

Consistent Thermodynamic Properties for Alicyclic Components of Jet Fuels: Experimental Data, Estimation Methods, and Homologous Series Trends

Eugene Paulechka,^{a,b} Andrei Kazakov,^a

Suphat Watanasiri,^b Abhijit Dutta^b

⁵ ^a Thermodynamics Research Center, Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, USA

^b Catalytic Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA

10 Abstract

11 Alkylcycloalkanes represent a significant fraction of jet fuel components. An evaluation of their
12 thermodynamic properties, enthalpies of formation in liquid and gas phases and enthalpies of
13 vaporization, was conducted. A combination of available experimental data, up-to-date group-
14 contribution methods, high-level quantum-chemical calculations, and homologous series trends was
15 used to identify outliers and to recommend the most reliable values. The group-contribution approach
16 was found to work well for the enthalpies of vaporization. Its performance for the enthalpies of
17 formation in the liquid and gas phases was found to be substantially less effective, especially considering
18 notable differences in this property among stereoisomers. Computationally affordable high-level *ab*
19 *initio* results and homologous series trend analysis appeared more reliable. The recommended property
20 values for 212 individual compounds and their isomeric mixtures were provided.

22 **1. Introduction**

23 Current efforts toward sustainable transportation include the conversion of renewable feedstocks, such
24 as biomass, to jet-fuel-range molecules. Product molecules from combinations of feedstocks and their
25 conversion processes can be assessed for jet fuel compatibility, either as blendstocks or standalone
26 fuels. Currently, nine alternative fuel pathways are ASTM-approved in the U.S. for blending into the
27 existing jet fuel [1]. The variety of alternative feedstocks and conversion processes will continue to grow,
28 resulting in both very narrow and more diverse ranges of molecular product species [2,3].
29 Advancements in analytical methods such as GCxGC [4] enable rapid speciation and quantification of
30 hundreds of compounds in fuels and blendstocks, allowing the prediction of fuel properties from those
31 of the molecular species. Understanding the properties and behavior of individual molecular species and
32 their impacts on overall fuel properties is essential to developing an integrated strategy toward
33 sustainable fuels and blending approaches. Reliable property values or predictive procedures for
34 individual constituent molecules and their families can provide a solid foundation for the overall fuel
35 property predictions.

36 Previously [5,6], we analyzed the performance of composition-based methods for the properties of
37 aviation fuels included in their specifications. The considered properties included net heat of
38 combustion (NHC), density, freeze point, distillation characteristics, and flash point. NHC of
39 hydrocarbons were found from either their experimental liquid-phase enthalpies of formation $\Delta_f H^\circ_m$ or
40 the predicted gas-phase $\Delta_f H^\circ_m$ and corresponding enthalpies of vaporization. The present work was
41 initiated upon realizing that current estimation methods may have systematic errors when predicting
42 enthalpies of formation of alkylcycloalkanes. The latter represent a significant portion of jet fuels.
43 Besides their presence in conventional petroleum-derived fuels [7], they can be found in even more
44 significant amounts in fuels from alternative processes such as biomass-derived jet-fuel-range molecules

45 via the catalytic fast pyrolysis process [5]. Further, future renewable fuels development may target
46 process chemistries to produce some of these molecules for better fuel blendstock properties [8] since
47 alicyclic (naphthenic) species like monocyclic alkanes have desirable characteristics for jet fuel and often
48 exceed requirements for density, flash point, specific energy, and freeze point [3].

49 Initially [5], the list of compounds contained the hydrocarbons identified in the samples of the jet fuel
50 cut of biomass-derived fuel obtained at the National Renewable Energy Laboratory. The scope of the
51 project was subsequently expanded to conventional jet fuels and their blends with biofuels [6]. Multiple
52 compounds identified in the works considered in this paper were added to the list, which included 190
53 hydrocarbons. The number of carbon atoms in molecules was limited to 20 in alkanes and 19 in cyclic
54 compounds. Many of these compounds had at least one cyclohexane or cyclopentane ring. These
55 cyclopentane and cyclohexane hydrocarbons are the subject of this work. The list was further
56 augmented by the compounds exhibiting similar structural patterns. For some of these additional
57 compounds, the experimentally determined thermochemical properties were available. This
58 augmentation allowed us to assess property changes with the molecular structure and gain a better
59 understanding of the performance of the used predictive methods.

60 We analyzed available data and prediction methods to produce recommendations for enthalpies of
61 formation and vaporization for a range of cyclic compounds. *Ab initio* methods were used to support
62 and supplement the recommendations because, in some cases, the experimental values were either
63 lacking or unreliable. These thermodynamic properties are important and required to predict the
64 enthalpies (heats) of combustion and are necessary for other basic calculations. Hence, this information
65 will be helpful toward the development of future aviation fuels and used in other studies involving these
66 molecules.

67 To experimentally determine enthalpies of formation and vaporization, a sample of a reasonable purity
68 and a corresponding instrument (calorimeter, ebulliometer, etc.) should be available. For example, the
69 enthalpies of formation of hydrocarbons are typically derived from their accurate energies of
70 combustion. A purity close to 99.9 wt % is needed to obtain the combustion energies suitable for
71 chemical thermodynamic calculations. The purity can sometimes be lower if an isomeric impurity is
72 present. A significant number of high-purity hydrocarbons were synthesized or purified as part of the
73 American Petroleum Institute (API) Research Projects (particularly Projects 45, 58A, and 58B). However,
74 they still represent a relatively small portion of the cyclic compounds found in jet biofuels. Accurate
75 measurements of thermodynamic properties are time-consuming and require significant expertise.
76 National laboratories such as the National Bureau of Standards/National Institute of Standards and
77 Technology (NBS/NIST) and the National Institute for Petroleum and Energy Research (NIPER) made
78 significant experimental contributions to the field. These results formed a framework for the
79 thermodynamics and thermochemistry of hydrocarbons as well as for the development of predictive
80 methods.

81 Due to the above-mentioned experimental limitations, thermodynamic properties for many compounds
82 considered in this work have not been studied experimentally and must be estimated. The property
83 estimation faces several challenges. First, a significant number of these compounds participate in
84 homologous series, and property consistency along these series should be taken into account. The
85 importance of this factor has been demonstrated, for example, for the vapor pressure of *n*-alkanes [9].
86 Second, many of these compounds have several aliphatic cycles. The group-type transferability in those
87 cases is questionable, and the performance of the group-contribution methods is degraded as compared
88 to non-cyclic compounds. Finally, the predictions for polysubstituted alicyclic compounds are
89 complicated by the presence of different relative stereo positions of the substituents. *Cis*- and *trans*-
90 isomers can exist for two substituents in a monocyclic compound. The situation is more complex for the

91 number of substituents exceeding two or in polycyclic compounds. Each of these challenges is discussed
92 in detail in the following sections.

93 In this work, we demonstrate that combining experimental results with empirical estimation procedures
94 can facilitate the predictions of the enthalpy of vaporization and enthalpy of formation of alicyclic
95 hydrocarbons found in jet fuels and structurally similar compounds. Significant progress in the *ab initio*
96 methods [10] has made it possible to predict the gas-phase enthalpies of formation for these
97 compounds accurately and include these results in the evaluation.

98

99 **2. Methods**

100 The values of the enthalpy of formation $\Delta_f H^\circ_m$ and enthalpy of vaporization $\Delta_{\text{vap}} H^\circ_m$ were obtained using
101 three approaches. The primary source of this information is experimental data. It was preferred in most
102 cases where these results were available. Group-contribution methods could be used to predict both
103 properties of interest for most of the considered compounds. Finally, the *ab initio* protocol developed
104 earlier [10] allowed us to reliably predict gas-phase enthalpies of formation for multiple compounds.
105 More details are provided in the sections below.

106

107 *2.1. Experimental data*

108 Enthalpies of vaporization of hydrocarbons can be obtained from direct calorimetric measurements.
109 Alternatively, they can be derived from the temperature-dependent vapor pressure data. Enthalpies of
110 formation of these compounds are typically found using the experimental energies of combustion in a
111 bomb calorimeter. Temperature-dependent chemical equilibrium constants or enthalpies of the other
112 reactions (for example, hydrogenation) are useful to determine $\Delta_f H^\circ_m$ for some groups of compounds.

113 However, they did not significantly improve the data quality for alicyclic hydrocarbons and, therefore,
114 were not used here.

115 The original publications were the primary source of experimental data. For some hydrocarbons, the
116 experimental enthalpies of vaporization were evaluated by Majer et al. [11], and these
117 recommendations were adopted in this work. Forziati et al. [12] measured vapor pressure for 60
118 hydrocarbons using an ebulliometer. If these were the only results that could be used to derive $\Delta_{\text{vap}}H^{\circ\text{m}}$,
119 the following procedure was applied. The critical temperature T_c and pressure p_c were estimated using
120 the Nannoolal-Rarey-Ramjugernath-Cordes (NRRC) method [13,14] implemented in the NIST
121 ThermoData Engine (TDE) v.10.4.6 software [15]. The reported vapor pressures were then fitted with
122 the Wagner equation [16] in the form:

123
$$\ln(p/p_c) = (1/T_r)(A(1 - T_r) + B(1 - T_r)^{3/2} + C(1 - T_r)^{5/2} + D(1 - T_r)^5), \quad (1)$$

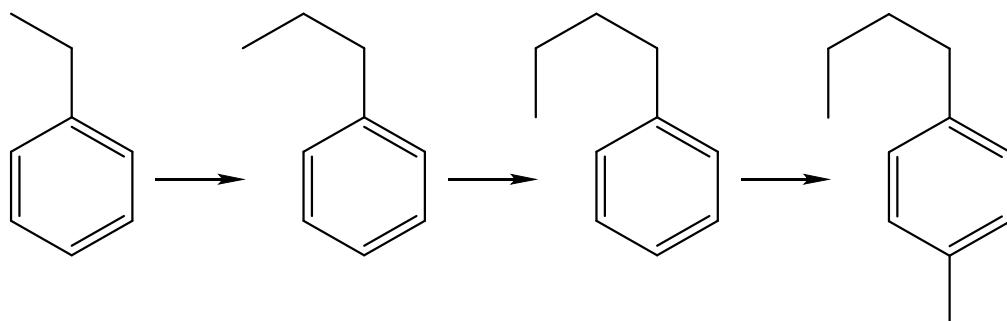
124 where $T_r = T/T_c$. The enthalpies of vaporization were obtained as $RT^2(d\ln p/dT)$ thus assuming the ideal
125 gas phase and neglecting the liquid volume. By comparison of the ebulliometric values with the
126 recommendations [11], the expanded uncertainty (0.95 level of confidence) of these values was
127 estimated to be $0.2 \text{ kJ}\cdot\text{mol}^{-1}$.

128 If multiple publications were available for the enthalpy of vaporization and related properties (vapor
129 pressure, enthalpy of vaporization, liquid heat capacity, etc.) of a compound, the available data were
130 evaluated using TDE.

131 The experimental enthalpies of formation were derived from the corresponding energies of combustion.
132 If the energies of combustion were available in several sources, these values were weight-averaged
133 using the reported uncertainties. Following Cox and Pilcher [17], some pre-1970 values were corrected
134 with respect to the revised value of the combustion energy of benzoic acid.

135 All uncertainties reported in this work are expanded uncertainties for 0.95 level of confidence ($k = 2$).

136


137 *2.2. Empirical estimation procedures*

138 Two empirical approaches were used in this work: the NIST-modified Benson method (MBM) [18] and
139 the incremental method based on a core structure. The former was used to calculate enthalpies of
140 vaporization and formation. In the original publication [18], only acyclic compounds and benzene
141 derivatives were considered. The version implemented in TDE v.10.4.6 and used in this work has
142 additional corrections for the cyclohexane ring at $T = 298.15$ K equal to 19.0, 17.0, and 5.0 $\text{kJ}\cdot\text{mol}^{-1}$ for
143 $\Delta_f H^\circ_m(\text{g})$, $\Delta_f H^\circ_m(\text{l})$, and $\Delta_{\text{vap}} H^\circ_m$, respectively. Similar corrections for the cyclopentane ring are 42.0, 40.0,
144 and 6.0 $\text{kJ}\cdot\text{mol}^{-1}$, respectively. Additionally, from $\Delta_{\text{vap}} H^\circ_m = (38.5 \pm 0.3) \text{ kJ}\cdot\text{mol}^{-1}$ of cycloheptane
145 evaluated by TDE [15], we estimated the cycloheptane ring correction for vaporization enthalpy to be
146 6.5 $\text{kJ}\cdot\text{mol}^{-1}$. The corresponding ring corrections were used in the MBM predictions for $\Delta_{\text{vap}} H^\circ_m$ for bi-
147 and tricyclic compounds.

148 An alternative approach is based on multiple incremental changes of a core structure leading to the
149 structure of interest. The required property increments, as well as the property value for the core
150 structure, are determined using available experimental data. This approach was originally outlined by
151 Huffman et al. [19], while the first practical application for multiple compounds that we are aware of
152 was reported in 1987 [20]. An example of this approach is shown in Figure 1. The property P of 1-butyl-
153 4-methylbenzene can be found as

154
$$P(1\text{-butyl-4-methylbenzene}) = P(\text{PhEt}) + 2\Delta P(\text{H(in CH}_3\text{)} \rightarrow \text{CH}_3) + \Delta P(\text{H(aromatic)} \rightarrow \text{CH}_3(\text{aromatic})) \quad (2)$$

155 where ΔP are property increments and $P(\text{PhEt})$ is the property of ethylbenzene. In some cases, these
156 increments are mathematically equivalent to those in Benson-like approaches. For example, $\Delta P(\text{H}(\text{in}$
157 $\text{CH}_3) \rightarrow \text{CH}_3)$ is generally equal to $\Delta P(\text{CH}_2 - \text{C})$.

158

159 Figure 1. Schematic of a 1-butyl-4-methylbenzene property prediction sequence using ethylbenzene as a
160 core structure.

161

162 *2.3. Computations*

163 The *ab initio* gas-phase enthalpies of formations were obtained using the aLL5 protocol described by
164 Paulechka and Kazakov [10]. The vibrational frequencies were calculated at the B3LYP-D3(BJ)/def2-TZVP
165 theory level. For zero-point vibrational energies (ZPVE), the frequencies were scaled by 0.99. For the
166 thermal part of enthalpy, the scaling factors were 0.960 for hydrogen stretches and 0.985 for all other
167 frequencies. The geometries for the coupled-cluster calculations were optimized at the density-fitted
168 (DF) MP2/aug-cc-pVQZ level of theory. The single-point energy calculations were performed with the
169 2016 version of local CCSD(T) of Kállay et al. [21,22] and the same basis set. DFT, DF-MP2, and local
170 CCSD(T) calculations were performed with the Gaussian 16 [23], Psi4 [24,25], and MRCC [26,27]
171 software, respectively. Sample input file listings for each step are provided in the Supplementary
172 Information.

173 For the compounds containing fused or bridged alicyclic rings, the Complete Basis Set (CBS) version of
174 the aLL5 protocol [28] was also used. The extrapolation was based on the local CCSD(T) energies
175 obtained with aug-cc-pVQZ and aug-cc-pV5Z basis sets.

176 For the molecules exhibiting multiple conformations, the conformational search was performed using
177 the conformer ensemble generation procedure described in detail elsewhere [29]. Briefly, the procedure
178 includes several steps for generating conformer candidates using different generators, validating them,
179 and removing duplicates. The final pool of candidates is obtained using the B3LYP-D3(BJ)/def2-TZVP
180 geometry optimization followed by full vibrational analysis and duplicate removal. The standard
181 enthalpy of formation and entropy were found for each conformer using the rigid rotor/harmonic
182 oscillator model. The enthalpy of formation of a compound was computed as the Gibbs-energy average
183 over the conformer population.

184 The expanded uncertainty (0.95 level of confidence) of the *ab initio* results was estimated as

185
$$U(\Delta_f H^\circ_m) = s(1 + \mathbf{n} \mathbf{A} \mathbf{n}^\top)^{1/2}, \quad (3)$$

186 where s is $2.5 \text{ kJ}\cdot\text{mol}^{-1}$ and $2.4 \text{ kJ}\cdot\text{mol}^{-1}$ for aug-cc-pVQZ and CBS versions, respectively, \mathbf{n} is the row-
187 vector of the atomic type counts in a molecule, and \mathbf{A} is the scaled covariance matrix [10]. The
188 coefficients of the latter were reported in Supporting Information of Ref. [10]. The atomic types include
189 $(C_{\text{sat}} + C_{\text{arom}})$ and H for the considered group of compounds. The uncertainty contributions beyond the
190 original model were discussed in a recent work [29].

191

192 **3. Results and discussion**

193 To facilitate reporting of the results, the compounds are split into four groups: monocyclic cyclohexanes,
194 monocyclic cyclopentanes, polycyclic compounds, and tetralins and decalins. The numerical values of

195 the enthalpies of vaporization and formation are reported in Tables 1-24. In each table, the
196 experimental and predicted values are followed by the selected (recommended) ones.

197 The enthalpies of vaporization, experimental or predicted, are available for all liquids. If the
198 experimental liquid-phase $\Delta_f H^\circ_m$ was available, the selected gas-phase value was found as $\Delta_f H^\circ_m(g) =$
199 $\Delta_f H^\circ_m(l) + \Delta_{vap} H^\circ_m$. If the experimental value was not available, had an uncertainty greater than 3 kJ·mol⁻¹,
200 or had been found to be problematic, the predicted gas-phase $\Delta_f H^\circ_m$ was used to find the selected
201 value of $\Delta_f H^\circ_m(l) = \Delta_f H^\circ_m(g) - \Delta_{vap} H^\circ_m$.

202 The effective properties for some mixtures of stereoisomers are provided because, in some cases, the
203 routine analytical techniques only provide the total content of all the isomers. To make an estimate, the
204 average value over the specified isomers was found. The largest uncertainty of the individual values was
205 added to the absolute maximum deviation of the individual values from this average to obtain a
206 conservative uncertainty estimate.

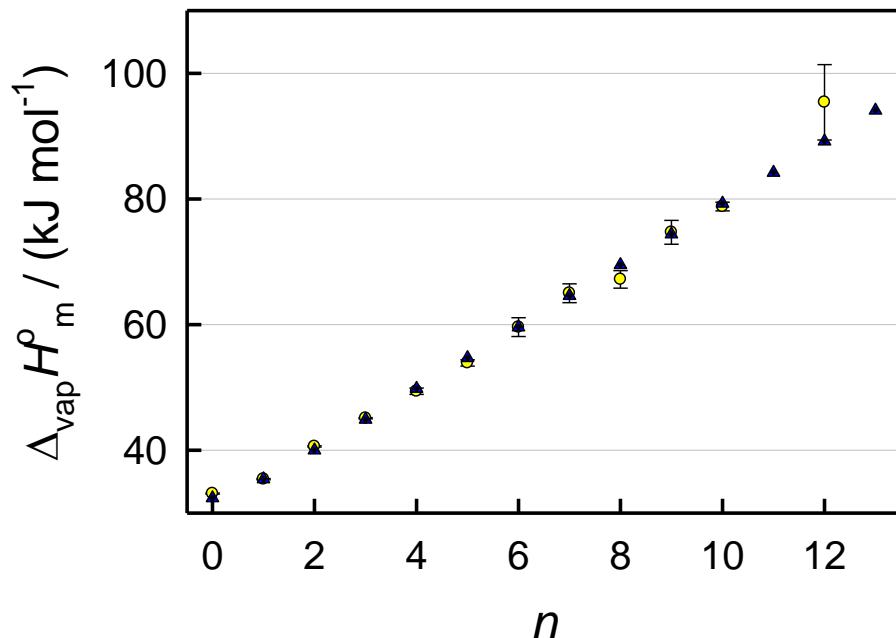
207

208 3.1. *Cyclohexanes*

209 3.1.1. *Monoalkylcyclohexanes*

210 Among all compounds considered in this work, monosubstituted *n*-alkylcyclohexanes $C_6H_{11}C_nH_{2n+1}$ are
211 the most studied. Their enthalpies of vaporization are collected in Table 1. For the short-chain
212 homologs, the available high-quality data are used. The predicted values are in excellent agreement with
213 them (Figure 2). At $n = 12$, the experimental value has a large uncertainty, and the MBM estimate is
214 more credible. The expanded uncertainties (0.95 level of confidence) for the predictions are estimated
215 to be 1.5 kJ·mol⁻¹, similar to the experimental uncertainty for $n = (6$ to 10). Additionally, the enthalpy of
216 vaporization of dodecylcyclohexane ($n = 12$) determined by Fuchs and Peacock [30] using a combination

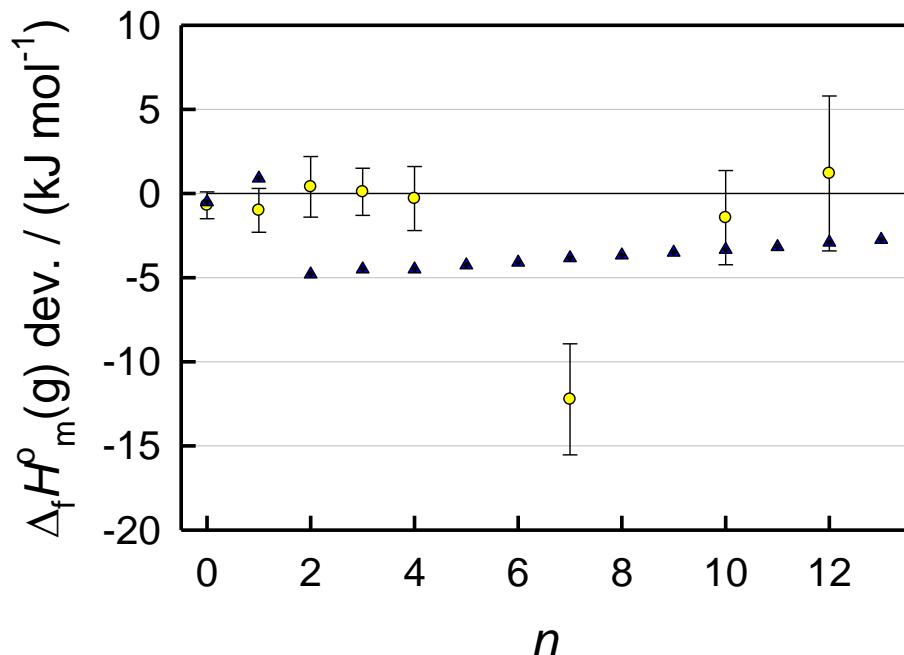
217 of gas chromatography and calorimetry is consistent with the predicted values and expected linear
218 dependence of the enthalpies of vaporization on the alkyl chain length.


219 The experimental enthalpies of formation in the liquid phase are available for eight *n*-alkylcyclohexanes
220 (Table 2). They were converted to the gas-phase values (Table 3) using the selected enthalpies of
221 vaporization from Table 1. The *ab initio* values (Table 3) are in excellent agreement with the
222 experimental results (Figure 3); the deviations do not exceed $\pm 1 \text{ kJ}\cdot\text{mol}^{-1}$. The experimental results for
223 ethyl, propyl, butyl, decyl, and dodecylcyclohexanes were fitted by the unweighted least squares
224 method with the equation:

225
$$\Delta_f H^\circ_m(C_6H_{11}C_nH_{2n+1}(g)) / (\text{kJ}\cdot\text{mol}^{-1}) = -130.42 - 20.76n \quad (4)$$

226 This equation was used to fill the missing values in Table 3. The reported uncertainties include both the
227 uncertainty of the model and the data scatter. The experimental value for heptylcyclohexane has a large
228 deviation from this prediction and should be discarded. For the compounds with no liquid-phase
229 thermochemical data, $\Delta_f H^\circ_m(l)$ was found by subtracting the selected values in Table 1 from those in
230 Table 3.

231 The increment per CH_2 group in eq. 4, $-20.76 \text{ kJ}\cdot\text{mol}^{-1}$, is close to the one for MBM ($-20.58 \text{ kJ}\cdot\text{mol}^{-1}$), i.e.,
232 the MBM alkyl-chain dependence is consistent with the experimental data. However, the MBM values
233 are more negative by (3 to 5) $\text{kJ}\cdot\text{mol}^{-1}$ except for cyclohexane and methylcyclohexane (Figure 3). A
234 similar problem is observed for the liquid-phase values in Table 2. Therefore, MBM should not be
235 directly used for the enthalpies of formation of *n*-alkylcyclohexanes. However, if one uses
236 ethylcyclohexane as a core structure, the enthalpies of formation can be adequately estimated using the
237 increment $\Delta\Delta_f H(\text{CH}_2) = \Delta\Delta_f H(\text{H}(\text{in } \text{CH}_3) \rightarrow \text{CH}_3)$.


238 The experimental enthalpies of vaporization are available for three out of five considered
239 isoalkylcyclohexanes. The MBM estimates are within $\pm 1.1 \text{ kJ}\cdot\text{mol}^{-1}$ of the experimental values (Table 1).
240 Thus, the MBM predictions were used for the remaining (methylbutyl)cyclohexanes. The selected gas-
241 phase enthalpies of formation are taken from the *ab initio* calculations (Table 3). The MBM values of
242 $\Delta_f H^\circ_m(\text{g})$ have deviations exceeding $10 \text{ kJ}\cdot\text{mol}^{-1}$ for some of these compounds. The liquid-phase $\Delta_f H^\circ_m$
243 were derived from the gas-phase values and enthalpies of vaporization.

244

245 Figure 2. Standard molar enthalpies of vaporization of *n*-alkylcyclohexanes $\text{C}_6\text{H}_{11}\text{C}_n\text{H}_{2n+1}$: Comparison of
246 experimental (yellow circles) and predicted by MBM (blue triangles) values

247

248

249 Figure 3. Deviation of standard molar enthalpies of formation of gaseous *n*-alkylcyclohexanes
 250 $C_6H_{11}C_nH_{2n+1}$ from the *ab initio* values for $n = (0$ to 4) and eq. 3 for $n = (5$ to 13): experimental (yellow
 251 circles) and predicted by MBM (blue triangles) values

252 Table 1. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^{\circ\text{ m}}$ of monoalkylcyclohexanes at $T = 298.15\text{ K}$ ^a

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^{\circ\text{ m}} / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
cyclohexane	A.1	110-82-7	33.1 ± 0.1	11	32.4	33.1 ± 0.1
methylcyclohexane	A.2	108-87-2	35.4 ± 0.1	11	35.4	35.4 ± 0.1
ethylcyclohexane	A.3	1678-91-7	40.6 ± 0.1	11	40.0	40.6 ± 0.1
propylcyclohexane	A.4	1678-92-8	45.1 ± 0.1	11	44.9	45.1 ± 0.1
butylcyclohexane	A.5	1678-93-9	49.4 ± 0.5	11	49.8	49.4 ± 0.5
pentylcyclohexane	A.6	4292-92-6	53.9 ± 0.5	11	54.7	53.9 ± 0.5
hexylcyclohexane	A.7	4292-75-5	59.6 ± 1.5	15	59.6	59.6 ± 1.5
heptylcyclohexane	A.8	5617-41-4	65.0 ± 1.5	15	64.6	65.0 ± 1.5
octylcyclohexane	A.9	1795-15-9	68.7 ± 1.3	15	69.5	68.7 ± 1.3
nonylcyclohexane	A.10	2883-02-5	74.3 ± 1.9	15	74.4	74.3 ± 1.9
decylcyclohexane	A.11	1795-16-0	78.8 ± 0.7	31	79.3	78.8 ± 0.7
undecylcyclohexane	A.12	54105-66-7			84.2	84.2 ± 1.5
dodecylcyclohexane	A.13	1795-17-1	94.3 ± 5.3 (88.9 ± 1.9) ^b	15	89.2	89.2 ± 1.5
tridecylcyclohexane	A.14	6006-33-3			94.1	94.1 ± 1.5

(1-methylethyl)cyclohexane	A.15	696-29-7	44.0 ± 0.4	11	42.9	44.0 ± 0.4
(1-methylpropyl)cyclohexane	A.16	7058-01-7	48.1 ± 0.7	15	48.2	48.1 ± 0.7
(2-methylpropyl)cyclohexane	A.17	1678-98-4	47.6 ± 0.5	11	48.2	47.6 ± 0.5
(2-methylbutyl)cyclohexane	A.18	54105-77-0			53.5	53.5 ± 1.5
(3-methylbutyl)cyclohexane	A.19	54105-76-9			53.1	53.1 ± 1.5

254 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

255 ^b Fuchs and Peacock [30]

256 Table 2. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid monoalkylcyclohexanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(l) / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
cyclohexane	A.1	110-82-7	156.5 ± 0.8	15	156.1	156.5 ± 0.8
methylcyclohexane	A.2	108-87-2	190.3 ± 1.3	32,33,17	189.7	190.3 ± 1.3
ethylcyclohexane	A.3	1678-91-7	212.1 ± 1.8	33	218.5	212.1 ± 1.8
propylcyclohexane	A.4	1678-92-8	237.8 ± 1.4	33,34	244.4	237.8 ± 1.4
butylcyclohexane	A.5	1678-93-9	263.1 ± 1.8	33	270.3	263.1 ± 1.8
pentylcyclohexane	A.6	4292-92-6			296.2	288.1 ± 2.1
hexylcyclohexane	A.7	4292-75-5			322.1	314.6 ± 2.5
heptylcyclohexane	A.8	5617-41-4	353.0 ± 2.9^b	32,17	348.0	340.7 ± 2.5
octylcyclohexane	A.9	1795-15-9			373.9	365.2 ± 2.5
nonylcyclohexane	A.10	2883-02-5			399.8	391.6 ± 3.6
decylcyclohexane	A.11	1795-16-0	418.3 ± 2.7	35,36	425.7	418.3 ± 2.7
undecylcyclohexane	A.12	54105-66-7			451.5	443.0 ± 2.7^c
dodecylcyclohexane	A.13	1795-17-1	467.6 ± 4.3	32, 17	477.4	467.6 ± 4.3

tridecylcyclohexane	A.14	6006-33-3	503.3	494.5 ± 2.8^c
(1-methylethyl)cyclohexane	A.15	696-29-7	252.1	238.9 ± 2.8
(1-methylpropyl)cyclohexane	A.16	7058-01-7	275.0	261.4 ± 3.0
(2-methylpropyl)cyclohexane	A.17	1678-98-4	275.0	268.8 ± 3.0
(2-methylbutyl)cyclohexane	A.18	54105-77-0	298.0	292.9 ± 3.4^c
(3-methylbutyl)cyclohexane	A.19	54105-76-9	300.9	294.4 ± 3.4^c

257 ^a Expanded uncertainties for 0.95 level of confidence are reported following the \pm signs

258 ^b This value is an outlier

259 ^c Enthalpies of vaporization are estimated using MBM

260 Table 3. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous monoalkylcyclohexanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(g) / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	MBM	<i>ab initio</i>	Selected
cyclohexane	A.1	110-82-7	123.4 ± 0.8	123.2	122.7 ± 2.6	123.4 ± 0.8
methylcyclohexane	A.2	108-87-2	154.9 ± 1.3	153.0	153.9 ± 2.7	154.9 ± 1.3
ethylcyclohexane	A.3	1678-91-7	171.5 ± 1.8	176.7	171.9 ± 2.7	171.5 ± 1.8
propylcyclohexane	A.4	1678-92-8	192.7 ± 1.4	197.3	192.8 ± 2.8	192.7 ± 1.4
butylcyclohexane	A.5	1678-93-9	213.7 ± 1.9	217.9	213.4 ± 2.9	213.7 ± 1.9
pentylcyclohexane	A.6	4292-92-6		238.5		234.2 ± 2.0^d
hexylcyclohexane	A.7	4292-75-5		259.1		255.0 ± 2.0^d
heptylcyclohexane	A.8	5617-41-4	288.0 ± 3.3^b	279.6		275.8 ± 2.0^d
octylcyclohexane	A.9	1795-15-9		300.2		296.5 ± 2.0^d
nonylcyclohexane	A.10	2883-02-5		320.8		317.3 ± 2.1^d
decylcyclohexane	A.11	1795-16-0	339.5 ± 2.8	341.4		339.5 ± 2.8
undecylcyclohexane	A.12	54105-66-7		362.0		358.8 ± 2.2^d
dodecylcyclohexane	A.13	1795-17-1	378.4 ± 4.6^c	382.5		378.4 ± 4.6

tridecylcyclohexane	A.14	6006-33-3	403.1	400.4 ± 2.4^d	
(1-methylethyl)cyclohexane	A.15	696-29-7	206.6	194.9 ± 2.8	194.9 ± 2.8
(1-methylpropyl)cyclohexane	A.16	7058-01-7	224.0	213.3 ± 2.9	213.3 ± 2.9
(2-methylpropyl)cyclohexane	A.17	1678-98-4	224.0	221.2 ± 3.0	221.2 ± 3.0
(2-methylbutyl)cyclohexane	A.18	54105-77-0	241.5	239.4 ± 3.1	239.4 ± 3.1
(3-methylbutyl)cyclohexane	A.19	54105-76-9	244.6	241.3 ± 3.0	241.3 ± 3.0

261 ^a Expanded uncertainties for 0.95 level of confidence are reported following the \pm signs

262 ^b This value is an outlier

263 ^c Enthalpies of vaporization are estimated using MBM

264 ^d These values were estimated using eq. 1.

265 3.1.2. *Dialkylcyclohexanes*

266 The dataset includes all dimethyl and ethylmethylcyclohexanes as well as 1,2-diethylcyclohexanes and 1-
267 methyl-2-propylcyclohexanes. Two latter groups are used to analyze the property changes with the alkyl
268 chain length. The number of C atoms in a molecule is limited to 11.

269 Reliable experimental enthalpies of vaporization are available for all dimethylcyclohexanes and cis-1-
270 ethyl-3-methylcyclohexane (Table 4). The MBM values are within $\pm 1.1 \text{ kJ}\cdot\text{mol}^{-1}$ of the experimental
271 counterparts. Therefore, the MBM predictions were used to fill the gaps in the selected values.

272 The reliable enthalpies of formation for these compounds in the liquid phase were reported by Johnson
273 et al. [37] and Good [34] (Table 5). The *ab initio* values are in good agreement with the gas-phase values
274 derived from the experimental data (Table 6), with the deviations not exceeding $\pm 1.6 \text{ kJ}\cdot\text{mol}^{-1}$. The
275 selected values are based either on the experimental data or *ab initio* values if the former were not
276 available. The experimental liquid-phase $\Delta_f H^\circ_m$ of *p*-menthane [38] deviating from the *ab initio*-based
277 value by over $20 \text{ kJ}\cdot\text{mol}^{-1}$ was rejected.

278 1,2-, 1,3-, and 1,4-dialkylcyclohexanes have two isomers, *cis* and *trans*, differing by the relative positions
279 of the alkyls with respect to the cyclohexyl ring. MBM or any other method using only connectivity
280 information does not distinguish between the two. The maximum difference between the enthalpies of
281 vaporization of the isomers is $1.3 \text{ kJ}\cdot\text{mol}^{-1}$ (for 1,2-dimethylcyclohexanes). The prediction error of this
282 magnitude is acceptable. The differences between $\Delta_f H^\circ_m(\text{g})$ are more substantial and alternate with the
283 alkyl positions. They are between (6 and 8) $\text{kJ}\cdot\text{mol}^{-1}$ for the dimethyl compounds and decrease with the
284 alkyl chain length.

285 For dimethylcyclohexanes, MBM accurately predicts $\Delta_f H^\circ_m(\text{g})$ for one of the isomers (within $\pm 3 \text{ kJ}\cdot\text{mol}^{-1}$).
286 However, the error is between $-(5 \text{ to } 11) \text{ kJ}\cdot\text{mol}^{-1}$ for the other isomer. The prediction error further

287 increases for ethylmethylcyclohexanes except for the *cis*-1,3- and *trans*-1,4-isomers, where the error is
288 still close to $-3 \text{ kJ}\cdot\text{mol}^{-1}$. This behavior is similar to the abovementioned trend for *n*-alkylcyclohexanes
289 (Figure 3). One would expect that the predictions for the long-chain dialkylcyclohexanes work if a core
290 structure with an ethyl substituent is used. This expectation is consistent with the fact that the
291 deviations between MBM and selected values do not significantly change between 1-ethyl-2-methyl-
292 and 1-methyl-2-propylcyclohexanes.

293

294 3.1.3. *Trialkylcyclohexanes*

295 The experimental $\Delta_{\text{vap}}H^\circ_m$ is only available for 1,1,3-trimethylcyclohexane. Considering the good
296 performance of MBM for the vaporization enthalpies of mono- and dialkylcyclohexanes, the values from
297 this method were accepted for all other compounds. We are not aware of any experimental enthalpies
298 of formation for these compounds. The MBM gas-phase enthalpies of formation agree with the more
299 reliable *ab initio* predictions for some isomeric trimethylcyclohexanes. However, the deviations up to
300 $\pm 13 \text{ kJ}\cdot\text{mol}^{-1}$ are also observed. The selected values are based on the *ab initio* gas-phase enthalpies of
301 formation and the enthalpies of vaporization from MBM.

302

303 Table 4. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^\circ_m$ of dialkylcyclohexanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^\circ_m / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
1,1-dimethylcyclohexane	B.1	590-66-9	38.0 ± 0.1	11	37.8	38.0 ± 0.1
<i>cis</i> -1,2-dimethylcyclohexane	B.2	2207-01-4	39.7 ± 0.1	11	38.3	39.7 ± 0.1
<i>trans</i> -1,2-dimethylcyclohexane	B.3	6876-23-9	38.4 ± 0.1	11	38.3	38.4 ± 0.1
1,2-dimethylcyclohexane ^b	B.4	583-57-3			38.3	39.1 ± 0.7
<i>cis</i> -1,3-dimethylcyclohexane	B.5	638-04-0	38.3 ± 0.1	11	38.3	38.3 ± 0.1
<i>trans</i> -1,3-dimethylcyclohexane	B.6	2207-03-6	39.2 ± 0.1	11	38.3	39.2 ± 0.1
1,3-dimethylcyclohexane ^b	B.7	591-21-9			38.3	38.8 ± 0.6
<i>cis</i> -1,4-dimethylcyclohexane	B.8	624-29-3	39.1 ± 0.1	11	38.3	39.1 ± 0.1
<i>trans</i> -1,4-dimethylcyclohexane	B.9	2207-04-7	38.0 ± 0.1	11	38.3	38.0 ± 0.1
1,4-dimethylcyclohexane ^b	B.10	589-90-2			38.3	38.6 ± 0.6

1-ethyl-1-methylcyclohexane	B.11	4926-90-3		42.4	42.4 ± 1.5	
<i>cis</i> -1-ethyl-2-methylcyclohexane	B.12	4923-77-7		42.9	42.9 ± 1.5	
<i>trans</i> -1-ethyl-2-methylcyclohexane	B.13	4923-78-8		42.9	42.9 ± 1.5	
1-ethyl-2-methylcyclohexane ^b	B.14	3728-54-9		42.9	42.9 ± 1.5	
<i>cis</i> -1-ethyl-3-methylcyclohexane	B.15	19489-10-2	43.1 ± 0.3	15	42.9	43.1 ± 0.3
<i>trans</i> -1-ethyl-3-methylcyclohexane	B.16	4926-76-5			42.9	42.9 ± 1.5
1-ethyl-3-methylcyclohexane ^b	B.17	3728-55-0			42.9	42.9 ± 1.5
<i>cis</i> -1-ethyl-4-methylcyclohexane	B.18	4926-78-7			42.9	42.9 ± 1.5
<i>trans</i> -1-ethyl-4-methylcyclohexane	B.19	6236-88-0			42.9	42.9 ± 1.5
1-ethyl-4-methylcyclohexane ^b	B.20	3728-56-1			42.9	42.9 ± 1.5
<i>cis</i> -1,2-diethylcyclohexane	B.21	824-43-1		47.5	47.5 ± 1.5	
<i>trans</i> -1,2-diethylcyclohexane	B.22	13990-95-9		47.5	47.5 ± 1.5	

1,2-diethylcyclohexane ^b	B.23	3642-13-5	47.5	47.5 ± 1.5
<i>cis</i> -1-methyl-2-propylcyclohexane	B.24	4926-71-0	47.8	47.8 ± 1.5
<i>trans</i> -1-methyl-2-propylcyclohexane	B.25	42806-77-9	47.8	47.8 ± 1.5
1-methyl-2-propylcyclohexane ^b	B.26	4291-79-6	47.8	47.8 ± 1.5
<i>cis</i> -1-methyl-4-isopropylcyclohexane (<i>cis</i> - <i>p</i> -menthane)	B.27	6069-98-3	45.9	45.9 ± 1.5
<i>trans</i> -1-methyl-4-isopropylcyclohexane (<i>trans</i> - <i>p</i> -menthane)	B.28	1678-82-6	45.9	45.9 ± 1.5
1-methyl-4-isopropylcyclohexane (<i>p</i> -menthane) ^b	B.29	99-82-1	45.9	45.9 ± 1.5

304 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

305 ^b Mixture of stereoisomers

306 Table 5. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid dialkylcyclohexanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(l) / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
1,1-dimethylcyclohexane	B.1	590-66-9	218.7 ± 2.3	37	224.4	218.7 ± 2.3
<i>cis</i> -1,2-dimethylcyclohexane	B.2	2207-01-4	211.8 ± 2.2	37	221.2	211.8 ± 2.2
<i>trans</i> -1,2-dimethylcyclohexane	B.3	6876-23-9	218.2 ± 2.2	37	221.2	218.2 ± 2.2
1,2-dimethylcyclohexane ^b	B.4	583-57-3			221.2	215.0 ± 5.4
<i>cis</i> -1,3-dimethylcyclohexane	B.5	638-04-0	222.9 ± 2.1	37	221.2	222.9 ± 2.1
<i>trans</i> -1,3-dimethylcyclohexane	B.6	2207-03-6	215.7 ± 2.1	37	221.2	215.7 ± 2.1
1,3-dimethylcyclohexane ^b	B.7	591-21-9			221.2	219.3 ± 5.7
<i>cis</i> -1,4-dimethylcyclohexane	B.8	624-29-3	215.6 ± 2.1	37	221.2	215.6 ± 2.1
<i>trans</i> -1,4-dimethylcyclohexane	B.9	2207-04-7	222.4 ± 2.1	37	221.2	222.4 ± 2.1
1,4-dimethylcyclohexane ^b	B.10	589-90-2			221.2	219.0 ± 2.1

1-ethyl-1-methylcyclohexane	B.11	4926-90-3	240.2 ± 2.2	34	254.7	240.2 ± 2.2
<i>cis</i> -1-ethyl-2-methylcyclohexane	B.12	4923-77-7	236.2 ± 2.2	34	252.1	236.2 ± 2.2
<i>trans</i> -1-ethyl-2-methylcyclohexane	B.13	4923-78-8	240.2 ± 2.1	34	252.1	240.2 ± 2.1
1-ethyl-2-methylcyclohexane ^b	B.14	3728-54-9			252.1	238.2 ± 4.2
<i>cis</i> -1-ethyl-3-methylcyclohexane	B.15	19489-10-2	246.7 ± 2.5	34	252.1	246.7 ± 2.5
<i>trans</i> -1-ethyl-3-methylcyclohexane	B.16	4926-76-5			252.1	239.0 ± 3.2
1-ethyl-3-methylcyclohexane ^b	B.17	3728-55-0			252.1	242.9 ± 7.0
<i>cis</i> -1-ethyl-4-methylcyclohexane	B.18	4926-78-7	239.0 ± 2.3	34	252.1	239.0 ± 2.3
<i>trans</i> -1-ethyl-4-methylcyclohexane	B.19	6236-88-0	246.4 ± 2.1	34	252.1	246.4 ± 2.1
1-ethyl-4-methylcyclohexane ^b	B.20	3728-56-1			252.1	242.7 ± 6.0
<i>cis</i> -1,2-diethylcyclohexane	B.21	824-43-1			281.0	258.9 ± 3.3
<i>trans</i> -1,2-diethylcyclohexane	B.22	13990-95-9			281.0	261.3 ± 3.3

1,2-diethylcyclohexane ^b	B.23	3642-13-5	281.0	260.1 ± 4.5		
<i>cis</i> -1-methyl-2-propylcyclohexane	B.24	4926-71-0	278.0	261.5 ± 3.3		
<i>trans</i> -1-methyl-2-propylcyclohexane	B.25	42806-77-9	278.0	266.2 ± 3.3		
1-methyl-2-propylcyclohexane ^b	B.26	4291-79-6	278.0	263.9 ± 5.6		
<i>cis</i> -1-methyl-4-isopropylcyclohexane (<i>cis</i> - <i>p</i> -menthane)	B.27	6069-98-3	285.7	265.5 ± 3.3		
<i>trans</i> -1-methyl-4-isopropylcyclohexane (<i>trans</i> - <i>p</i> -menthane)	B.28	1678-82-6	285.7	272.4 ± 3.3		
1-methyl-4-isopropylcyclohexane (<i>p</i> -menthane) ^b	B.29	99-82-1	293.8 ± 6.3 ^c	38	285.7	268.9 ± 6.6

307 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

308 ^b Mixture of stereoisomers

309 ^c This value is an outlier

310 Table 6. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous dialkylcyclohexanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(g) / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	MBM	<i>ab initio</i>	Selected
1,1-dimethylcyclohexane	B.1	590-66-9	180.7 ± 2.3	186.6	181.9 ± 2.7	180.7 ± 2.3
<i>cis</i> -1,2-dimethylcyclohexane	B.2	2207-01-4	172.1 ± 2.2	182.9	173.2 ± 2.7	172.1 ± 2.2
<i>trans</i> -1,2-dimethylcyclohexane	B.3	6876-23-9	179.8 ± 2.2	182.9	180.8 ± 2.7	179.8 ± 2.2
1,2-dimethylcyclohexane ^b	B.4	583-57-3		182.9		176.0 ± 6.1
<i>cis</i> -1,3-dimethylcyclohexane	B.5	638-04-0	183.5 ± 2.1	182.9	185.1 ± 2.7	183.5 ± 2.1
<i>trans</i> -1,3-dimethylcyclohexane	B.6	2207-03-6	177.5 ± 2.1	182.9	176.9 ± 2.7	177.5 ± 2.1
1,3-dimethylcyclohexane ^b	B.7	591-21-9		182.9		180.5 ± 5.1
<i>cis</i> -1,4-dimethylcyclohexane	B.8	624-29-3	176.6 ± 2.1	182.9	177.1 ± 2.7	176.6 ± 2.1
<i>trans</i> -1,4-dimethylcyclohexane	B.9	2207-04-7	184.6 ± 2.1	182.9	184.9 ± 2.7	184.6 ± 2.1
1,4-dimethylcyclohexane ^b	B.10	589-90-2		182.9		180.6 ± 6.1

1-ethyl-1-methylcyclohexane	B.11	4926-90-3	197.8 ± 2.7 ^c	210.3	197.3 ± 2.8	197.8 ± 2.7
<i>cis</i> -1-ethyl-2-methylcyclohexane	B.12	4923-77-7	193.3 ± 2.7 ^c	206.6	192.6 ± 2.8	193.3 ± 2.7
<i>trans</i> -1-ethyl-2-methylcyclohexane	B.13	4923-78-8	197.3 ± 2.6 ^c	206.6	197.3 ± 2.8	197.3 ± 2.6
1-ethyl-2-methylcyclohexane ^b	B.14	3728-54-9		206.6		195.3 ± 4.7
<i>cis</i> -1-ethyl-3-methylcyclohexane	B.15	19489-10-2	203.6 ± 2.5	206.6	203.5 ± 2.8	203.6 ± 2.5
<i>trans</i> -1-ethyl-3-methylcyclohexane	B.16	4926-76-5		206.6	196.1 ± 2.8	196.1 ± 2.8
1-ethyl-3-methylcyclohexane ^b	B.17	3728-55-0		206.6		199.8 ± 6.5
<i>cis</i> -1-ethyl-4-methylcyclohexane	B.18	4926-78-7	196.1 ± 2.7 ^c	206.6	196.1 ± 2.8	196.1 ± 2.7
<i>trans</i> -1-ethyl-4-methylcyclohexane	B.19	6236-88-0	203.5 ± 2.6 ^c	206.6	204.4 ± 2.8	203.5 ± 2.6
1-ethyl-4-methylcyclohexane ^b	B.20	3728-56-1		206.6		199.8 ± 6.4
<i>cis</i> -1,2-diethylcyclohexane	B.21	824-43-1		230.3	211.4 ± 2.9	211.4 ± 2.9
<i>trans</i> -1,2-diethylcyclohexane	B.22	13990-95-9		230.3	213.8 ± 2.9	213.8 ± 2.9

1,2-diethylcyclohexane ^b	B.23	3642-13-5	230.3	212.6 ± 4.1
<i>cis</i> -1-methyl-2-propylcyclohexane	B.24	4926-71-0	227.2	213.7 ± 2.9
<i>trans</i> -1-methyl-2-propylcyclohexane	B.25	42806-77-9	227.2	218.4 ± 2.9
1-methyl-2-propylcyclohexane ^b	B.26	4291-79-6	227.2	216.1 ± 5.2
<i>cis</i> -1-methyl-4-isopropylcyclohexane (<i>cis</i> - <i>p</i> -menthane)	B.27	6069-98-3	236.4	219.6 ± 2.9
<i>trans</i> -1-methyl-4-isopropylcyclohexane (<i>trans</i> - <i>p</i> -menthane)	B.28	1678-82-6	236.4	226.5 ± 2.9
1-methyl-4-isopropylcyclohexane (<i>p</i> -menthane) ^b	B.29	99-82-1	247.9 ± 6.5 ^{c,d}	236.4
				223.0 ± 6.4

311 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

312 ^b Mixture of stereoisomers

313 ^c Experimental liquid-phase enthalpy of formation is combined with the enthalpy of vaporization estimated by MBM

314 ^d This value is an outlier

315 Table 7. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^\circ_m$ of trialkylcyclohexanes at $T = 298.15\text{ K}$ ^a

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^\circ_m / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
1,1,2-trimethylcyclohexane	C.1	7094-26-0			40.8	40.8 ± 1.5
1,1,3-trimethylcyclohexane	C.2	3073-66-3	40.2 ± 0.2	12	40.0	40.2 ± 0.2
1,1,4-trimethylcyclohexane	C.3	7094-27-1			40.8	40.8 ± 1.5
(1 α ,2 β ,3 α)-1,2,3-trimethylcyclohexane	C.4	1678-81-5			41.3	41.3 ± 1.5
(1 α ,2 α ,3 β)-1,2,3-trimethylcyclohexane	C.5	7667-55-2			41.3	41.3 ± 1.5
(1 α ,2 α ,3 α)-1,2,3-trimethylcyclohexane	C.6	1839-88-9			41.3	41.3 ± 1.5
1,2,3-trimethylcyclohexane ^b	C.7	1678-97-3			41.3	41.3 ± 1.5
(1 α ,2 β ,4 β)-1,2,4-trimethylcyclohexane	C.8	7667-60-9			41.3	41.3 ± 1.5
(1 α ,2 β ,4 α)-1,2,4-trimethylcyclohexane	C.9	7667-59-6			41.3	41.3 ± 1.5
(1 α ,2 α ,4 α)-1,2,4-trimethylcyclohexane	C.10	1678-80-4			41.3	41.3 ± 1.5
(1 α ,2 α ,4 β)-1,2,4-trimethylcyclohexane	C.11	7667-58-5			41.3	41.3 ± 1.5

1,2,4-trimethylcyclohexane ^b	C.12	2234-75-5	41.3	41.3 ± 1.5
(1 α ,3 α ,5 α)-1,3,5-trimethylcyclohexane	C.13	1795-27-3	41.3	41.3 ± 1.5
(1 α ,3 α ,5 β)-1,3,5-trimethylcyclohexane	C.14	1795-26-2	41.3	41.3 ± 1.5
1,3,5-trimethylcyclohexane ^b	C.15	1839-63-0	41.3	41.3 ± 1.5
<i>cis</i> -1-ethyl-1,3-dimethylcyclohexane	C.16	62238-31-7	44.5	44.5 ± 1.5
<i>trans</i> -1-ethyl-1,3-dimethylcyclohexane	C.17	62238-29-3	44.5	44.5 ± 1.5
1-ethyl-1,3-dimethylcyclohexane ^b	C.18	91351-88-1	44.5	44.5 ± 1.5
(1 α ,2 α ,3 β)-2-ethyl-1,3-dimethylcyclohexane	C.19	80408-40-8	45.9	45.9 ± 1.5
(1 α ,2 α ,3 α)-2-ethyl-1,3-dimethylcyclohexane	C.20	80408-39-5	45.9	45.9 ± 1.5
(1 α ,2 β ,3 α)-2-ethyl-1,3-dimethylcyclohexane	C.21	80408-38-4	45.9	45.9 ± 1.5
2-ethyl-1,3-dimethylcyclohexane ^b	C.22	7045-67-2	45.9	45.9 ± 1.5

316 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

317 ^b mixture of stereoisomers

318 Table 8. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid trialkylcyclohexanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(l) / (\text{kJ}\cdot\text{mol}^{-1})$	
			MBM	Selected
1,1,2-trimethylcyclohexane	C.1	7094-26-0	259.4	245.5 ± 3.2
1,1,3-trimethylcyclohexane	C.2	3073-66-3	252.0	253.3 ± 2.8
1,1,4-trimethylcyclohexane	C.3	7094-27-1	259.4	253.6 ± 3.2
(1 α ,2 β ,3 α)-1,2,3-trimethylcyclohexane	C.4	1678-81-5	256.8	246.9 ± 3.2
(1 α ,2 α ,3 β)-1,2,3-trimethylcyclohexane	C.5	7667-55-2	256.8	241.1 ± 3.2
(1 α ,2 α ,3 α)-1,2,3-trimethylcyclohexane	C.6	1839-88-9	256.8	241.4 ± 3.2
1,2,3-trimethylcyclohexane ^b	C.7	1678-97-3	256.8	243.1 ± 6.8
(1 α ,2 β ,4 β)-1,2,4-trimethylcyclohexane	C.8	7667-60-9	256.8	253.4 ± 3.2
(1 α ,2 β ,4 α)-1,2,4-trimethylcyclohexane	C.9	7667-59-6	256.8	245.1 ± 3.2
(1 α ,2 α ,4 α)-1,2,4-trimethylcyclohexane	C.10	1678-80-4	256.8	246.1 ± 3.2
(1 α ,2 α ,4 β)-1,2,4-trimethylcyclohexane	C.11	7667-58-5	256.8	245.6 ± 3.2

1,2,4-trimethylcyclohexane ^b	C.12	2234-75-5	256.8	247.6 ± 8.8
(1 α ,3 α ,5 α)-1,3,5-trimethylcyclohexane	C.13	1795-27-3	256.8	257.4 ± 3.2
(1 α ,3 α ,5 β)-1,3,5-trimethylcyclohexane	C.14	1795-26-2	256.8	249.4 ± 3.2
1,3,5-trimethylcyclohexane ^b	C.15	1839-63-0	256.8	253.4 ± 7.0
<i>cis</i> -1-ethyl-1,3-dimethylcyclohexane	C.16	62238-31-7	280.8	273.1 ± 3.3
<i>trans</i> -1-ethyl-1,3-dimethylcyclohexane	C.17	62238-29-3	280.8	273.6 ± 3.3
1-ethyl-1,3-dimethylcyclohexane ^b	C.18	91351-88-1	280.8	273.3 ± 3.5
(1 α ,2 α ,3 β)-2-ethyl-1,3-dimethylcyclohexane	C.19	80408-40-8	285.7	263.2 ± 3.3
(1 α ,2 α ,3 α)-2-ethyl-1,3-dimethylcyclohexane	C.20	80408-39-5	285.7	260.0 ± 3.3
(1 α ,2 β ,3 α)-2-ethyl-1,3-dimethylcyclohexane	C.21	80408-38-4	285.7	268.8 ± 3.3
2-ethyl-1,3-dimethylcyclohexane ^b	C.22	7045-67-2	285.7	264.0 ± 7.8

319 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

320 ^b mixture of stereoisomers

321 Table 9. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous trialkylcyclohexanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(g) / (\text{kJ}\cdot\text{mol}^{-1})$		
			MBM	<i>ab initio</i>	Selected
1,1,2-trimethylcyclohexane	C.1	7094-26-0	216.5	204.7 ± 2.8	204.7 ± 2.8
1,1,3-trimethylcyclohexane	C.2	3073-66-3	210.1	213.1 ± 2.8	213.1 ± 2.8
1,1,4-trimethylcyclohexane	C.3	7094-27-1	216.5	212.8 ± 2.8	212.8 ± 2.8
(1 α ,2 β ,3 α)-1,2,3-trimethylcyclohexane	C.4	1678-81-5	212.7	205.6 ± 2.8	205.6 ± 2.8
(1 α ,2 α ,3 β)-1,2,3-trimethylcyclohexane	C.5	7667-55-2	212.7	199.8 ± 2.8	199.8 ± 2.8
(1 α ,2 α ,3 α)-1,2,3-trimethylcyclohexane	C.6	1839-88-9	212.7	200.1 ± 2.8	200.1 ± 2.8
1,2,3-trimethylcyclohexane ^b	C.7	1678-97-3	212.7		201.8 ± 6.6
(1 α ,2 β ,4 β)-1,2,4-trimethylcyclohexane	C.8	7667-60-9	212.7	212.1 ± 2.8	212.1 ± 2.8
(1 α ,2 β ,4 α)-1,2,4-trimethylcyclohexane	C.9	7667-59-6	212.7	203.8 ± 2.8	203.8 ± 2.8
(1 α ,2 α ,4 α)-1,2,4-trimethylcyclohexane	C.10	1678-80-4	212.7	204.8 ± 2.8	204.8 ± 2.8
(1 α ,2 α ,4 β)-1,2,4-trimethylcyclohexane	C.11	7667-58-5	212.7	204.3 ± 2.8	204.3 ± 2.8

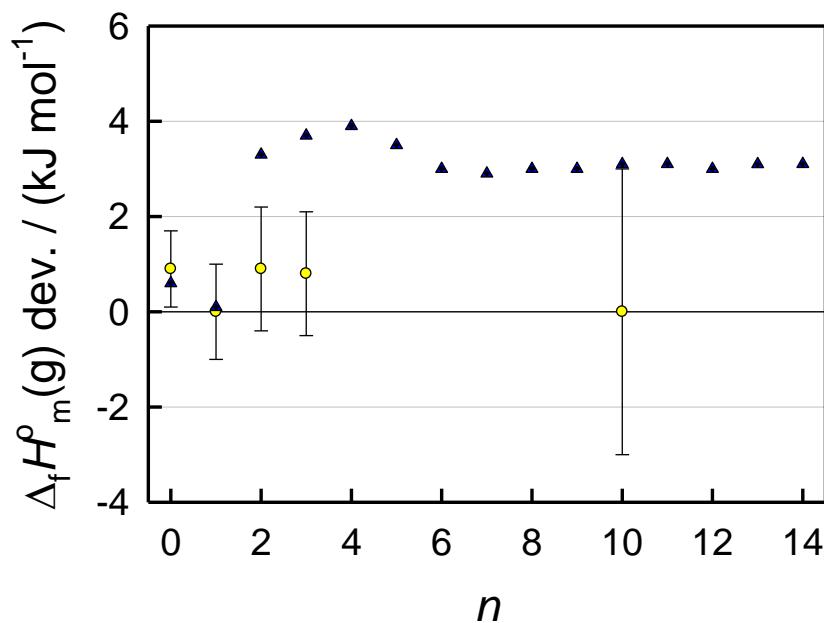
1,2,4-trimethylcyclohexane ^b	C.12	2234-75-5	212.7	206.3 ± 8.7	
(1 α ,3 α ,5 α)-1,3,5-trimethylcyclohexane	C.13	1795-27-3	212.7	216.1 ± 2.8	216.1 ± 2.8
(1 α ,3 α ,5 β)-1,3,5-trimethylcyclohexane	C.14	1795-26-2	212.7	208.1 ± 2.8	208.1 ± 2.8
1,3,5-trimethylcyclohexane ^b	C.15	1839-63-0	212.1 ± 6.8		
<i>cis</i> -1-ethyl-1,3-dimethylcyclohexane	C.16	62238-31-7	233.8	228.6 ± 2.9	228.6 ± 2.9
<i>trans</i> -1-ethyl-1,3-dimethylcyclohexane	C.17	62238-29-3	233.8	229.1 ± 2.9	229.1 ± 2.9
1-ethyl-1,3-dimethylcyclohexane ^b	C.18	91351-88-1	233.8	228.8 ± 3.2	
(1 α ,2 α ,3 β)-2-ethyl-1,3-dimethylcyclohexane	C.19	80408-40-8	236.4	217.3 ± 2.9	217.3 ± 2.9
(1 α ,2 α ,3 α)-2-ethyl-1,3-dimethylcyclohexane	C.20	80408-39-5	236.4	214.1 ± 2.9	214.1 ± 2.9
(1 α ,2 β ,3 α)-2-ethyl-1,3-dimethylcyclohexane	C.21	80408-38-4	236.4	222.9 ± 2.9	222.9 ± 2.9
2-ethyl-1,3-dimethylcyclohexane ^b	C.22	7045-67-2	236.4	218.1 ± 7.7	

322 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

323 ^b mixture of stereoisomers

324 3.2. *Cyclopentanes*

325 3.2.1. *Monoalkylcyclopentanes*


326 The enthalpies of vaporization of monoalkylcyclopentanes are collected in Table 10. For the short-
327 chain homologs, the predicted values are in excellent agreement with the high-quality experimental
328 data. For decylcyclopentane, the ebulliometric data in the temperature range (455 to 552) K were
329 reported by Camin et al. [39] and the smoothed vapor-pressure data in a range of (359 to 411) K
330 were published in the API Research Project 42 report [40]. The ebulliometric results extrapolated
331 using eq. 1 are higher than the low-temperature ones by about 12 %. As a result, the enthalpy of
332 vaporization at $T = 298.15$ K, (71.9 ± 4.3) $\text{kJ}\cdot\text{mol}^{-1}$, evaluated by TDE using these two sources has a
333 relatively high uncertainty. A similar uncertainty can be expected if the vaporization enthalpy
334 derived from the ebulliometric data is extrapolated to $T = 298.15$ K using estimated $\Delta_{\text{vap}}C_p$ [41].
335 Therefore, the experimental $\Delta_{\text{vap}}H_m$ was rejected for this compound in favor of the MBM estimate.
336 The experimental enthalpies of formation in the liquid phase have been reported for cyclopentane
337 through propylcyclopentane and decylcyclopentane (Table 11). For these compounds, the available
338 experimental data were used to derive the gas-phase enthalpies of formation (Table 12). As for
339 alkylcyclohexanes, the *ab initio* values (Table 12) are within ± 1 $\text{kJ}\cdot\text{mol}^{-1}$ of the experimental results
340 (Figure 4). The experimental results for methyl-, ethyl-, propyl-, and decylcyclopentanes were fitted
341 by the unweighted least squares method with the equation:

$$\Delta_fH_m^\circ(\text{C}_5\text{H}_9\text{C}_n\text{H}_{2n+1}(\text{g})) / (\text{kJ}\cdot\text{mol}^{-1}) = -86.03 - 20.56n \quad (5)$$

343 which, in turn, was used to fill the missing values in Table 12. The expanded uncertainties derived
344 from the regression of $(1.0$ to $1.5)$ $\text{kJ}\cdot\text{mol}^{-1}$ appear overly optimistic. They were replaced by the
345 estimate of 3.0 $\text{kJ}\cdot\text{mol}^{-1}$, which is close to the uncertainty of the *ab initio* values.

346 The MBM values for the gas phase are too positive by about $4 \text{ kJ}\cdot\text{mol}^{-1}$ except for cyclopentane and
347 methylcyclopentane (Figure 4). For the compounds with no liquid-phase thermochemical data,
348 $\Delta_f H^\circ_m(\text{l})$ were found by subtracting the selected values in Table 10 from those in Table 12. The
349 liquid-phase MBM values again systematically deviate from the experimental data or predictions
350 based on eq. 5.

351 The enthalpy of vaporization of (1-methylethyl)cyclopentane is the only experimental result for
352 isoalkylcyclopentanes. The *ab initio* gas-phase $\Delta_f H^\circ_m$ of isoalkylcyclopentanes (Table 12) were
353 combined with the selected vaporization enthalpies (Table 10) to obtain the liquid-phase values
354 (Table 11).

355
356 Figure 4. Deviation of standard molar enthalpies of formation of gaseous *n*-alkylcyclopentanes
357 $\text{C}_5\text{H}_9\text{C}_n\text{H}_{2n+1}$ from the *ab initio* values for $n = (0 \text{ to } 5)$ and eq. 4 for $n = (6 \text{ to } 14)$: experimental (yellow
358 circles) and predicted by MBM (blue triangles) values
359

360 3.3. 2. *Dialkylcyclopentanes and trialkylcyclopentanes*

361 Vapor pressures and enthalpies of formation for multiple dialkylcyclopentanes (Tables 13, 14) were
362 published by Rossini et al. [12,48] and Good [46]. As for the other monocyclic hydrocarbons considered
363 in this work, the MBM reliably predicted $\Delta_{\text{vap}}H^\circ_m$, and the *ab initio* demonstrated good performance for
364 $\Delta_fH^\circ_m(\text{g})$ (Table 15).

365 In 1955, Rossini and Li [47] concluded that the properties of *cis*- and *trans*-1,3-dimethylcyclopentanes
366 were swapped in the tables of physical and thermodynamic data issued by API Research Project 44 due
367 to misidentified samples. This problem should be taken into consideration when analyzing the
368 measurements based on pre-1955 samples. In 1971, Good [46] reported the enthalpies of formation of
369 *cis*- and *trans*-1-ethyl-3-methylcyclopentanes determined from combustion calorimetry measurements.
370 The samples were provided by API Project 58B. The room-temperature density of both isomers was the
371 only other reported property. The enthalpy of formation of the *trans*-isomer was found to be more
372 negative (Table 14). However, the opposite order is observed for 1,3-dimethylcyclopentanes in the liquid
373 phase and predicted by quantum chemical calculations for the gas phase. Because of this uncertainty,
374 the liquid-phase enthalpies of formation of these isomers were derived from the *ab initio* values for the
375 gas phase and predicted enthalpies of vaporization.

376 The enthalpies of vaporization of four trialkylcyclopentanes were determined from the ebulliometric
377 results of Forziati et al. [12] (Table 16). For the other isomers, the MBM predictions were selected. The
378 liquid-phase $\Delta_fH^\circ_m$ values (Table 17) were found using the *ab initio* results (Table 18) and the enthalpies
379 of vaporization.

380 Table 10. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^{\circ\text{ m}}$ of monoalkylcyclopentanes at $T = 298.15\text{ K}$ ^a

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^{\circ\text{ m}} / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
cyclopentane	D.1	287-92-3	28.7 ± 0.1	11	28.9	28.7 ± 0.1
methylcyclopentane	D.2	96-37-7	31.8 ± 0.1	11	31.8	31.8 ± 0.1
ethylcyclopentane	D.3	1640-89-7	36.5 ± 0.2	11	36.4	36.5 ± 0.2
propylcyclopentane	D.4	2040-96-2	41.1 ± 0.1	11	41.3	41.1 ± 0.1
butylcyclopentane	D.5	2040-95-1	45.9 ± 0.5	11	46.2	45.9 ± 0.5
pentylcyclopentane	D.6	3741-00-2			51.1	51.1 ± 1.5
hexylcyclopentane	D.7	4457-00-5			56.1	56.1 ± 1.5
heptylcyclopentane	D.8	5617-42-5			61.0	61.0 ± 1.5
octylcyclopentane	D.9	1795-20-6			65.9	65.9 ± 1.5
nonylcyclopentane	D.10	2882-98-6			70.8	70.8 ± 1.5
decylcyclopentane	D.11	1795-21-7	71.9 ± 4.3	15	75.7	75.7 ± 1.5
undecylcyclopentane	D.12	6785-23-5			80.7	80.7 ± 1.5
dodecylcyclopentane	D.13	5634-30-0			85.6	85.6 ± 1.5
tridecylcyclopentane	D.14	6006-34-4			90.5	90.5 ± 1.5

tetradecylcyclopentane	D.15	1795-22-8			95.4	95.4 ± 3.5 ^a
(1-methylethyl)cyclopentane	D.16	3875-51-2	39.5 ± 0.1	11	39.3	39.5 ± 0.1
(1-methylpropyl)cyclopentane	D.17	4850-32-2			44.6	44.6 ± 1.5
(2-methylpropyl)cyclopentane	D.18	3788-32-7			44.6	44.6 ± 1.5
(2-methylbutyl)cyclopentane	D.19	53366-38-4			49.9	49.9 ± 1.5
(3-methylbutyl)cyclopentane	D.20	1005-68-1			49.5	49.5 ± 1.5

382

^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

383 Table 11. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid monoalkylcyclopentanes (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(l) / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
cyclopentane	D.1	287-92-3	105.5 ± 0.8	33,42,43	104.3	105.5 ± 0.8
methylcyclopentane	D.2	96-37-7	138.0 ± 0.9	33,44,45,32,17	137.8	138.0 ± 0.9
ethylcyclopentane	D.3	1640-89-7	164.1 ± 1.2	37,32,17	166.7	164.1 ± 1.2
propylcyclopentane	D.4	2040-96-2	188.8 ± 1.3	37,46	192.6	188.8 ± 1.3
butylcyclopentane	D.5	2040-95-1			218.5	213.2 ± 2.8
pentylcyclopentane	D.6	3741-00-2			244.4	239.4 ± 3.3
hexylcyclopentane	D.7	4457-00-5			270.2	265.5 ± 3.4
heptylcyclopentane	D.8	5617-42-5			296.1	291.0 ± 3.4
octylcyclopentane	D.9	1795-20-6			322.0	316.4 ± 3.4
nonylcyclopentane	D.10	2882-98-6			347.9	341.9 ± 3.4
decylcyclopentane	D.11	1795-21-7	367.3 ± 2.6	35,36	373.8	367.3 ± 2.6
undecylcyclopentane	D.12	6785-23-5			399.7	392.9 ± 3.4
dodecylcyclopentane	D.13	5634-30-0			425.6	418.4 ± 3.4

tridecylcyclopentane	D.14	6006-34-4	451.5	443.8 ± 3.4
tetradecylcyclopentane	D.15	1795-22-8	477.4	469.3 ± 3.4
(1-methylethyl)cyclopentane	D.16	3875-51-2	200.3	193.6 ± 2.9
(1-methylpropyl)cyclopentane	D.17	4850-32-2	223.2	216.0 ± 3.2
(2-methylpropyl)cyclopentane	D.18	3788-32-7	223.2	219.8 ± 3.2
(2-methylbutyl)cyclopentane	D.19	53366-38-4	246.1	242.7 ± 3.3
(3-methylbutyl)cyclopentane	D.20	1005-68-1	249.1	245.9 ± 3.3

384

^a Expanded uncertainties for 0.95 level of confidence are reported following the \pm signs

385 Table 12. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous monoalkylcyclopentanes (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(g)$ / (kJ·mol ⁻¹)			
			Experiment	MBM	<i>ab initio</i>	Selected
cyclopentane	D.1	287-92-3	76.8 ± 0.8	76.5	75.9 ± 2.6 ^b	76.8 ± 0.8
methylcyclopentane	D.2	96-37-7	106.2 ± 1.0	106.3	106.2 ± 2.6	106.2 ± 1.0
ethylcyclopentane	D.3	1640-89-7	127.6 ± 1.3	130.0	126.7 ± 2.7	127.6 ± 1.3
propylcyclopentane	D.4	2040-96-2	147.7 ± 1.3	150.6	146.9 ± 2.8	147.7 ± 1.3
butylcyclopentane	D.5	2040-95-1		171.2	167.3 ± 2.8	167.3 ± 2.8
pentylcyclopentane	D.6	3741-00-2		191.8	188.3 ± 2.9	188.3 ± 2.9
hexylcyclopentane	D.7	4457-00-5		212.4		209.4 ± 3.0 ^d
heptylcyclopentane	D.8	5617-42-5		232.9		230.0 ± 3.0 ^d
octylcyclopentane	D.9	1795-20-6		253.5		250.5 ± 3.0 ^d
nonylcyclopentane	D.10	2882-98-6		274.1		271.1 ± 3.0 ^d
decylcyclopentane	D.11	1795-21-7	291.6 ± 3.0 ^c	294.7		291.6 ± 3.0
undecylcyclopentane	D.12	6785-23-5		315.3		312.2 ± 3.0 ^d
dodecylcyclopentane	D.13	5634-30-0		335.8		332.8 ± 3.0 ^d

tridecylcyclopentane	D.14	6006-34-4	356.4	353.3 ± 3.0^d	
tetradecylcyclopentane	D.15	1795-22-8	377.0	373.9 ± 3.0^d	
(1-methylethyl)cyclopentane	D.16	3875-51-2	159.9	154.1 ± 2.9	154.1 ± 2.9
(1-methylpropyl)cyclopentane	D.17	4850-32-2	177.3	171.4 ± 2.8	171.4 ± 2.8
(2-methylpropyl)cyclopentane	D.18	3788-32-7	177.3	175.2 ± 2.8	175.2 ± 2.8
(2-methylbutyl)cyclopentane	D.19	53366-38-4	194.8	192.8 ± 2.9	192.8 ± 2.9
(3-methylbutyl)cyclopentane	D.20	1005-68-1	197.9	196.4 ± 2.9	196.4 ± 2.9

386 ^a Expanded uncertainties for 0.95 level of confidence are reported following the \pm signs

387 ^b The uncertainty can be higher because pseudorotation is considered as harmonic vibrations

388 ^c Experimental liquid-phase enthalpy of formation is combined with the enthalpy of vaporization estimated by MBM

389 ^d These values were estimated using eq. 4. The expanded uncertainties, including the contributions due to data scatter and the model itself, are

390 $(1.0 \text{ to } 1.5) \text{ kJ}\cdot\text{mol}^{-1}$

391 Table 13. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^{\circ\text{ m}}$ of dialkylcyclopentanes at $T = 298.15\text{ K}$ ^a

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^{\circ\text{ m}} / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
1,1-dimethylcyclopentane	E.1	1638-26-2	34.0 ± 0.2	12	34.2	34.0 ± 0.2
<i>cis</i> -1,2-dimethylcyclopentane	E.2	1192-18-3	35.9 ± 0.2	12	34.8	35.9 ± 0.2
<i>trans</i> -1,2-dimethylcyclopentane	E.3	822-50-4	34.8 ± 0.2	12	34.8	34.8 ± 0.2
1,2-dimethylcyclopentane ^b	E.4	2452-99-5			34.8	35.3 ± 0.8
<i>cis</i> -1,3-dimethylcyclopentane	E.5	2532-58-3	34.3 ± 0.2	11	34.8	34.3 ± 0.2
<i>trans</i> -1,3-dimethylcyclopentane	E.6	1759-58-6	34.7 ± 0.2	12,47	34.8	34.7 ± 0.2
1,3-dimethylcyclopentane ^b	E.7	2453-00-1			34.8	34.5 ± 0.4
1-ethyl-1-methylcyclopentane	E.8	16747-50-5	38.9 ± 0.2	11	38.8	38.9 ± 0.2
<i>cis</i> -1-ethyl-2-methylcyclopentane	E.9	930-89-2	40.1 ± 0.2	12	39.3	40.1 ± 0.2

<i>trans</i> -1-ethyl-2-methylcyclopentane	E.10	930-90-5	39.3	39.3 ± 1.5
1-ethyl-2-methylcyclopentane ^b	E.11	3726-46-3	39.3	39.3 ± 1.5
<i>cis</i> -1-ethyl-3-methylcyclopentane	E.12	2613-66-3	39.3	39.3 ± 1.5
<i>trans</i> -1-ethyl-3-methylcyclopentane	E.13	2613-65-2	39.3	39.3 ± 1.5
1-ethyl-3-methylcyclopentane ^b	E.14	3726-47-4	39.3	39.3 ± 1.5
<i>cis</i> -1,2-diethylcyclopentane	E.15	932-39-8	43.9	43.9 ± 1.5
<i>trans</i> -1,2-diethylcyclopentane	E.16	932-40-1	43.9	43.9 ± 1.5
1,2-diethylcyclopentane ^b	E.17	3728-68-5	43.9	43.9 ± 1.5
<i>cis</i> -1-methyl-2-propylcyclohexane	E.18	932-43-4	44.3	44.3 ± 1.5
<i>trans</i> -1-methyl-2-propylcyclopentane	E.19	932-44-5	44.3	44.3 ± 1.5
1-methyl-2-propylcyclopentane ^b	E.20	3728-57-2	44.3	44.3 ± 1.5
<i>cis</i> -1-methyl-3-(1-methylethyl)cyclopentane	E.21	61828-02-2	42.3	42.3 ± 1.5
<i>trans</i> -1-methyl-3-(1-methylethyl)cyclopentane	E.22	61828-03-3	42.3	42.3 ± 1.5

1-methyl-3-(1-methylethyl)cyclopentane^b

E.23 53771-88-3

42.3 42.3 ± 1.5

392 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

393 ^b Mixture of stereoisomers

394 Table 14. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid dialkylcyclopentanes (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(l) / (\text{kJ}\cdot\text{mol}^{-1})$				
			Experiment	Source	MBM	Selected	
1,1-dimethylcyclopentane	E.1	1638-26-2	172.1 ± 1.4	48	174.0	172.1 ± 1.4	
<i>cis</i> -1,2-dimethylcyclopentane	E.2	1192-18-3	165.3 ± 1.6	48	171.4	165.3 ± 1.6	
<i>trans</i> -1,2-dimethylcyclopentane	E.3	822-50-4	171.2 ± 1.5	48	171.4	171.2 ± 1.5	
1,2-dimethylcyclopentane ^b	E.4	2452-99-5			171.4	168.3 ± 4.6	
<i>cis</i> -1,3-dimethylcyclopentane	E.5	2532-58-3	170.1 ± 1.4	48,47	171.4	170.1 ± 1.4	
<i>trans</i> -1,3-dimethylcyclopentane	E.6	1759-58-6	168.1 ± 1.7	48,47	171.4	168.1 ± 1.7	
1,3-dimethylcyclopentane ^b	E.7	2453-00-1			171.4	169.1 ± 2.7	
1-ethyl-1-methylcyclopentane	E.8	16747-50-5	193.8 ± 1.4	46	202.8	193.8 ± 1.4	
<i>cis</i> -1-ethyl-2-methylcyclopentane	E.9	930-89-2	190.8 ± 1.4	46	200.3	190.8 ± 1.4	

<i>trans</i> -1-ethyl-2-methylcyclopentane	E.10	930-90-5	195.1 ± 1.4	46	200.3	195.1 ± 1.4
1-ethyl-2-methylcyclopentane ^b	E.11	3726-46-3			200.3	193.0 ± 3.6
<i>cis</i> -1-ethyl-3-methylcyclopentane	E.12	2613-66-3	194.4 ± 1.4 ^c	46	200.3	195.6 ± 3.3
<i>trans</i> -1-ethyl-3-methylcyclopentane	E.13	2613-65-2	196.0 ± 1.4 ^c	46	200.3	194.5 ± 3.3
1-ethyl-3-methylcyclopentane ^b	E.14	3726-47-4			200.3	195.1 ± 3.8
<i>cis</i> -1,2-diethylcyclopentane	E.15	932-39-8			229.1	214.3 ± 3.2
<i>trans</i> -1,2-diethylcyclopentane	E.16	932-40-1			229.1	220.7 ± 3.2
1,2-diethylcyclopentane ^b	E.17	3728-68-5			229.1	217.5 ± 6.2
<i>cis</i> -1-methyl-2-propylcyclohexane	E.18	932-43-4			226.2	216.3 ± 3.2
<i>trans</i> -1-methyl-2-propylcyclopentane	E.19	932-44-5			226.2	221.9 ± 3.2
1-methyl-2-propylcyclopentane ^b	E.20	3728-57-2			226.2	219.1 ± 5.8
<i>cis</i> -1-methyl-3-(1-methylethyl)cyclopentane	E.21	61828-02-2			233.8	226.6 ± 3.2
<i>trans</i> -1-methyl-3-(1-methylethyl)cyclopentane	E.22	61828-03-3			233.8	224.7 ± 3.2

1-methyl-3-(1-methylethyl)cyclopentane^b

E.23 53771-88-3

233.8 225.7 ± 4.1

395 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

396 ^b Mixture of stereoisomers

397 ^c Experimental data for these isomers are likely swapped. See text

398 Table 15. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous dialkylcyclopentanes (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(g)$ / (kJ·mol ⁻¹)			
			Experiment	MBM	<i>ab initio</i>	Selected
1,1-dimethylcyclopentane	E.1	1638-26-2	138.1 ± 1.4	139.9	138.2 ± 2.7	138.1 ± 1.4
<i>cis</i> -1,2-dimethylcyclopentane	E.2	1192-18-3	129.4 ± 1.6	136.2	130.1 ± 2.7	129.4 ± 1.6
<i>trans</i> -1,2-dimethylcyclopentane	E.3	822-50-4	136.4 ± 1.5	136.2	137.3 ± 2.7	136.4 ± 1.5
1,2-dimethylcyclopentane ^b	E.4	2452-99-5		136.2		132.9 ± 5.1
<i>cis</i> -1,3-dimethylcyclopentane	E.5	2532-58-3	135.8 ± 1.4	136.2	135.7 ± 2.7	135.8 ± 1.4
<i>trans</i> -1,3-dimethylcyclopentane	E.6	1759-58-6	133.4 ± 1.7	136.2	134.5 ± 2.7	133.4 ± 1.7
1,3-dimethylcyclopentane ^b	E.7	2453-00-1		136.2		134.6 ± 2.9
1-ethyl-1-methylcyclopentane	E.8	16747-50-5	154.9 ± 1.4	163.6	154.8 ± 2.9	154.9 ± 1.4
<i>cis</i> -1-ethyl-2-methylcyclopentane	E.9	930-89-2	150.7 ± 1.4	159.9	150.6 ± 2.8	150.7 ± 1.4

<i>trans</i> -1-ethyl-2-methylcyclopentane	E.10	930-90-5	155.8 ± 2.1 ^c	159.9	156.4 ± 2.9	155.8 ± 2.1
1-ethyl-2-methylcyclopentane ^b	E.11	3726-46-3		159.9		153.3 ± 4.7
<i>cis</i> -1-ethyl-3-methylcyclopentane	E.12	2613-66-3	155.1 ± 2.1 ^{c,d}	159.9	156.3 ± 2.9	156.3 ± 2.9
<i>trans</i> -1-ethyl-3-methylcyclopentane	E.13	2613-65-2	156.7 ± 2.0 ^{c,d}	159.9	155.2 ± 2.9	155.2 ± 2.9
1-ethyl-3-methylcyclopentane ^b	E.14	3726-47-4		159.9		155.8 ± 3.5
<i>cis</i> -1,2-diethylcyclopentane	E.15	932-39-8		183.6	170.4 ± 2.8	170.4 ± 2.8
<i>trans</i> -1,2-diethylcyclopentane	E.16	932-40-1		183.6	176.8 ± 2.8	176.8 ± 2.8
1,2-diethylcyclopentane ^b	E.17	3728-68-5		183.6		173.6 ± 6.0
<i>cis</i> -1-methyl-2-propylcyclohexane	E.18	932-43-4		180.5	172.0 ± 2.8	172.0 ± 2.8
<i>trans</i> -1-methyl-2-propylcyclopentane	E.19	932-44-5		180.5	177.6 ± 2.8	177.6 ± 2.8
1-methyl-2-propylcyclopentane ^b	E.20	3728-57-2		180.5		174.8 ± 5.6
<i>cis</i> -1-methyl-3-(1-methylethyl)cyclopentane	E.21	61828-02-2		189.7	184.3 ± 2.8	184.3 ± 2.8
<i>trans</i> -1-methyl-3-(1-methylethyl)cyclopentane	E.22	61828-03-3		189.7	182.4 ± 2.8	182.4 ± 2.8

1-methyl-3-(1-methylethyl)cyclopentane^b

E.23 53771-88-3

189.7

183.4 ± 3.8

399 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

400 ^b Mixture of stereoisomers

401 ^c Experimental liquid-phase enthalpy of formation is combined with the enthalpy of vaporization estimated by MBM

402 ^d Experimental data for these isomers are likely swapped. See text

403 Table 16. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^\circ_m$ of trialkylcyclopentanes at $T = 298.15$ K ^a

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^\circ_m / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
1,1,2-trimethylcyclopentane	F.1	4259-00-1	37.4 ± 0.2	12	37.2	37.4 ± 0.2
1,1,3-trimethylcyclopentane	F.2	4516-69-2	36.2 ± 0.2	12	36.4	36.2 ± 0.2
(1 α ,2 β ,3 α)-1,2,3-trimethylcyclopentane	F.3	19374-46-0			37.7	37.7 ± 1.5
(1 α ,2 α ,3 β)-1,2,3-trimethylcyclopentane	F.4	15890-40-1			37.7	37.7 ± 1.5
(1 α ,2 α ,3 α)-1,2,3-trimethylcyclopentane	F.5	2613-69-6			37.7	37.7 ± 1.5
1,2,3-trimethylcyclopentane ^b	F.6	2815-57-8			37.7	37.7 ± 1.5
(1 α ,2 β ,4 α)-1,2,4-trimethylcyclopentane	F.7	16883-48-0	37.0 ± 0.2	12	37.7	37.0 ± 0.2
(1 α ,2 α ,4 α)-1,2,4- trimethylcyclopentane	F.8	2613-72-1			37.7	37.7 ± 1.5
(1 α ,2 α ,4 β)-1,2,4- trimethylcyclopentane	F.9	4850-28-6	37.9 ± 0.2	12	37.7	37.9 ± 0.2
1,2,4- trimethylcyclopentane ^b	F.10	2815-58-9			37.7	37.7 ± 1.5

(1 α ,2 β ,3 α)-2-ethyl-1,3-dimethylcyclopentane	F.11	19902-98-8	42.3	42.3 \pm 1.5
(1 α ,2 α ,3 β)-2-ethyl-1,3-dimethylcyclopentane	F.12	19902-99-9	42.3	42.3 \pm 1.5
(1 α ,2 α ,3 α)-2-ethyl-1,3-dimethylcyclopentane	F.13	19903-00-5	42.3	42.3 \pm 1.5
2-ethyl-1,3-dimethylcyclopentane ^b	F.14	19714-68-2	42.3	42.3 \pm 1.5
(1 α ,2 β ,3 α)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.15		45.3	45.3 \pm 1.5
(1 α ,2 α ,3 β)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.16		45.3	45.3 \pm 1.5
(1 α ,2 α ,3 α)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.17		45.3	45.3 \pm 1.5
2-(1-methylethyl)-1,3-dimethylcyclopentane ^b	F.18	32281-85-9	45.3	45.3 \pm 1.5

404 ^a Expanded uncertainties for 0.95 level of confidence are reported following the \pm signs

405 ^b mixture of stereoisomers

406 Table 17. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid trialkylcyclopentanes (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(l) / (\text{kJ}\cdot\text{mol}^{-1})$	
			MBM	Selected
1,1,2-trimethylcyclopentane	F.1	4259-00-1	207.6	202.8 ± 2.9
1,1,3-trimethylcyclopentane	F.2	4516-69-2	200.1	203.1 ± 2.9
(1 α ,2 β ,3 α)-1,2,3-trimethylcyclopentane	F.3	19374-46-0	205.0	204.9 ± 3.3
(1 α ,2 α ,3 β)-1,2,3-trimethylcyclopentane	F.4	15890-40-1	205.0	196.8 ± 3.3
(1 α ,2 α ,3 α)-1,2,3-trimethylcyclopentane	F.5	2613-69-6	205.0	194.8 ± 3.3
1,2,3-trimethylcyclopentane ^b	F.6	2815-57-8	205.0	198.8 ± 9.1
(1 α ,2 β ,4 α)-1,2,4-trimethylcyclopentane	F.7	16883-48-0	205.0	202.1 ± 2.9
(1 α ,2 α ,4 α)-1,2,4- trimethylcyclopentane	F.8	2613-72-1	205.0	196.0 ± 3.3
(1 α ,2 α ,4 β)-1,2,4- trimethylcyclopentane	F.9	4850-28-6	205.0	196.7 ± 2.9
1,2,4- trimethylcyclopentane ^b	F.10	2815-58-9	205.0	198.4 ± 7.5

(1 α ,2 β ,3 α)-2-ethyl-1,3-dimethylcyclopentane	F.11	19902-98-8	233.8	226.2 \pm 3.2
(1 α ,2 α ,3 β)-2-ethyl-1,3-dimethylcyclopentane	F.12	19902-99-9	233.8	223.1 \pm 3.2
(1 α ,2 α ,3 α)-2-ethyl-1,3-dimethylcyclopentane	F.13	19903-00-5	233.8	213.6 \pm 3.2
2-ethyl-1,3-dimethylcyclopentane ^b	F.14	19714-68-2	233.8	221.0 \pm 10.4
(1 α ,2 β ,3 α)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.15		267.4	253.5 \pm 3.3
(1 α ,2 α ,3 β)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.16		267.4	248.6 \pm 3.3
(1 α ,2 α ,3 α)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.17		267.4	242.5 \pm 3.3
2-(1-methylethyl)-1,3-dimethylcyclopentane ^b	F.18	32281-85-9	267.4	248.2 \pm 8.7

407 ^a Expanded uncertainties for 0.95 level of confidence are reported following the \pm signs

408 ^b mixture of stereoisomers

409 Table 18. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous trialkylcyclopentanes (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	- $\Delta_f H^\circ_m(g)$ / (kJ·mol ⁻¹)		
			MBM	<i>ab initio</i>	Selected
1,1,2-trimethylcyclopentane	F.1	4259-00-1	169.8	165.4 ± 2.9	165.4 ± 2.9
1,1,3-trimethylcyclopentane	F.2	4516-69-2	163.4	166.9 ± 2.9	166.9 ± 2.9
(1 α ,2 β ,3 α)-1,2,3-trimethylcyclopentane	F.3	19374-46-0	166.0	167.2 ± 2.9	167.2 ± 2.9
(1 α ,2 α ,3 β)-1,2,3-trimethylcyclopentane	F.4	15890-40-1	166.0	159.1 ± 2.9	159.1 ± 2.9
(1 α ,2 α ,3 α)-1,2,3-trimethylcyclopentane	F.5	2613-69-6	166.0	157.1 ± 2.9	157.1 ± 2.9
1,2,3-trimethylcyclopentane ^b	F.6	2815-57-8	166.0		161.1 ± 9.0
(1 α ,2 β ,4 α)-1,2,4-trimethylcyclopentane	F.7	16883-48-0	166.0	165.1 ± 2.9	165.1 ± 2.9
(1 α ,2 α ,4 α)-1,2,4- trimethylcyclopentane	F.8	2613-72-1	166.0	158.3 ± 2.9	158.3 ± 2.9
(1 α ,2 α ,4 β)-1,2,4- trimethylcyclopentane	F.9	4850-28-6	166.0	158.8 ± 2.9	158.8 ± 2.9
1,2,4- trimethylcyclopentane ^b	F.10	2815-58-9	166.0		160.7 ± 7.3

(1 α ,2 β ,3 α)-2-ethyl-1,3-dimethylcyclopentane	F.11	19902-98-8	189.7	183.9 \pm 2.8	183.9 \pm 2.8
(1 α ,2 α ,3 β)-2-ethyl-1,3-dimethylcyclopentane	F.12	19902-99-9	189.7	180.8 \pm 2.8	180.8 \pm 2.8
(1 α ,2 α ,3 α)-2-ethyl-1,3-dimethylcyclopentane	F.13	19903-00-5	189.7	171.3 \pm 2.8	171.3 \pm 2.8
2-ethyl-1,3-dimethylcyclopentane ^b	F.14	19714-68-2	189.7		178.7 \pm 10.3
(1 α ,2 β ,3 α)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.15		219.6	208.2 \pm 2.9	208.2 \pm 2.9
(1 α ,2 α ,3 β)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.16		219.6	203.3 \pm 2.9	203.3 \pm 2.9
(1 α ,2 α ,3 α)-2-(1-methylethyl)-1,3-dimethylcyclopentane	F.17		219.6	197.2 \pm 2.9	197.2 \pm 2.9
2-(1-methylethyl)-1,3-dimethylcyclopentane ^b	F.18	32281-85-9	219.6		202.9 \pm 8.6

410 ^a Expanded uncertainties for 0.95 level of confidence are reported following the \pm signs

411 ^b mixture of isomers

412 3.3. Bi- and tricyclic compounds

413 This group includes bi- and tricyclic compounds containing at least one cyclopentane or cyclohexane
414 ring. The results are reported in Tables 19-21. Decalins and tetralins are discussed in Section 3.4. For the
415 compounds with fused and bridged rings as well as spiro compounds, the CBS *ab initio* enthalpies of
416 formation are used in the discussion. The quadruple-zeta and CBS results are compared in Section 3.5.

417 The experimental enthalpies of vaporization are available for three out of five bicyclic compounds with
418 separated rings (Table 19). For cyclopentylcyclohexane, the enthalpy of vaporization can be estimated as
419 a half-sum of the values for 1,1'-bicyclopentyl and 1,1'-bicyclohexyl. The good performance of MBM
420 toward the enthalpies of vaporization of these compounds is expected based on the discussion in the
421 previous sections. Therefore, the MBM value was used for (cyclopentylmethyl)cyclohexane. In the case
422 of 1,1'-(1,2-ethanediyl)biscyclohexane, the predicted value was preferred over the experimental one.
423 The latter deviates from the expected trend by 3 kJ·mol⁻¹.

424 The reliable experimental enthalpies of formation have been published only for 1,1'-bicyclopentyl and
425 1,1'-bicyclohexyl (Table 20), and their expanded uncertainty is 1.6 kJ·mol⁻¹. For the other three
426 compounds, the liquid-phase values were obtained from the *ab initio* gas-phase enthalpies of formation
427 and enthalpies of vaporization. The $\Delta_f H^\circ_m$ values predicted with MBM both for the liquid and gas phases
428 are systematically too negative, with deviations up to 13 kJ·mol⁻¹ (Tables 20 and 21). This performance is
429 consistent with the results obtained above for monocyclic compounds.

430 Evaluation of repeatability-based uncertainty is an important part of combustion calorimetry
431 experiments [49]. It characterizes the lower limit of uncertainty for these measurements. Typically, at
432 least six experiments are conducted to obtain a reasonable statistical sample. $\Delta_f H^\circ_m$ of
433 cyclopentylcyclohexane [65] (Table 20) was obtained from two combustion experiments; therefore, its
434 uncertainty could not be estimated.

435 The experimental properties, including condensed-phase enthalpies of formation and
436 vaporization/sublimation, have been reported for 13 compounds with bridged or fused rings (Tables 19,
437 20). Four of these compounds are solid at $T = 298.15$ K, and their liquid-phase properties were estimated
438 using the gas-phase enthalpy of formation and predicted $\Delta_{\text{vap}}H^\circ_m$. Also, the liquid-phase $\Delta_fH^\circ_m$ is
439 available for two individual compounds and two isomeric mixtures and $\Delta_{\text{vap}}H^\circ_m$ has been reported for
440 two pinane isomers.

441 For the fused-ring compounds, the MBM-predicted $\Delta_{\text{vap}}H^\circ_m$ agree with the experimental data within
442 $\pm 1.5 \text{ kJ}\cdot\text{mol}^{-1}$, similar to the monocyclic compounds. The experimental $\Delta_{\text{vap}}H^\circ_m$ are available for four
443 bridged compounds, including three methyl-substituted bicyclo[2.2.1]heptanes and JP-10, and the
444 predicted values are greater by (1.7 to 3.8) $\text{kJ}\cdot\text{mol}^{-1}$. Therefore, the estimated uncertainty for the
445 predicted enthalpies of vaporization of bridged compounds was increased to 4 $\text{kJ}\cdot\text{mol}^{-1}$. Pinanes contain
446 a cyclobutane ring, and the corresponding ring correction is unknown. Therefore, the MBM predictions
447 for these compounds could not be generated.

448 The vaporization enthalpies of 1,4-dimethylbicyclo[2.2.1]heptane and *trans*-2,3-
449 dimethylbicyclo[2.2.1]heptane were measured in a calorimeter in the same work [58]. The reported
450 difference of $-3.2 \text{ kJ}\cdot\text{mol}^{-1}$ appears excessive. The difference close to $-1 \text{ kJ}\cdot\text{mol}^{-1}$, also predicted by the
451 MBM, is expected for this pair of compounds. Additional experimental data are required to resolve this
452 inconsistency.

453 The experimental gas-phase enthalpies of formation are compared with their *ab initio* counterparts in
454 Table 21. For most compounds with bridged or fused rings, the CBS *ab initio* values agree with the
455 experimental ones within their combined uncertainties. For 7,7-dimethylbicyclo[2.2.1]heptane, the
456 difference is larger but still within a sum of the experimental and computational uncertainties. The
457 experimental values for *trans*-bicyclo[3.3.0]octane and the isomeric mixtures of 2-

458 ethylbicyclo[2.2.1]heptane and pinane have large deviations (-6, 9, and -37 kJ·mol⁻¹, respectively) from
459 the calculated values. Considering the very good performance of the *ab initio* protocol, these
460 experimental results were rejected.

461 The enthalpies of vaporization of all three spiro compounds considered in this work can be derived from
462 the vapor-pressure [50] and calorimetric [51] measurements for the same samples (Table 19). The
463 difference between the calorimetric $\Delta_{\text{vap}}H^\circ_m$ for spiro[4.5]decane and spiro[5.5]undecane is only 1.2
464 kJ·mol⁻¹. Also, for spiro[4.5]decane, the value is higher than the tensimetric and MBM values by 6 and 5
465 kJ·mol⁻¹, respectively. Therefore, the vaporization enthalpies derived from the temperature-dependent
466 vapor pressures were selected for all three compounds despite their higher repeatability-based
467 uncertainty.

468 The liquid-phase enthalpies of formation (Table 20) were derived from two consistent studies by
469 combustion calorimetry [52,53]. The gas-phase values (Table 21) were obtained using these results, and
470 the vaporization enthalpies were selected as described above. The *ab initio* $\Delta_fH^\circ_m$ values are within ± 2.7
471 kJ·mol⁻¹ of the corresponding experimental data.

472 Table 19. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^\circ_m$ of bi- and tricyclic compounds at $T = 298.15$ K ^a

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^\circ_m / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
1,1'-bicyclopentyl	G.1	1636-39-1	50.4 ± 0.2	54	51.6	50.4 ± 0.2
cyclopentylcyclohexane	G.2	1606-08-2	54.6 ± 0.5^b		55.2	54.6 ± 0.5
1,1'-bicyclohexyl	G.3	92-51-3	58.8 ± 0.4	55	58.7	58.8 ± 0.4
(cyclopentylmethyl)cyclohexane	G.4	4431-89-4			59.7	59.7 ± 1.5
1,1'-(1,2-ethanediyl)biscyclohexane	G.5	3321-50-4	71.0 ± 1.5^c	56	68.2	68.2 ± 1.5
bicyclo[2.2.1]heptane (norbornane)	G.6	279-23-2	40.2 ± 0.7 (subl) ^d	15	37.9	37.9 ± 4.0
1-methylbicyclo[2.2.1]heptane	G.7	10052-18-3	38.1 ± 0.2	57	40.3	38.1 ± 0.2
<i>rel</i> -(1 <i>S</i> ,2 <i>R</i> ,4 <i>S</i>)-2-methylbicyclo[2.2.1]heptane	G.8	765-90-2			40.8	40.8 ± 4.0
<i>rel</i> -(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-2-methylbicyclo[2.2.1]heptane	G.9	872-78-6			40.8	40.8 ± 4.0
1,4-dimethylbicyclo[2.2.1]heptane	G.10	20454-81-3	38.9 ± 0.2	58,11	42.7	38.9 ± 0.2
<i>trans</i> -2,3-dimethylbicyclo[2.2.1]heptane	G.11	20558-16-1	42.1 ± 0.1	58	43.8	42.1 ± 0.1
7,7-dimethylbicyclo[2.2.1]heptane	G.12	2034-53-9	47.0 ± 1.0 (subl) ^d	57	43.3	43.3 ± 4.0

<i>rel</i> -(1 <i>S</i> ,2 <i>R</i> ,4 <i>S</i>)-2-ethylbicyclo[2.2.1]heptane	G.13	19901-79-2		45.4	45.4 ± 4.0	
<i>rel</i> -(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-2-ethylbicyclo[2.2.1]heptane	G.14	19901-80-5		45.4	45.4 ± 4.0	
2-ethylbicyclo[2.2.1]heptane ^e	G.15	2146-41-0		45.4	45.4 ± 4.0	
(1 <i>S</i> ,2 <i>R</i> ,5 <i>S</i>)-2,6,6-trimethylbicyclo[3.1.1]heptane ((<i>-</i>)- <i>cis</i> -pinane)	G.16	4755-33-3	46.0 ± 0.8	15	46.0 ± 0.8	
(1 <i>S</i> ,2 <i>S</i> ,5 <i>S</i>)-2,6,6-trimethylbicyclo[3.1.1]heptane ((<i>+</i>)- <i>trans</i> -pinane)	G.17	10281-53-5	46.1 ± 0.3	59	46.1 ± 0.3	
2,6,6-trimethylbicyclo[3.1.1]heptane (pinane) ^e	G.18	473-55-2			46.1 ± 0.8	
<i>cis</i> -bicyclo[3.3.0]octane (<i>cis</i> -octahydronatalene)	G.19	1755-05-1	43.1 ± 0.8	60	42.4	43.1 ± 0.8
<i>trans</i> -bicyclo[3.3.0]octane (<i>trans</i> -octahydronatalene)	G.20	5597-89-7	42.7 ± 0.8	60	42.4	42.7 ± 0.8
(1 <i>R</i> ,3 <i>r</i> ,5 <i>S</i>)-3-methylbicyclo[3.3.0]octane	G.21	1551-79-7			45.4	45.4 ± 1.5
(1 <i>R</i> ,3 <i>s</i> ,5 <i>S</i>)-3-methylbicyclo[3.3.0]octane	G.22	1551-78-6			45.4	45.4 ± 1.5
3-methyl- <i>cis</i> -bicyclo[3.3.0]octane ^e	G.23	3868-64-2			45.4	45.4 ± 1.5

bicyclo[3.3.1]nonane	G.24	280-65-9	50.6 ± 2.1 (subl) ^d	61	45.0	45.0 ± 4.0
1-methylbicyclo[3.3.1]nonane	G.25	25107-02-2			47.4	47.4 ± 4.0
9-methylbicyclo[3.3.1]nonane	G.26	25107-01-1			48.0	48.0 ± 4.0
<i>cis</i> -bicyclo[4.3.0]nonane (<i>cis</i> -octahydroindene)	G.27	4551-51-3	46.3 ± 0.3	15	46.0	46.3 ± 0.3
<i>trans</i> -bicyclo[4.3.0]nonane (<i>trans</i> -octahydroindene)	G.28	3296-50-2	45.0 ± 0.3	15	46.0	45.0 ± 0.3
<i>cis</i> -1-methylbicyclo[4.3.0]nonane	G.29	824-16-8			48.4	48.4 ± 1.5
<i>trans</i> -1-methylbicyclo[4.3.0]nonane	G.30	42608-34-4			48.4	48.4 ± 1.5
<i>cis</i> -bicyclo[5.3.0]decane	G.31	16189-46-1	53.6 ± 1.3	60	52.1	53.6 ± 1.3
<i>trans</i> -bicyclo[5.3.0]decane	G.32	16189-47-2			52.1	52.1 ± 1.5
<i>endo</i> -tricyclo[5.2.1.0 ^{2,6}]decane	G.33	2825-83-4	51.5 ± 5.4 (subl) ^d	15	51.5	51.5 ± 4.0
<i>exo</i> -tricyclo[5.2.1.0 ^{2,6}]decane (JP-10)	G.34	2825-82-3	49.0 ± 0.2	62	51.5	49.0 ± 0.2
<i>rel</i> -(3a <i>R</i> ,3b <i>R</i> ,6a <i>R</i> ,7a <i>R</i>)-decahydro-1 <i>H</i> -cyclopenta[a]pentalene	G.35	64839-76-5			56.0	56.0 ± 1.5

<i>rel</i> -(3a <i>R</i> ,3b <i>S</i> ,6a <i>S</i> ,7a <i>R</i>)-decahydro-1 <i>H</i> -cyclopenta[a]pentalene	G.36	58116-67-9	56.0	56.0 ± 1.5		
decahydro-1 <i>H</i> -cyclopenta[a]pentalene ^e	G.37	6053-75-4	56.0	56.0 ± 1.5		
(3a <i>α</i> ,6a <i>α</i> ,9a <i>α</i> ,9b <i>β</i>)-perhydrophenalene	G.38	40250-64-4	58.6	58.6 ± 4.0		
(3a <i>α</i> ,6a <i>α</i> ,9a <i>β</i> ,9b <i>α</i>)-perhydrophenalene	G.39	86118-18-5	58.6	58.6 ± 4.0		
spiro[4.5]decane	G.40	176-63-6	49.0 ± 1.5 ^f (54.9 ± 0.1) ^g	50	50.0	49.0 ± 1.5
spiro[5.5]undecane	G.41	180-43-8	55.0 ± 2.2 ^f (56.1 ± 0.1) ^g	50	53.6	55.0 ± 2.2
spiro[5.6]dodecane	G.42	181-15-7	60.5 ± 3.1 ^f	50	59.7	60.5 ± 3.1

473 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

474 ^b Average of 1,1'-bicyclopentyl and 1,1'-bicyclohexyl

475 ^c Estimated using $\Delta_{\text{vap}}C_p = -(97 \pm 18) \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$ based on the experimental data from Ref. [63] and ideal-gas calculations in this work, the real
476 uncertainty of this value is close to 3 $\text{kJ}\cdot\text{mol}^{-1}$

477 ^d Enthalpy of sublimation

478 ^e Mixture of stereoisomers

479 ^f Estimated using $\Delta_{\text{vap}}C_p = -14.30 - 0.35C_p(\text{g})$ [41] and the ideal-gas heat capacities at $T = 298.15$ K calculated in this work

480 ^gThese values [51] appear to be too high, and the repeatability-based uncertainty is not credible

481 Table 20. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid bi- and tricyclic compounds at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(l) / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment ^b	Source	MBM	Selected
1,1'-bicyclopentyl	G.1	1636-39-1	179.0 ± 1.6	64,65	183.7	179.0 ± 1.6
cyclopentylcyclohexane	G.2	1606-08-2	230.2^c	65	235.6	228.5 ± 2.9^d
1,1'-bicyclohexyl	G.3	92-51-3	274.1 ± 1.6	64,66	287.4	274.1 ± 1.6
(cyclopentylmethyl)cyclohexane	G.4	4431-89-4			264.4	255.1 ± 3.4^d
1,1'-(1,2-ethanediyl)biscyclohexane	G.5	3321-50-4			342.1	329.8 ± 3.4^d
bicyclo[2.2.1]heptane (norbornane)	G.6	279-23-2	93.9 ± 1.7 (cr)	67,68,69		90.7 ± 3.5^d
1-methylbicyclo[2.2.1]heptane	G.7	10052-18-3	130.9 ± 1.4	70		130.9 ± 1.4
<i>rel</i> -(1 <i>S</i> ,2 <i>R</i> ,4 <i>S</i>)-2-methylbicyclo[2.2.1]heptane	G.8	765-90-2	122.1 ± 1.5	70		122.1 ± 1.5
<i>rel</i> -(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-2-methylbicyclo[2.2.1]heptane	G.9	872-78-6	122.4 ± 1.4	70		122.4 ± 1.4
1,4-dimethylbicyclo[2.2.1]heptane	G.10	20454-81-3	167.4 ± 2.8	71		169.1 ± 2.7
<i>trans</i> -2,3-dimethylbicyclo[2.2.1]heptane	G.11	20558-16-1	150.2 ± 4.3	71		153.6 ± 2.7
7,7-dimethylbicyclo[2.2.1]heptane	G.12	2034-53-9	148.2 ± 1.7 (cr)	72		144.6 ± 4.5^d

<i>rel</i> -(1 <i>S</i> ,2 <i>R</i> ,4 <i>S</i>)-2-ethylbicyclo[2.2.1]heptane	G.13	19901-79-2			148.2 ± 4.8 ^d
<i>rel</i> -(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-2-ethylbicyclo[2.2.1]heptane	G.14	19901-80-5			150.9 ± 4.8 ^d
2-ethylbicyclo[2.2.1]heptane ^e	G.15	2146-41-0	140.2 ± 2.0	72	149.6 ± 6.1
(1 <i>S</i> ,2 <i>R</i> ,5 <i>S</i>)-2,6,6-trimethylbicyclo[3.1.1]heptane ((<i>-</i>)- <i>cis</i> -pinane)	G.16	4755-33-3			103.8 ± 2.7 ^d
(1 <i>S</i> ,2 <i>S</i> ,5 <i>S</i>)-2,6,6-trimethylbicyclo[3.1.1]heptane ((<i>+</i>)- <i>trans</i> -pinane)	G.17	10281-53-5			115.3 ± 2.6 ^d
2,6,6-trimethylbicyclo[3.1.1]heptane (pinane) ^e	G.18	473-55-2	147.4 ± 6.2	38	109.6 ± 8.5
<i>cis</i> -bicyclo[3.3.0]octane (<i>cis</i> -octahydronatalene)	G.19	1755-05-1	136.0 ± 2.6	60	136.0 ± 2.6
<i>trans</i> -bicyclo[3.3.0]octane (<i>trans</i> -octahydronatalene)	G.20	5597-89-7	109.3 ± 2.8	60	103.0 ± 2.6 ^d
(1 <i>R</i> ,3 <i>r</i> ,5 <i>S</i>)-3-methylbicyclo[3.3.0]octane	G.21	1551-79-7			170.8 ± 3.0 ^d
(1 <i>R</i> ,3 <i>s</i> ,5 <i>S</i>)-3-methylbicyclo[3.3.0]octane	G.22	1551-78-6			169.3 ± 3.0 ^d
3-methyl- <i>cis</i> -bicyclo[3.3.0]octane ^e	G.23	3868-64-2			170.1 ± 3.8

bicyclo[3.3.1]nonane	G.24	280-65-9	178.0 ± 1.5 (cr)	61	172.4 ± 4.7 ^d
1-methylbicyclo[3.3.1]nonane	G.25	25107-02-2			211.0 ± 4.8 ^d
9-methylbicyclo[3.3.1]nonane	G.26	25107-01-1			198.9 ± 4.8 ^d
<i>cis</i> -bicyclo[4.3.0]nonane (<i>cis</i> -octahydroindene)	G.27	4551-51-3	173.1 ± 2.0	73	173.1 ± 2.0
<i>trans</i> -bicyclo[4.3.0]nonane (<i>trans</i> -octahydroindene)	G.28	3296-50-2	176.2 ± 2.2	73	176.2 ± 2.2
<i>cis</i> -1-methylbicyclo[4.3.0]nonane	G.29	824-16-8			207.1 ± 3.0 ^d
<i>trans</i> -1-methylbicyclo[4.3.0]nonane	G.30	42608-34-4			200.8 ± 3.0 ^d
<i>cis</i> -bicyclo[5.3.0]decane	G.31	16189-46-1	183.9 ± 4.2	60	188.1 ± 2.9 ^d
<i>trans</i> -bicyclo[5.3.0]decane	G.32	16189-47-2			183.5 ± 3.0 ^d
<i>endo</i> -tricyclo[5.2.1.0(2,6)]decane	G.33	2825-83-4	112.3 ± 2.8 (cr)	74	114.2 ± 4.8 ^d
<i>exo</i> -tricyclo[5.2.1.0(2,6)]decane (JP-10)	G.34	2825-82-3	122.8 ± 1.9 ^f	75	122.8 ± 1.9
<i>rel</i> -(3a <i>R</i> ,3b <i>R</i> ,6a <i>R</i> ,7a <i>R</i>)-decahydro-1 <i>H</i> -cyclopenta[a]pentalene	G.35	64839-76-5			158.4 ± 3.0 ^d

<i>rel</i> -(3a <i>R</i> ,3b <i>S</i> ,6a <i>S</i> ,7a <i>R</i>)-decahydro-1 <i>H</i> -cyclopenta[a]pentalene	G.36	58116-67-9	152.9 ± 3.0 ^d		
decahydro-1 <i>H</i> -cyclopenta[a]pentalene ^e	G.37	6053-75-4	155.7 ± 5.8		
(3a <i>α</i> ,6a <i>α</i> ,9a <i>α</i> ,9b <i>β</i>)-perhydrophenalene	G.38	40250-64-4	279.3 ± 4.9 ^d		
(3a <i>α</i> ,6a <i>α</i> ,9a <i>β</i> ,9b <i>α</i>)-perhydrophenalene	G.39	86118-18-5	263.6 ± 4.9 ^d		
spiro[4.5]decane	G.40	176-63-6	200.3 ± 2.0	52,53	200.3 ± 2.0
spiro[5.5]undecane	G.41	180-43-8	247.0 ± 2.1	52,53	247.0 ± 2.1
spiro[5.6]dodecane	G.42	181-15-7	253.0 ± 1.6	52,53	253.0 ± 1.6

482 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

483 ^b The outlier values are in italics

484 ^c Based on two combustion experiments

485 ^d Obtained by subtracting the selected $\Delta_{\text{vap}}H^{\circ}\text{ m}$ value (Table 19) from the ideal-gas $\Delta_{\text{f}}H^{\circ}\text{ m}$ (Table 21)

486 ^e Mixture of stereoisomers

487 ^f The value from Ref. [38] was not considered due to its large uncertainty

488 Table 21. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous bi- and tricyclic compounds at $T = 298.15\text{ K}$ ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(\text{g}) / (\text{kJ}\cdot\text{mol}^{-1})$				
			Experiment ^b	MBM	<i>ab initio</i> QZ	<i>ab initio</i> CBS	Selected
1,1'-bicyclopentyl	G.1	1636-39-1	128.6 ± 1.6	130.1	129.9 ± 2.9		128.6 ± 1.6
cyclopentylcyclohexane	G.2	1606-08-2	175.6	176.8	173.9 ± 2.9		173.9 ± 2.9
1,1'-bicyclohexyl	G.3	92-51-3	215.3 ± 1.6	223.5	214.1 ± 2.9		215.3 ± 1.6
(cyclopentylmethyl)cyclohexane	G.4	4431-89-4		200.5	195.4 ± 3.1		195.4 ± 3.1
1,1'-(1,2-ethanediyl)biscyclohexane	G.5	3321-50-4		267.7	261.6 ± 3.1		261.6 ± 3.1
bicyclo[2.2.1]heptane (norbornane)	G.6	279-23-2	53.7 ± 1.8		56.3 ± 2.6	56.6 ± 2.5	53.7 ± 1.8
1-methylbicyclo[2.2.1]heptane	G.7	10052-18-3	92.8 ± 1.4		93.2 ± 2.7	92.2 ± 2.5	92.8 ± 1.4
<i>rel</i> -(1 <i>S</i> ,2 <i>R</i> ,4 <i>S</i>)-2-methylbicyclo[2.2.1]heptane	G.8	765-90-2	81.3 ± 4.3^c		81.5 ± 2.7	80.9 ± 2.5	80.9 ± 2.5
<i>rel</i> -(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-2-methylbicyclo[2.2.1]heptane	G.9	872-78-6	81.6 ± 4.3^c		85.2 ± 2.7	84.5 ± 2.5	84.5 ± 2.5
1,4-dimethylbicyclo[2.2.1]heptane	G.10	20454-81-3	128.5 ± 2.8		130.2 ± 2.7	128.4 ± 2.6	128.5 ± 2.8
<i>trans</i> -2,3-dimethylbicyclo[2.2.1]heptane	G.11	20558-16-1	108.1 ± 4.3		111.5 ± 2.7	109.9 ± 2.6	109.9 ± 2.6
7,7-dimethylbicyclo[2.2.1]heptane	G.12	2034-53-9	101.2 ± 2.0		107.7 ± 2.7	105.5 ± 2.6	101.2 ± 2.0

<i>rel</i> -(1 <i>S</i> ,2 <i>R</i> ,4 <i>S</i>)-2-ethylbicyclo[2.2.1]heptane	G.13	19901-79-2		103.9 ± 2.7	102.8 ± 2.6	102.8 ± 2.6
<i>rel</i> -(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-2-ethylbicyclo[2.2.1]heptane	G.14	19901-80-5		106.5 ± 2.7	105.5 ± 2.6	105.5 ± 2.6
2-ethylbicyclo[2.2.1]heptane ^d	G.15	2146-41-0	94.8 ± 4.5 ^c			104.2 ± 4.0
(1 <i>S</i> ,2 <i>R</i> ,5 <i>S</i>)-2,6,6-trimethylbicyclo[3.1.1]heptane ((<i>-</i>)- <i>cis</i> -pinane)	G.16	4755-33-3		60.7 ± 2.8	57.8 ± 2.6	57.8 ± 2.6
(1 <i>S</i> ,2 <i>S</i> ,5 <i>S</i>)-2,6,6-trimethylbicyclo[3.1.1]heptane ((<i>+</i>)- <i>trans</i> -pinane)	G.17	10281-53-5		72.0 ± 2.8	69.2 ± 2.6	69.2 ± 2.6
2,6,6-trimethylbicyclo[3.1.1]heptane (pinane) ^e	G.18	473-55-2	101.3 ± 6.2			63.5 ± 8.3
<i>cis</i> -bicyclo[3.3.0]octane (<i>cis</i> -octahydronatalene)	G.19	1755-05-1	92.9 ± 2.7	95.7 ± 2.7	95.1 ± 2.5	92.9 ± 2.7
<i>trans</i> -bicyclo[3.3.0]octane (<i>trans</i> -octahydronatalene)	G.20	5597-89-7	66.6 ± 2.9	61.7 ± 2.7	60.3 ± 2.5	60.3 ± 2.5
(1 <i>R</i> ,3 <i>r</i> ,5 <i>S</i>)-3-methylbicyclo[3.3.0]octane	G.21	1551-79-7		126.7 ± 2.7	125.4 ± 2.6	125.4 ± 2.6
(1 <i>R</i> ,3 <i>s</i> ,5 <i>S</i>)-3-methylbicyclo[3.3.0]octane	G.22	1551-78-6		125.2 ± 2.7	123.9 ± 2.6	123.9 ± 2.6
3-methyl- <i>cis</i> -bicyclo[3.3.0]octane ^d	G.23	3868-64-2				124.7 ± 3.4

bicyclo[3.3.1]nonane	G.24	280-65-9	127.4 ± 2.5	128.6 ± 2.7	127.2 ± 2.6	127.4 ± 2.5
1-methylbicyclo[3.3.1]nonane	G.25	25107-02-2		166.0 ± 2.8	163.6 ± 2.6	163.6 ± 2.6
9-methylbicyclo[3.3.1]nonane	G.26	25107-01-1		153.0 ± 2.8	150.9 ± 2.6	150.9 ± 2.6
<i>cis</i> -bicyclo[4.3.0]nonane (<i>cis</i> -octahydroindene)	G.27	4551-51-3	126.8 ± 2.0	127.6 ± 2.7	125.8 ± 2.6	126.8 ± 2.0
<i>trans</i> -bicyclo[4.3.0]nonane (<i>trans</i> -octahydroindene)	G.28	3296-50-2	131.2 ± 2.2	131.9 ± 2.7	130.4 ± 2.6	131.2 ± 2.2
<i>cis</i> -1-methylbicyclo[4.3.0]nonane	G.29	824-16-8		161.3 ± 2.8	158.7 ± 2.6	158.7 ± 2.6
<i>trans</i> -1-methylbicyclo[4.3.0]nonane	G.30	42608-34-4		154.9 ± 2.8	152.4 ± 2.6	152.4 ± 2.6
<i>cis</i> -bicyclo[5.3.0]decane	G.31	16189-46-1	130.3 ± 4.4	136.2 ± 2.8	134.5 ± 2.6	134.5 ± 2.6
<i>trans</i> -bicyclo[5.3.0]decane	G.32	16189-47-2		133.5 ± 2.8	131.4 ± 2.6	131.4 ± 2.6
<i>endo</i> -tricyclo[5.2.1.0(2,6)]decane	G.33	2825-83-4	60.8 ± 6.1	64.2 ± 2.7	62.7 ± 2.6	62.7 ± 2.6
<i>exo</i> -tricyclo[5.2.1.0(2,6)]decane (JP-10)	G.34	2825-82-3	73.8 ± 1.9	77.5 ± 2.8	76.2 ± 2.6	73.8 ± 1.9
<i>rel</i> -(3a <i>R</i> ,3b <i>R</i> ,6a <i>R</i> ,7a <i>R</i>)-decahydro-1 <i>H</i> -cyclopenta[a]pentalene	G.35	64839-76-5		104.5 ± 2.8	102.4 ± 2.6	102.4 ± 2.6

<i>rel</i> -(3a <i>R</i> ,3b <i>S</i> ,6a <i>S</i> ,7a <i>R</i>)-decahydro-1 <i>H</i> -cyclopenta[a]pentalene	G.36	58116-67-9	98.9 ± 2.8	96.9 ± 2.6	96.9 ± 2.6
decahydro-1 <i>H</i> -cyclopenta[a]pentalene ^d	G.37	6053-75-4			99.7 ± 5.4
(3a <i>α</i> ,6a <i>α</i> ,9a <i>α</i> ,9b <i>β</i>)-perhydrophenalene	G.38	40250-64-4	224.2 ± 2.9	220.7 ± 2.8	220.7 ± 2.8
(3a <i>α</i> ,6a <i>α</i> ,9a <i>β</i> ,9b <i>α</i>)-perhydrophenalene	G.39	86118-18-5	208.8 ± 2.9	205.0 ± 2.8	205.0 ± 2.8
spiro[4.5]decane	G.40	176-63-6	151.3 ± 2.5	156.2 ± 2.8	154.0 ± 2.6
spiro[5.5]undecane	G.41	180-43-8	192.0 ± 3.0	197.1 ± 2.9	194.5 ± 2.7
spiro[5.6]dodecane	G.42	181-15-7	192.5 ± 3.5	193.2 ± 2.9	189.9 ± 2.8

489 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

490 ^b The outlier values are in italics

491 ^c Experimental liquid-phase enthalpy of formation is combined with the enthalpy of vaporization estimated by MBM

492 ^d Mixture of stereoisomers

493 3.4. *Tetralins and decalins*

494 The available experimental data allow derivation of the enthalpy of vaporization for tetralin, *cis*-decalin,
495 and *trans*-decalin. The value for tetralin in Table 22 is derived from the state-of-the-art vapor pressures
496 [76], and the values for the decalins are evaluated by TDE using experimental results from multiple
497 works. The MBM estimates agree with the experiment within $\pm 1.5 \text{ kJ}\cdot\text{mol}^{-1}$.

498 The liquid-phase thermochemical data are available for the same three compounds as well as *cis*- and
499 *trans*-9-methyldecalins (Table 23). Their CBS *ab initio* gas-phase enthalpies of formation are in good
500 agreement with the experimental values for tetralin, both decalins, and *trans*-9-methyldecalin. For *cis*-9-
501 methyldecalin, the *ab initio* value is more negative by $4.7 \text{ kJ}\cdot\text{mol}^{-1}$, which slightly exceeds the combined
502 uncertainty of the experimental and computed values ($3.9 \text{ kJ}\cdot\text{mol}^{-1}$) but is still within a sum of the
503 uncertainties ($5.5 \text{ kJ}\cdot\text{mol}^{-1}$).

504 There are no MBM parameters for the enthalpies of formation of tetralins and decalins; therefore, they
505 could not be predicted directly. *Ab initio* calculations were carried out for 1-alkyltetralins up to the 1-
506 butyl derivative. For the long-chain compounds, the values were derived with 1-butyltetralin as a base
507 structure using the $-20.6 \text{ kJ}\cdot\text{mol}^{-1}$ increment per CH_2 group.

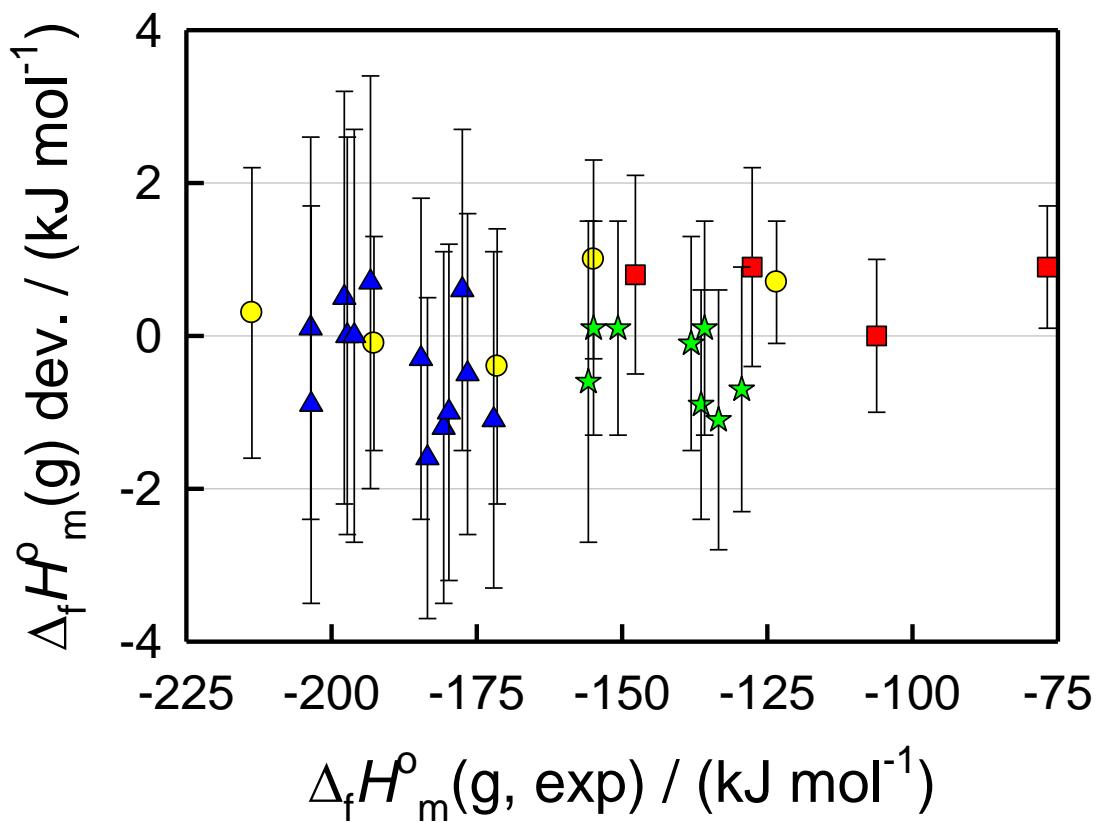
508 Monomethyldecalins have two or three stereo centers and, therefore, multiple stereoisomers. *Ab initio*
509 calculations were conducted for all isomeric monomethyldecalins (Table 15). The computed gas-phase
510 $\Delta_f H^\circ_m$ values vary from $-(212.8 \text{ to } 195.9) \text{ kJ}\cdot\text{mol}^{-1}$. In Table 24, the values for isomeric mixtures are given
511 as well. The enthalpies of formation for 1- and 2-alkyldecalins $\text{C}_{10}\text{H}_{17}\text{C}_n\text{H}_{2n+1}$ were estimated by adding -
512 $20.6(n - 1) \text{ kJ}\cdot\text{mol}^{-1}$ to the value for the corresponding methyldecalin. This approximation is reasonable
513 considering a large uncertainty of $\Delta_f H^\circ_m$ for the isomeric methyldecalin mixtures. For 2,6-
514 dimethyldecalin, the following equation was used:

515 $\Delta_f H^\circ_m(2,6\text{-dimethyldecalin}) = 2\Delta_f H^\circ_m(2\text{-methyldecalin}) - \Delta_f H^\circ_m(\text{decalin})$ (6)

516 For all compounds, except tetralin, two decalins, and two 9-methyldecalins, the liquid-phase enthalpies
517 of formation were estimated by subtracting the enthalpies of vaporization from the gas-phase
518 enthalpies of formation.

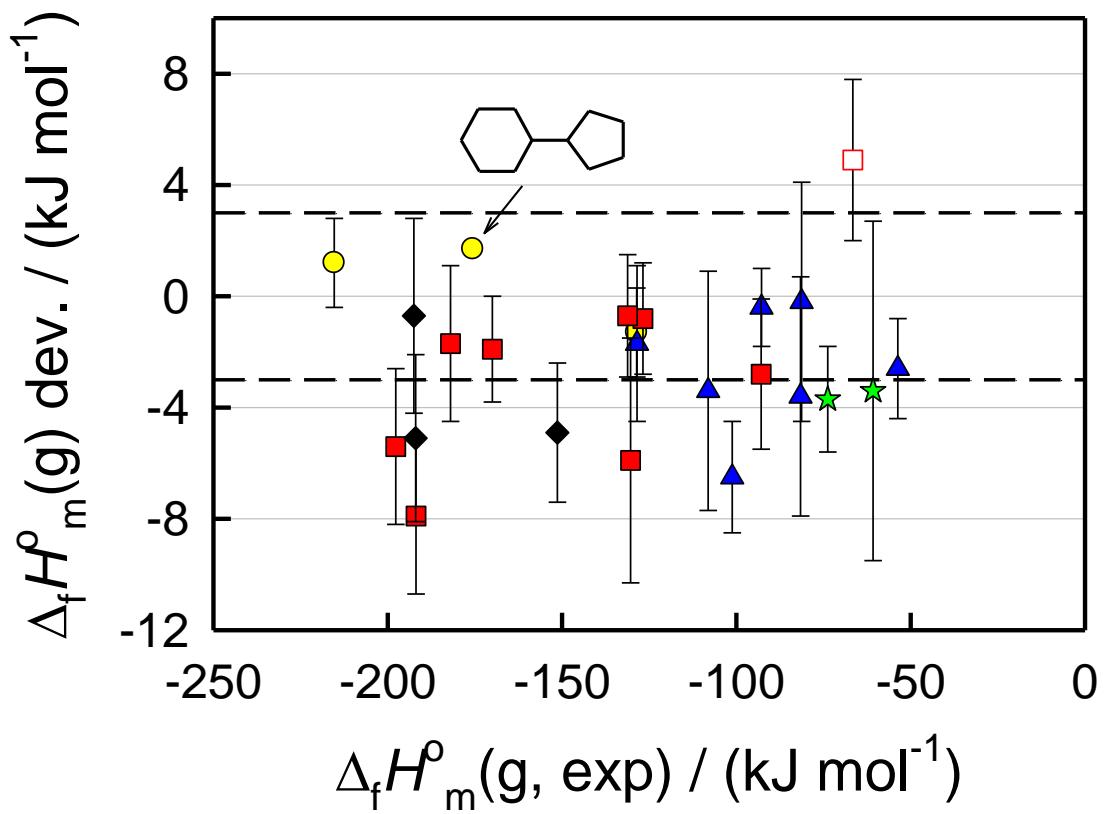
519

520 *3.5. Evaluation of the accuracy of ab initio results*


521 In Figures 5, 6 and 7, the *ab initio* $\Delta_f H^\circ_m$ values are compared with their experimental counterparts. For
522 some compounds, the predicted enthalpies of vaporization were used to convert the experimental
523 liquid-phase values to the gas-phase ones. This does not affect the conclusions made in this section
524 because of the relatively low uncertainty of the predicted $\Delta_{\text{vap}} H^\circ_m$. For monocyclic compounds, the
525 observed deviations (Figure 5) lie within (-1.6 to 1.0) $\text{kJ}\cdot\text{mol}^{-1}$ indicating a very good performance of the
526 original *ab initio* protocol.

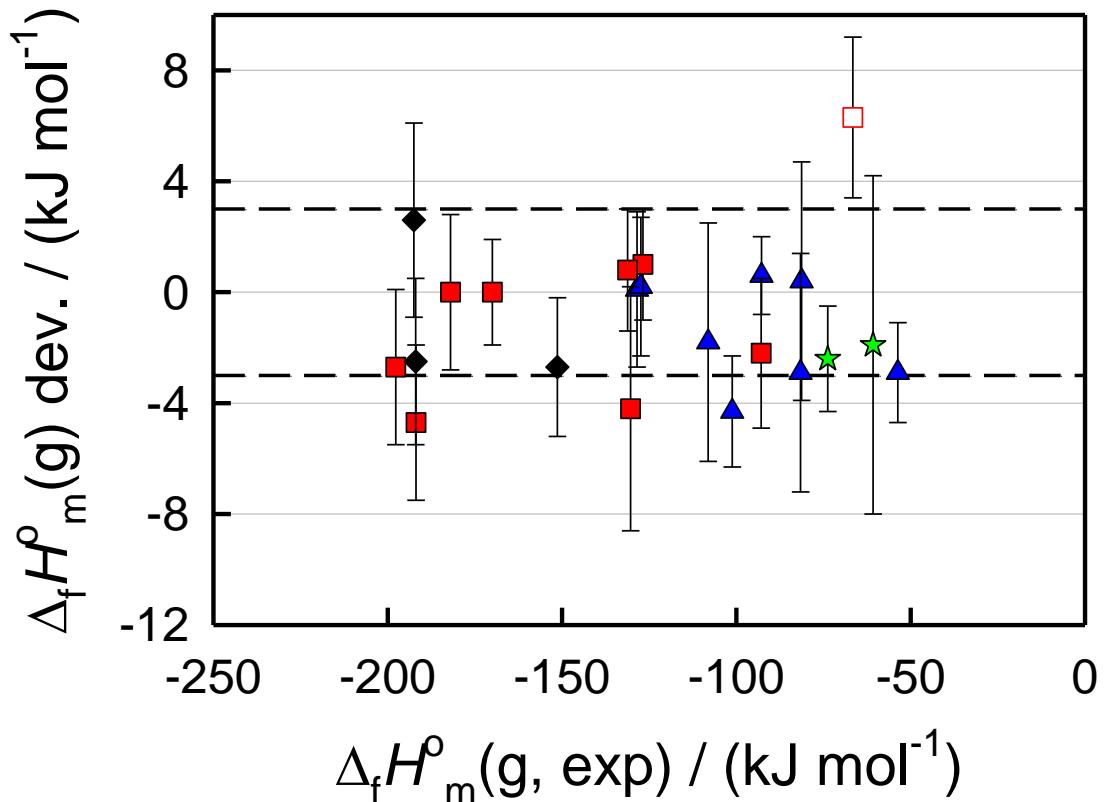
527 The comparisons for bi- and tricyclic compounds except include 24 compounds (tetralin and *trans*-
528 bicyclo[3.3.0]octane not included) for the original version of the *ab initio* protocol (Figure 6). The
529 deviations are between (-7.9 and 1.7) $\text{kJ}\cdot\text{mol}^{-1}$, and the average deviation is -2.6 $\text{kJ}\cdot\text{mol}^{-1}$. The CBS
530 version of the protocol demonstrates a significantly better agreement with the experiment (Figure 7).
531 For 22 considered compounds (excluding those with isolated cycles), the deviations are between (-4.7
532 and 2.6) $\text{kJ}\cdot\text{mol}^{-1}$, and the average deviation is -1.4 $\text{kJ}\cdot\text{mol}^{-1}$. All results are consistent within a sum of the
533 experimental and *ab initio* uncertainties.

534 The scatter is still more significant than in the case of monocyclic compounds. The molar masses for
535 these hydrocarbons are greater than those of the monocyclic ones and, as a result, the experimental
536 uncertainties of $\Delta_f H^\circ_m$ are also higher. Another potential factor contributing to the observed scatter is


537 that the measurements were conducted in different laboratories. For example, the thermochemistry
538 laboratory of the Moscow State University (Soviet Union) is the major contributor for the bridged
539 compounds. Most results for the compounds with fused rings (including decalins and tetralin) came
540 from NBS and the University of Utah. However, no noticeable, statistically significant deviations
541 between different types of compounds are observed, thus supporting the consistency of the procedures
542 used in different laboratories.

543

544


545 Figure 5. Deviation of the *ab initio* gas-phase standard molar enthalpies of formation of monocyclic
 546 compounds from the experimental values: monoalkylcyclohexanes (yellow circles), dialkylcyclohexanes
 547 (blue triangles), monoalkylcyclopentanes (red squares), and dialkylcyclopentanes (green stars). For some
 548 compounds, the enthalpies of vaporization estimated by MBM are used (see Tables 6, 12, and 15). The
 549 results for 1-ethyl-3-methylcyclopentanes are not shown due to potential ambiguity in the isomer
 550 identification (see text).

551

552 Figure 6. Deviation of the *ab initio* (quadruple-zeta version of the protocol) gas-phase standard molar
 553 enthalpies of formation of polycyclic compounds from the experimental values: bicyclic compounds with
 554 separated rings (yellow circles), bridged compounds (blue triangles), compounds with fused rings
 555 including decalins (red squares), tricyclic compounds (green stars), and spiro compounds (black
 556 diamonds). For some compounds, the enthalpies of vaporization estimated by MBM are used. See
 557 Tables 21 and 24 for more details. The outlier (*trans*-bicyclo[3.3.0]octane) is marked with an empty
 558 symbol. The experimental uncertainty for cyclopentylcyclohexane (marked by an arrow and a structure
 559 depiction) is unknown (see text). The dashed lines indicate the estimated uncertainty of the *ab initio*
 560 results (3 kJ·mol⁻¹).

561

562

563 Figure 7. Deviation of the *ab initio* (CBS version of the protocol) gas-phase standard molar enthalpies of
 564 formation of polycyclic compounds from the experimental values: bridged compounds (blue triangles),
 565 compounds with fused rings including decalins (red squares), tricyclic compounds (green stars), and
 566 spiro compounds (black diamonds). For some compounds, the enthalpies of vaporization estimated by
 567 MBM are used. See Tables 21 and 24 for more details. The outlier (*trans*-bicyclo[3.3.0]octane) is marked
 568 with an empty symbol. The dashed lines indicate the estimated uncertainty of the *ab initio* results (3
 569 kJ·mol⁻¹).

570

571 **4. Conclusions**

572 The recommended enthalpies of vaporization and formation in liquid and gas phases were produced for
573 212 aliphatic cyclic compounds and their alkyl derivatives. A thorough evaluation of available
574 experimental data combined with group-contribution estimates, high-level *ab initio* results, and
575 homologous trend analysis was conducted. It was found that the NIST-modified Benson method [18]
576 generally performs well for the enthalpies of vaporization. For the enthalpies of formation in the gas
577 phase, the approach based on local CCSD(T) methods [10] combined with structural series trend analysis
578 for extrapolation toward longer side chains appears a much better alternative to the group-contribution
579 methods. This is especially relevant for compounds with different stereo configurations for two or more
580 side chains. Group-contribution methods typically do not distinguish these configurations, while the
581 quantum chemical methods yield substantial differences. The distinction between stereoisomers is also
582 frequently ignored in engineering applications. While recognizing the need for such a lumped
583 representation in many practical situations, it should be emphasized that it substantially increases the
584 corresponding uncertainties. In the course of the study, several likely-erroneous experimental values
585 (outliers) were identified.

586

587 **CRediT authorship contribution statement**

588 Eugene Paulechka: Conceptualization, Methodology, Formal analysis, Investigation, Software, Data
589 Curation, Writing – Original Draft.

590 Andrei Kazakov: Methodology, Investigation, Software, Writing – Review & Editing.

591 Suphat Watanasiri: Conceptualization, Review & Editing.

592 Abhijit Dutta: Project administration, Funding acquisition, Review & Editing.

593

594 **Declaration of competing interest**

595 The authors declare that they have no known competing financial interests or personal relationships
596 that could have appeared to influence the work reported in this paper.

597

598 **Data availability**

599 Data will be made available on request.

600

601 **Acknowledgements**

602 This article is a contribution of NIST and is not subject to copyright in the United States for the NIST
603 authors. Trade names are provided only to specify procedures adequately and do not imply
604 endorsement by the National Institute of Standards and Technology or the National Renewable Energy
605 Laboratory. Similar products by other manufacturers may be found to work as well or better.

606 This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for
607 Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-
608 08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable
609 Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent
610 the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by
611 accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive,
612 paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or
613 allow others to do so, for U.S. Government purposes.

614 The calculations, in part, were carried out using NIST high-performance computing facilities raritan and
615 simba and Texas Advanced Computing Center cluster, stampede3.

616 Table 22. Standard enthalpies of vaporization $\Delta_{\text{vap}}H^{\circ\text{ m}}$ of tetralins and decalins at $T = 298.15\text{ K}^{\text{ a}}$

Compound	Alias	CASRN	$\Delta_{\text{vap}}H^{\circ\text{ m}} / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	Source	MBM	Selected
tetralin (1,2,3,4-tetrahydronaphthalene)	H.1	119-64-2	53.8 ± 0.2	76	53.4 ± 1.5	53.8 ± 0.2
5-methyltetralin	H.2	2809-64-5			59.1 ± 1.5	59.1 ± 1.5
6-methyltetralin	H.3	1680-51-9			58.6 ± 1.5	53.6 ± 1.5
1-methyltetralin	H.4	1559-81-5			56.3 ± 1.5	56.3 ± 1.5
2-methyltetralin	H.5	3877-19-8			56.3 ± 1.5	56.3 ± 1.5
1-ethyltetralin	H.6	13556-58-6			60.9 ± 1.5	60.9 ± 1.5
1-propyltetralin	H.7	66324-83-2			65.8 ± 1.5	65.8 ± 1.5
1-butyltetralin	H.8	38857-76-0			70.7 ± 1.5	70.7 ± 1.5
1-pentyltetralin	H.9	66359-06-6			75.6 ± 1.5	75.6 ± 1.5
1-hexyltetralin	H.10	66325-11-9			80.6 ± 1.5	80.6 ± 1.5
1-heptyltetralin	H.11	66563-99-3			85.5 ± 1.5	85.5 ± 1.5
1-octyltetralin	H.12	29138-91-8			90.4 ± 1.5	90.4 ± 1.5
1-nonyltetralin	H.13	33425-49-9			95.3 ± 1.5	95.3 ± 1.5

<i>cis</i> -decalin (<i>cis</i> -decahydronaphthalene)	H.14	493-01-6	50.5 ± 0.9	15	49.6 ± 1.5	50.5 ± 0.9
<i>trans</i> -decalin (<i>trans</i> -decahydronaphthalene)	H.15	493-02-7	48.1 ± 1.0	15	49.6 ± 1.5	48.1 ± 1.0
decalin (decahydronaphthalene) ^b	H.16	91-17-8			49.6 ± 1.5	48.8 ± 1.7
<i>rel</i> -(1 <i>R</i> ,4 <i>aR</i> ,8 <i>aR</i>)-1-methyldecalin	H.17	4683-95-8			52.5 ± 1.5	52.5 ± 1.5
<i>rel</i> -(1 <i>R</i> ,4 <i>aS</i> ,8 <i>aS</i>)-1-methyldecalin	H.18	14398-67-5			52.5 ± 1.5	52.5 ± 1.5
<i>rel</i> -(1 <i>R</i> ,4 <i>aR</i> ,8 <i>aS</i>)-1-methyldecalin	H.19	14398-69-7			52.5 ± 1.5	52.5 ± 1.5
<i>rel</i> -(1 <i>R</i> ,4 <i>aS</i> ,8 <i>aR</i>)-1-methyldecalin	H.20	14398-68-6			52.5 ± 1.5	52.5 ± 1.5
1-methyldecalin ^b	H.21	2958-75-0			52.5 ± 1.5	52.5 ± 1.5
<i>rel</i> -(2 <i>R</i> ,4 <i>aR</i> ,8 <i>aR</i>)-2-methyldecalin	H.22	14398-71-1			52.5 ± 1.5	52.5 ± 1.5
<i>rel</i> -(2 <i>R</i> ,4 <i>aS</i> ,8 <i>aS</i>)-2-methyldecalin	H.23	4683-94-7			52.5 ± 1.5	52.5 ± 1.5
<i>rel</i> -(2 <i>R</i> ,4 <i>aR</i> ,8 <i>aS</i>)-2-methyldecalin	H.24	14398-72-2			52.5 ± 1.5	52.5 ± 1.5
<i>rel</i> -(2 <i>S</i> ,4 <i>aR</i> ,8 <i>aS</i>)-2-methyldecalin	H.25	14386-57-3			52.5 ± 1.5	52.5 ± 1.5
2-methyldecalin ^b	H.26	2958-76-1			52.5 ± 1.5	52.5 ± 1.5

<i>cis</i> -9-methyldecalin	H.27	2547-26-4	52.0 ± 1.5	52.0 ± 1.5
<i>trans</i> -9-methyldecalin	H.28	2547-27-5	52.0 ± 1.5	52.0 ± 1.5
9-methyldecalin ^b	H.29	6596-97-0	52.0 ± 1.5	52.0 ± 1.5
1-ethyldecalin ^b	H.30	1008-17-9	57.1 ± 1.5	57.1 ± 1.5
2-ethyldecalin ^b	H.31	1618-23-1	57.1 ± 1.5	57.1 ± 1.5
2,6-dimethyldecalin ^b	H.32	1618-22-0	55.5 ± 1.5	55.5 ± 1.5
1-propyldecalin ^b	H.33	91972-45-1	62.0 ± 1.5	62.0 ± 1.5
1-butyldecalin ^b	H.34	92369-80-7	67.0 ± 1.5	67.0 ± 1.5
1-pentyldecalin ^b	H.35	1772625-95-2	71.9 ± 1.5	71.9 ± 1.5
1-hexyldecalin ^b	H.36	1772625-96-3	76.8 ± 1.5	76.8 ± 1.5
1-heptyldecalin ^b	H.37	1772625-97-4	81.7 ± 1.5	81.7 ± 1.5
1-octyldecalin ^b	H.38	95278-30-1	86.6 ± 1.5	86.6 ± 1.5
1-nonyldecalin ^b	H.39		91.6 ± 1.5	91.6 ± 1.5

617 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

618 ^b Mixture of stereoisomers

619 Table 23. Standard enthalpies of formation $\Delta_f H^\circ_m$ of liquid tetralins and decalins (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	- $\Delta_f H^\circ_m(l)$ / (kJ·mol ⁻¹)		
			Experiment	Source	Selected
tetralin (1,2,3,4-tetrahydronaphthalene)	H.1	119-64-2	29.1 ± 1.5	74,64	29.1 ± 1.5
5-methyltetralin	H.2	2809-64-5			65.7 ± 3.2
6-methyltetralin	H.3	1680-51-9			65.0 ± 3.2
1-methyltetralin	H.4	1559-81-5			57.1 ± 3.2
2-methyltetralin	H.5	3877-19-8			62.5 ± 3.2
1-ethyltetralin	H.6	13556-58-6			80.7 ± 3.2
1-propyltetralin	H.7	66324-83-2			106.9 ± 3.3
1-butyltetralin	H.8	38857-76-0			132.7 ± 3.3
1-pentyltetralin	H.9	66359-06-6			158.2 ± 3.4
1-hexyltetralin	H.10	66325-11-9			183.8 ± 3.4
1-heptyltetralin	H.11	66563-99-3			209.3 ± 3.4
1-octyltetralin	H.12	29138-91-8			234.8 ± 3.4
1-nonyltetralin	H.13	33425-49-9			260.3 ± 3.4

<i>cis</i> -decalin (<i>cis</i> -decahydronaphthalene)	H.14	493-01-6	219.5 ± 1.6	77,78,17	219.5 ± 1.6
<i>trans</i> -decalin (<i>trans</i> -decahydronaphthalene)	H.15	493-02-7	230.2 ± 2.6	77,78,17	230.2 ± 2.6
decalin (decahydronaphthalene) ^b	H.16	91-17-8			224.9 ± 8.0
<i>rel</i> -(1 <i>R</i> ,4 <i>aR</i> ,8 <i>aR</i>)-1-methyldecalin	H.17	4683-95-8			253.4 ± 3.1
<i>rel</i> -(1 <i>R</i> ,4 <i>aS</i> ,8 <i>aS</i>)-1-methyldecalin	H.18	14398-67-5			260.1 ± 3.1
<i>rel</i> -(1 <i>R</i> ,4 <i>aR</i> ,8 <i>aS</i>)-1-methyldecalin	H.19	14398-69-7			248.4 ± 3.1
<i>rel</i> -(1 <i>R</i> ,4 <i>aS</i> ,8 <i>aR</i>)-1-methyldecalin	H.20	14398-68-6			249.0 ± 3.1
1-methyldecalin ^b	H.21	2958-75-0			253 ± 10
<i>rel</i> -(2 <i>R</i> ,4 <i>aR</i> ,8 <i>aR</i>)-2-methyldecalin	H.22	14398-71-1			265.3 ± 3.1
<i>rel</i> -(2 <i>R</i> ,4 <i>aS</i> ,8 <i>aS</i>)-2-methyldecalin	H.23	4683-94-7			257.6 ± 3.1
<i>rel</i> -(2 <i>R</i> ,4 <i>aR</i> ,8 <i>aS</i>)-2-methyldecalin	H.24	14398-72-2			252.9 ± 3.1
<i>rel</i> -(2 <i>S</i> ,4 <i>aR</i> ,8 <i>aS</i>)-2-methyldecalin	H.25	14386-57-3			253.6 ± 3.1
2-methyldecalin ^b	H.26	2958-76-1			257 ± 11

<i>cis</i> -9-methyldecalin	H.27	2547-26-4	243.9 ± 2.4	79	243.9 ± 2.4
<i>trans</i> -9-methyldecalin	H.28	2547-27-5	249.7 ± 2.4	79	249.7 ± 2.4
9-methyldecalin ^b	H.29	6596-97-0			246.8 ± 5.3
1-ethyldecalin ^b	H.30	1008-17-9			278 ± 10
2-ethyldecalin ^b	H.31	1618-23-1			283 ± 11
2,6-dimethyldecalin ^b	H.32	1618-22-0			290 ± 23
1-propyldecalin ^b	H.33	91972-45-1			303 ± 10
1-butyldecalin ^b	H.34	92369-80-7			329 ± 10
1-pentyldecalin ^b	H.35	1772625-95-2			355 ± 10
1-hexyldecalin ^b	H.36	1772625-96-3			380 ± 10
1-heptyldecalin ^b	H.37	1772625-97-4			406 ± 10
1-octyldecalin ^b	H.38	95278-30-1			431 ± 10
1-nonyldecalin ^b	H.39				457 ± 10

620 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

621 ^b Mixture of stereoisomers

622 Table 24. Standard enthalpies of formation $\Delta_f H^\circ_m$ of gaseous tetralins and decalins (kJ·mol⁻¹) at $T = 298.15$ K ^a

Compound	Alias	CASRN	$-\Delta_f H^\circ_m(g) / (\text{kJ}\cdot\text{mol}^{-1})$			
			Experiment	<i>ab initio</i> QZ	<i>ab initio</i> CBS	Selected
tetralin (1,2,3,4-tetrahydronaphthalene)	H.1	119-64-2	-(24.4 ± 2.6)	-(25.0 ± 2.7)		-(24.4 ± 2.6)
5-methyltetralin	H.2	2809-64-5		6.6 ± 2.8		6.6 ± 2.8
6-methyltetralin	H.3	1680-51-9		6.4 ± 2.8		6.4 ± 2.8
1-methyltetralin	H.4	1559-81-5		0.8 ± 2.8		0.8 ± 2.8
2-methyltetralin	H.5	3877-19-8		6.2 ± 2.8		6.2 ± 2.8
1-ethyltetralin	H.6	13556-58-6		19.8 ± 2.8		19.8 ± 2.8
1-propyltetralin	H.7	66324-83-2		41.1 ± 2.9		41.1 ± 2.8
1-butyltetralin	H.8	38857-76-0		62.0 ± 2.9		62.0 ± 2.9
1-pentyltetralin	H.9	66359-06-6		82.6 ± 3.0 ^b		82.6 ± 3.0
1-hexyltetralin	H.10	66325-11-9		103.2 ± 3.0 ^b		103.2 ± 3.0
1-heptyltetralin	H.11	66563-99-3		123.8 ± 3.0 ^b		123.8 ± 3.0
1-octyltetralin	H.12	29138-91-8		144.4 ± 3.0 ^b		144.4 ± 3.0
1-nonyltetralin	H.13	33425-49-9		165.0 ± 3.0 ^b		165.0 ± 3.0

<i>cis</i> -decalin (<i>cis</i> -decahydronaphthalene)	H.14	493-01-6	170.0 ± 1.9	171.9 ± 2.8	170.0 ± 2.6	170.0 ± 1.9
<i>trans</i> -decalin (<i>trans</i> -decahydronaphthalene)	H.15	493-02-7	182.0 ± 2.8	183.7 ± 2.8	182.0 ± 2.6	182.0 ± 2.8
decalin (decahydronaphthalene) ^c	H.16	91-17-8				176.0 ± 8.8
<i>rel</i> -(1 <i>R</i> ,4 <i>aR</i> ,8 <i>aR</i>)-1-methyldecalin	H.17	4683-95-8		203.4 ± 2.9	200.7 ± 2.7	200.7 ± 2.7
<i>rel</i> -(1 <i>R</i> ,4 <i>aS</i> ,8 <i>aS</i>)-1-methyldecalin	H.18	14398-67-5		210.4 ± 2.9	207.6 ± 2.7	207.6 ± 2.7
<i>rel</i> -(1 <i>R</i> ,4 <i>aR</i> ,8 <i>aS</i>)-1-methyldecalin	H.19	14398-69-7		198.9 ± 2.9	195.9 ± 2.7	195.9 ± 2.7
<i>rel</i> -(1 <i>R</i> ,4 <i>aS</i> ,8 <i>aR</i>)-1-methyldecalin	H.20	14398-68-6		199.2 ± 2.9	196.5 ± 2.7	196.5 ± 2.7
1-methyldecalin ^c	H.21	2958-75-0				200.2 ± 10.1
<i>rel</i> -(2 <i>R</i> ,4 <i>aR</i> ,8 <i>aR</i>)-2-methyldecalin	H.22	14398-71-1		215.1 ± 2.9	212.8 ± 2.7	212.8 ± 2.7
<i>rel</i> -(2 <i>R</i> ,4 <i>aS</i> ,8 <i>aS</i>)-2-methyldecalin	H.23	4683-94-7		207.4 ± 2.9	205.1 ± 2.7	205.1 ± 2.7
<i>rel</i> -(2 <i>R</i> ,4 <i>aR</i> ,8 <i>aS</i>)-2-methyldecalin	H.24	14398-72-2		203.1 ± 2.9	200.4 ± 2.7	200.4 ± 2.7
<i>rel</i> -(2 <i>S</i> ,4 <i>aR</i> ,8 <i>aS</i>)-2-methyldecalin	H.25	14386-57-3		203.6 ± 2.9	201.1 ± 2.7	201.1 ± 2.7
2-methyldecalin ^c	H.26	2958-76-1				204.9 ± 10.7

<i>cis</i> -9-methyldecalin	H.27	2547-26-4	191.9 ± 2.8 ^d	199.8 ± 2.9	196.6 ± 2.7	191.9 ± 2.8
<i>trans</i> -9-methyldecalin	H.28	2547-27-5	197.7 ± 2.8 ^d	203.1 ± 2.9	200.4 ± 2.7	197.7 ± 2.8
9-methyldecalin ^c	H.29	6596-97-0				194.8 ± 5.7
1-ethyldecalin ^c	H.30	1008-17-9				221 ± 10
2-ethyldecalin ^c	H.31	1618-23-1				226 ± 11
2,6-dimethyldecalin ^c	H.32	1618-22-0				234 ± 23
1-propyldecalin ^c	H.33	91972-45-1				241 ± 10
1-butyldecalin ^c	H.34	92369-80-7				262 ± 10
1-pentyldecalin ^c	H.35	1772625-95-2				283 ± 10
1-hexyldecalin ^c	H.36	1772625-96-3				303 ± 10
1-heptyldecalin ^c	H.37	1772625-97-4				324 ± 10
1-octyldecalin ^c	H.38	95278-30-1				344 ± 10
1-nonyldecalin ^c	H.39					365 ± 10

623 ^a Expanded uncertainties for 0.95 level of confidence are reported following the ± signs

624 ^b Calculated using the *ab initio* value for 1-butyldetalin and the CH₂ increment of -20.6 kJ·mol⁻¹

625 ^c Mixture of isomers

626 ^d Experimental liquid-phase enthalpy of formation is combined with the enthalpy of vaporization estimated by MBM

[1] Alternative Fuels Data Center, <https://afdc.energy.gov/fuels/sustainable-aviation-fuel>; 2024 [accessed 5 November 2024].

[2] Ng KS, Farooq D, Yang A. Global biorenewable development strategies for sustainable aviation fuel production. *Renew Sustain Energy Rev* 2021;150:111502. <https://doi.org/10.1016/j.rser.2021.111502>.

[3] Sustainable Aviation Fuel. Review of Tehcnical Pathways, <https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf>; 2020 [accessed 5 November 2024].

[4] Vozka P, Kilaz G. A review of aviation turbine fuel chemical composition-property relations. *Fuel* 2020;268:117391. <https://doi.org/10.1016/j.fuel.2020.117391>.

[5] Watanasiri S, Paulechka E, Iisa K, Christensen E, Muzny C, Dutta A. Prediction of sustainable aviation fuel properties for liquid hydrocarbons from hydrotreating biomass catalytic fast pyrolysis derived organic intermediates. *Sustain Energ Fuels* 2023;7:2413-2427. <https://doi.org/10.1039/D3SE00058C>.

[6] Watanasiri S, Paulechka E, Muzny C, Dutta A. Evaluation of methods and improvement of predictions for specification properties of petroleum-based and alternative aviation fuels. *Fuel* 2025;JFUE-D-25-02072 (submitted).

[7] van der Westhuizen R, Ajam M, De Coning P, Beens J, de Villiers A, Sandra P. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels. *J. Chromatogr. A* 2011;1218:4478-4486. <https://doi.org/10.1016/j.chroma.2011.05.009>.

[8] Huq NA, et al. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. *Proc Natl Acad Sci U S A* 2021;118:e2023008118. <https://doi.org/10.1073/pnas.2023008118>.

[9] Růžička K, Majer V. Simultaneous treatment of vapor pressures and related thermal data between the triple and normal boiling temperatures for *n*-alkanes C₅–C₂₀. *J Phys Chem Ref Data* 1994;23:1-39. <https://doi.org/10.1063/1.555942>.

[10] Paulechka E, Kazakov A. Efficient estimation of formation enthalpies for closed-shell organic compounds with local coupled-cluster methods. *J Chem Theory Comput* 2018;14:5920-5932. <https://doi.org/10.1021/acs.jctc.8b00593>.

[11] Majer V, Svoboda V, Pick J. *Heats of vaporization of fluids*. New York: Elsevier; 1989.

[12] Forziati AF, Norris WR, Rossini FD. Vapor pressures and boiling points of sixty API_NBS hydrocarbons. *J Res Natl Bur Stand* 1949;43:555-563. <https://doi.org/10.6028/jres.043.050>.

[13] Nannoolal Y, Rarey J, Ramjugernath D., Cordes W. Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions. *Fluid Phase Equilib* 2004;226:45-63. <https://doi.org/10.1016/j.fluid.2004.09.001>.

[14] Nannoolal Y, Rarey J, Ramjugernath D. Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution. *Fluid Phase Equilib* 2007;252:1-27. <https://doi.org/10.1016/j.fluid.2006.11.014>.

[15] NIST ThermoData Engine Version 10.4.6 - Pure Compounds, Binary Mixtures and Reactions. NIST Standard Reference Database 103b, Gaithersburg, MD, <https://www.nist.gov/mml/acmd/trc/thermodata-engine/srd-nist-tde-103b>; 2024 [accessed 30 September 2024].

[16] Wagner W. New vapor pressure measurements for argon and nitrogen and a new method for establishing rational vapor pressure equations. *Cryogenics* 1973;13:470-482. [https://doi.org/10.1016/0011-2275\(73\)90003-9](https://doi.org/10.1016/0011-2275(73)90003-9).

[17] Cox JD, Pilcher G. *Thermochemistry of organic and organometallic compounds*. London and New York: Academic Press;1970.

[18] Verevkin SP, Emel'yanenko VN, Diky V, Muzny CD, Chirico RD, Frenkel M. New group-contribution approach to thermochemical properties of organic compounds: hydrocarbons and oxygen-containing compounds. *J Phys Chem Ref Data* 2013;42:033102. <https://doi.org/10.1063/1.4815957>.

[19] Huffman HM, Parks GS, Daniels AC. Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons. *J Am Chem Soc* 1930;52:1547-1558. <https://doi.org/10.1021/ja01367a039>.

[20] Simirsky VV, Kabo GJ, Frenkel ML. Additivity of the enthalpies of formation of urea derivatives in the crystalline state. *J Chem Thermodyn* 1987;19:1121-1127. [https://doi.org/10.1016/0021-9614\(87\)90049-8](https://doi.org/10.1016/0021-9614(87)90049-8).

[21] Nagy PR, Samu G, Kállay M. An integral-direct linear-scaling second-order Møller–Plesset approach. *J Chem Theory Comput* 2016;12:4897-4914. <https://doi.org/10.1021/acs.jctc.6b00732>.

[22] Nagy PR, Kállay M. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. *J Chem Phys* 2017;146:214106. <https://doi.org/10.1063/1.4984322>.

[23] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, et al. Gaussian 16 Revision B.01. Gaussian Inc., Wallingford, CT; 2016.

[24] Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Remigio RD, Richard RM, et al. Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. *J Chem Theory Comput* 2017;13:3185-3197. <https://doi.org/10.1021/acs.jctc.7b00174>.

[25] Smith DGA, Burns LA, Simmonett AC, Parrish RM, Schieber MC, Galvelis R, Kraus P, Kruse H, Remigio RD, Alenaizan A, et al. Psi4 1.4: Open-source software for high-throughput quantum chemistry. *J Chem Phys* 2020;152:184108. <https://doi.org/10.1063/5.0006002>.

[26] Kállay M, Nagy PR, Mester D, Rolik Z, Samu G, Csontos J, Csóka J, Szabó PB, Gyevi-Nagy L, Hégely B, et al. The MRCC program system: Accurate quantum chemistry from water to proteins. *J Chem Phys* 2020;152:074107. <https://doi.org/10.1063/1.5142048>.

[27] Kállay M, Nagy PR, Mester D, Gyevi-Nagy L, Csóka J, Szabó PB, Rolik Z, Samu G, Csontos J, Hégely B, Ganyecz Á, Ladjánszki I, Szegedy L, Ladóczki B, Petrov K, Farkas M, Mezei PD, Horváth RA. MRCC, a quantum chemical program suite. 2023. <http://www.mrcc.hu>.

[28] Paulechka E, Kazakov A. Efficient *ab initio* estimation of formation enthalpies for organic compounds: extension to sulfur and critical evaluation of experimental data. *J Phys Chem A* 2021;125:8116-8131. <https://doi.org/10.1021/acs.jpca.1c05882>

[29] Kazakov A, Paulechka E. Accurate enthalpies of formation for bioactive compounds from high-Level *ab initio* calculations with detailed conformational treatment: a case of cannabinoids. *J Chem Theory Comput* 2025;21:643-654. <https://doi.org/10.1021/acs.jctc.4c01177>.

[30] Fuchs R, Peacock LA. Heats of vaporization of monoalkylcyclohexanes by the gas chromatography – calorimetry method. *Can J Chem* 1978;56:2493-2498. <https://doi.org/10.1139/v78-408>.

[31] Chirico RD. *n*-Decylcyclohexane: experimental and derived thermodynamic properties. National Institutes of Standards and Technology. 2024. <https://doi.org/10.18434/mds2-3607>.

[32] Moore GE, Renquist ML, Parks GS. Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins. *J Am Chem Soc* 1940;62:1505-1507. <https://doi.org/10.1021/ja01863a049>.

[33] Johnson WH, Prosen EJ, Rossini FD. Heats of combustion of four cyclopentane and five cyclohexane hydrocabons of isomerization to styrene. *J Res Natl Bur Stand* 1946;36:463-468.
<https://doi.org/10.6028/jres.036.026>.

[34] Good WD. The enthalpies of combustion and formation of n-propylcyclohexane and six methylethylcyclohexanes. *J Chem Thermodyn* 1970;2:399-405. [https://doi.org/10.1016/0021-9614\(70\)90010-8](https://doi.org/10.1016/0021-9614(70)90010-8).

[35] Fraser FM, Prosen EJ. Heats of combustion of liquid *n*-hexadecane, 1-hexadecene, *n*-decylbenzene, *n*-decylcyclohexane, and the variation of heat of combustion with chain length. *J Res Natl Bur Stand* 1955;55:329-333. <https://doi.org/10.6028/jres.055.040>.

[36] Loeffler MC, Rossini FD. Heats of combustion and formation of the higher normal alkyl cyclopentanes, cyclohexanes, benzenes and 1-alkenes in the liquid state at 25°. *J Phys Chem* 1960;64:1530-1533. <https://doi.org/10.1021/j100839a045>.

[37] Johnson WH, Prosen EJ, Rossini FD. Heats of combustion and isomerization of the eight C₈H₁₆ alkylcyclohexanes. *J Res Natl Bur Stand* 1947;39:49-52. <https://doi.org/10.6028/jres.039.034>.

[38] Woodroffe JD, Harvey BG. High-performance, biobased, jet fuel blends containing hydrogenated monoterpenes and synthetic paraffinic kerosenes. *Energy Fuels* 2020;34:5929-5937. <https://doi.org/10.1021/acs.energyfuels.0c00274>.

[39] Camin DL, Forziati AF, Rossini FD. Physical properties of *n*-hexadecane, *n*-decylcyclopentanes, *n*-decylcyclohexane, 1-hexadecene and *n*-decylbenzenes. *J Phys Chem* 1954;58:440-442. <https://doi.org/10.1021/j150515a015>.

[40] Properties of hydrocarbons of high molecular weight synthesized by Research Project 42 in the American Petroleum Institute. New York: American Petroleum Institute;1968.

[41] Chickos JS, Hosseini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. *Struct Chem* 1993;4:271-278. <https://doi.org/10.1007/BF00673701>.

[42] Spitzer R, Huffman HM. The heat of combustion of cyclopentane, cyclohexane, cycloheptane, and cyclooctane. *J Am Chem Soc* 1947;69:211-213. <https://doi.org/10.1021/ja01194a006>.

[43] Kaarsemaker Sj, Coops J. Thermal quantities of some cycloparaffins. Part III. Results of measurements. *Recl Trav Chem Pays-Bas* 1952;71:261-276. <https://doi.org/10.1002/recl.19520710307>.

[44] Good WD, Smith NK. Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and *n*-hexane. *J Chem Eng Data* 1969;14:102-106. <https://doi.org/10.1021/je60040a036>.

[45] Moore GE, Parks GS. New thermodynamic data for the cyclohexane-methylcyclopentane isomerization. *J Am Chem Soc* 1939;61:2561-2562. <https://doi.org/10.1021/ja01878a517>.

[46] Good WD. The enthalpies of combustion and formation of *n*-propylcyclopentane and five methylethylcyclopentanes. *J Chem Thermodyn* 1971;3:97-103. [https://doi.org/10.1016/S0021-9614\(71\)80070-8](https://doi.org/10.1016/S0021-9614(71)80070-8)

[47] Rossini FD, Li K. Relabeling of *cis* and *trans* isomers of 1,3-dimethylcyclopentane. *Science* 1955;122:513. <https://doi.org/10.1126/science.122.3168.513>.

[48] Johnson WH, Prosen EJ, Rossini FD. Heats of combustion and isomerization of the six C₇H₁₄ alkylcyclopentanes. *J Res Natl Bur Stand* 1949;42:251-255. <https://doi.org/10.6028/jres.042.021>.

[49] Rossini FD. Assignment of uncertainties to thermochemical data. In: *Experimental Thermochemistry. Measurements of Heats of Reactions*. Rossini FD (Ed.). London and New York: Interscience Publishers;1956:297-320.

[50] Naro PA. Physical properties of four spiro hydrocarbons. *J Chem Eng Data* 1965;10:86-87. <https://doi.org/10.1021/je60024a032>.

[51] Subach DJ, Zwolinski BJ. Enthalpies of combustion, formation, and vaporization of spiro[4.5]decane, spiro[5.5]undecane, and 7-*n*-hexadecylspiro[4.5]decane. *J Chem Eng Data* 1975;20:232-235. <https://doi.org/10.1021/je60066a026>.

[52] Subach DJ, Zwolinski BJ. Enthalpies of combustion and formation of [4.5], [5.5], and [5.6]spiroalkanes. *J Chem Thermodyn* 1975;7:493-498. [https://doi.org/10.1016/0021-9614\(75\)90279-7](https://doi.org/10.1016/0021-9614(75)90279-7).

[53] Kozina MP, Mirzaeva AK, Sosnina IE, Elagina NV, Skuratov SM. Heat of formation of spirocyclane hydrocarbons. *Dokl Phys Chem* 1964;155:375-377.

[54] Chirico RD, Steele WV. High-energy components of “designer gasoline and designer diesel fuel” I. Heat capacities, enthalpy increments, vapor pressures, critical properties, and derived thermodynamic functions for bicyclopentyl between the $T=(10$ and $600)$ K. *J Chem Thermodyn* 2004;36:633-643. <https://doi.org/10.1016/j.jct.2004.04.003>.

[55] Chirico RD. Bicyclohexyl: experimental and derived thermodynamic properties. National Institutes of Standards and Technology. 2024. <https://doi.org/10.18434/mds2-3349>.

[56] Properties of hydrocarbon of high molecular weight synthesized by Research Project 42 of the American Petroleum Institute. Penn State Univ, University Park, PA. New York: Am Pet Inst; 1968.

[57] Kolesov VP; Kozina MP. Thermochemistry of organic and organohalogen compounds. *Russ Chem Rev* 1986;55:912-928. <https://doi.org/10.1070/RC1986v055n10ABEH003231>.

[58] Varushchenko RM, Gal'chenko GL, Medvedev VA. Precise calorimetric unit for determination of enthalpy of evaporation. *Zh Fiz Khim* 1977;51:992-996.

[59] Štejfa V, Fulem M, Růžička K, Červinka C. Thermodynamic study of selected monoterpenes III. *J Chem Thermodyn* 2014;79:208-289. <https://doi.org/10.1016/j.jct.2014.04.022>.

[60] Chang S, McNally D, Shary-Tehrany S, Hickey MJ, Boyd RH. The heats of combustion and strain energies of bicyclo[n.m.0]alkanes. *J Am Chem Soc* 1970;92:3109-3118. <https://doi.org/10.1021/ja00713a032>.

[61] Parker W, Steele WV, Watt I. The standard enthalpies of formation of bicyclo compounds 2. Bicyclo[3.3.1]nonane and bicyclo[3.3.2]decane. *J Chem Thermodyn* 1977;9:307-310. [https://doi.org/10.1016/0021-9614\(77\)90050-7](https://doi.org/10.1016/0021-9614(77)90050-7).

[62] Chirico RD. JP-10: experimental and derived thermodynamic properties. National Institutes of Standards and Technology. 2024. <https://doi.org/10.18434/mds2-3606>.

[63] Gudzinowicz BJ, Campbell RH, Adams JS. Specific heat measurements of complex saturated hydrocarbons. *J Chem Eng Data* 1963;8:201-204. <https://doi.org/10.1021/je60017a018>.

[64] Good WD, Lee SH. The enthalpies of formation of selected naphthalenes, diphenylmethanes, and bicyclic hydrocarbons. *J Chem Thermodyn* 1976;8:643-650. [https://doi.org/10.1016/0021-9614\(76\)90015-X](https://doi.org/10.1016/0021-9614(76)90015-X).

[65] Kozina MP, Skuratov SM, Shtekher SM, Sosnina IE, Turova-Pollyak MB. Heats of combustion of some bicyclanes. *Zh Fiz Khim* 1961;35:2316-2321.

[66] Montgomery RL, Rossini FD, Månsson M. Enthalpies of combustion, vaporization, and formation of phenylbenzene, cyclohexylbenzene, and cyclohexylcyclohexane; enthalpy of hydrogenation of certain aromatic systems. *J Chem Eng Data* 1978;23:125-129. <https://doi.org/10.1021/je60077a021>.

[67] Bedford AF, Beezer AE, Mortimer CT, Springall HD. Heats of combustion and molecular structure. Part IX. Bicyclo[2.2.1]heptane, 7-oxabicyclo[2.2.1]heptane, and exo- and endo-2-methyl-7-oxabicyclo[2.2.1]heptane. *J Chem Soc* 1963;3823-3828. <https://doi.org/10.1039/JR9630003823>.

[68] Xu-Wu A, Hui-Ping Z, Ri-Heng H. Heats of combustion and formation of norbornane. *Thermochim Acta* 1987;121:473-477. [https://doi.org/10.1016/0040-6031\(87\)80194-6](https://doi.org/10.1016/0040-6031(87)80194-6).

[69] Verevkin SP, Emel'yanenko VN. Enthalpy of formation and strain of norbornane from thermochemical measurements and from *ab initio* calculations. *J Phys Chem A* 2004;108:6575-6580. <https://doi.org/10.1021/jp0490554>.

[70] Kozina MP, Goroshko NN, Skuratov SM, Belikova NA, Plate AF. Heats of combustion and free energies of isomerisation of some bicyclo[2.2.1]heptane derivatives. *Thermodynamic and thermochemical constants. Moscow: Nauka*;1970;158-163.

[71] Kozina MP, Timofeeva LP, Skuratov SM, Belikova NA, Mil'vitskaya EM, Plate AF. The enthalpies of combustion of some bicyclic compounds. *J Chem Thermodyn* 1971;3:563-570. [https://doi.org/10.1016/S0021-9614\(71\)80040-X](https://doi.org/10.1016/S0021-9614(71)80040-X).

[72] Kozina MP, Bychikhina LV, Gal'chenko GL, Ordubadi M, Belikova NA, Plate AF. Enthalpies of combustion of 7,7-dimethyl- and 2-ethyl-bicyclo[2,2,1]heptanes. *Zh Fiz Khim* 1975;49:242-244.

[73] Browne CC, Rossini FD. Heats of combustion, formation and isomerization of the *cis* and *trans* isomers of hexahydroindan. *J Phys Chem* 1960;64:927-931. <https://doi.org/10.1021/j100836a029>.

[74] Boyd RH, Sanwal SN, Shary-Tehrany S, McNally D. Thermochemistry, thermodynamic functions, and molecular structures of some cyclic hydrocarbons. *J Phys Chem* 1971;75:1264-1271. <https://doi.org/10.1021/j100679a017>.

[75] Smith NK, Good WD. Enthalpies of combustion of ramjet fuels. *AIAA J* 1979;17:905-907. <https://doi.org/10.2514/3.61244>.

[76] Chirico RD. Tetralin: experimental and derived thermodynamic properties. National Institutes of Standards and Technology. 2024. <https://doi.org/10.18434/mds2-3500>.

[77] Davies GF, Gilbert EC. The heat of combustion of *cis*- and *trans*-decahydronaphthalene. *J Am Chem Soc* 1941;63:1585-1586. <https://doi.org/10.1021/ja01851a026>.

[78] Speros DM, Rossini FD. Heats of combustion and formation of naphthalene, the two methylnaphthalenes, *cis* and *trans*-decahydronaphthalene, and related compounds. *J Phys Chem* 1960;64:1723-1727. <https://doi.org/10.1021/j100840a029>.

[79] Dauben WG, Rohr O, Labbauf A, Rossini FD. The heat of isomerization of the *cis* and *trans* isomers of 9-methyldecahydronaphthalene. *J Phys Chem* 1960;64:283-284. <https://doi.org/10.1021/j100831a510>.