH

PHEV

PI

SoS

SPAT

TSP

Charge Depletion mode

Charge Sustaining mode

Dedicated Short-Range Communication

vehicle-to-Infrastructure

cellular vehicle-to-everything

Eco-Approach and Departure
electric vehicle
Green Light Optimized Speed Advisory
internal combustion engine
Intelligent Transportation System
Long Term Evolution
miles per hour

plug-in hybrid electric vehicles

Application Programming Interface
system of systems

Predictive Signal Phase and Timing

Transit Signal Priority
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