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NSSC Research Focus Area(s): Radiation Detection

Planned Graduation Date: December 2023 (MSc Thesis)

Lab Mentors and Partner National Laboratory: Thomas Weber, Jon Balajthy, and Melinda
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Mission Relevance of Research:

My research focuses on characterizing silicon photomultipliers (SiPMs) to enable their use
in harsh environments. This work is highly relevant to the mission of the National Nuclear
Security Administration (NNSA), which seeks to deploy radiation detectors in harsh
environments to help prevent nuclear weapon proliferation and reduce the threat of
nuclear and radiological terrorism worldwide.

Within the framework of the NSSC, | was awarded the Keepin Fellowship in Summer 2022. This
opportunity enabled me to start an internship at Sandia National Laboratory, which is still ongoing. Part
of this work is supported by the UIUC-SNL LDRD project entitled “Development of High-Fidelity
Radiation Detection Models with SiPM Readout”.



Motivations and Objectives

Silicon photomultipliers (SiPMs) are emerging devices that
allow high-efficiency light conversion into an electrical signal
while having excellent timing characteristics

SiPMs are small in form-factor and enable the use of
scintillation detectors in compact devices encompassing
multiple detectors

SiPMs are candidates to replaces vacuum photomultiplier
tubes (PMTs) for radiation detection in harsh environments
but require further characterization

Robust models that connect the electrical and optical
performance to the radiation detection performance of the
SiPM are urgently needed

This work is a collaboration with Sandia National Laboratory
to enable the deployment of SiPMs in harsh environments

Our specific objective is to characterize and reduce the dark
counts in SiPMs and develop experimentally validated
models
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Technical Challenges and Progress to Date

Overarching challenge that has delayed the
deployment of SiPMs in harsh environments is the
increase of dark counts and correlated noise with
temperature

A specific challenge that we addressed was to
improve the agreement between the simulated
responses of an Eljen Technology EJ-276 and EJ-200|
coupled to a MicroFJ30035 SiPM and the measured
ones

Progress to date

Characterization and analysis of
response parameters of multiple SiPM
technologies from different
manufacturers

Detailed simulation of SiPM response
while coupled to organic scintillator

Characterization and reduction of
optical crosstalk in SiPMs

Visualization of the GEANT4 simulation of the
response of an SiPM coupled to a 3mm x 3mm x
6mm EJ-276 scintillator irradiated by a Cs-137
source
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Specific Technical Challenges
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Dark Count Spectrum Analysis

* Dark counts occur in SiPMs when thermal carriers trigger an avalanche of electrons

* The amplitude of each dark count signal can be recorded to create a dark count spectrum

* From this spectrum, performance parameters can be extracted

* Gain, crosstalk probability, avalanche noise, electronic noise
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Dark Count Pulses and Data Processing

Decay removal model
Ay
Vi = Vo, +-Zioa Vo, X (t —ti-1)
where tj_; =0
and Vo=V —V,,in
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amplitude (mV)

Example Dark Count Pulse

t=time in nanoseconds V= volts in millivolts

7= microcell recharge time

i represents the current sample and j represents the previous samples
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Dark Count Spectrum

* The calculated pulse heights were graphed as a
histogram, which was fit with the modified Erlang
distribution

* Difference in afterpulsing may be attributed to
different manufacturer parameters used to
calculate the afterpulses

. Onsemi data
Onsemi Board
sheet value

150 kHz/mm?

Dark count rate 85 kHz/mm?
OCT probability 21.9%
Afterpulse o
probability 21.2%
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Optical Crosstalk (OCT) Measurement Setup
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OCT Results

Wavelength »

No filter 21.4%

. . T itt
Semrock BrightLine ransmittance

g . _ 0
Interference filter FF01-520/70-25 band: 485nm 23.7%
555nm
UG5 400nm-600nm 17.8%
BG39 700nm-1000nm 17.6%
Bandpass filters
BG40 700nm-1000nm 17.6%
KG2 800nm-1200nm 18.1%
N-WG280 200nm-250nm 18.7%
0G590 200nm-550nm 18.9%
Longpass filters RG695 200nm-650nm 18.6%
RG850 200nm-700nm 18.1%
RG1000 200nm-700nm 17.8%

Table listing results of OCT filter study



Conclusions and Current Work

SiPMs do not benefit from decades of R&D which have matured PMT technology;
therefore, robust and high-fidelity models are needed for their optimum
deployment, especially in harsh environments

We have characterized first-principle parameters of SiPM response through new
dark count rate experimental setups

Our estimated parameters are in good agreement with the manufacturer’s
parameters

The developed procedures will enable comparison between different technologies
solely based on their micro-electronic SiPM configuration

The extracted parameters will be used for first-principle simulations that generate
electrical SiPM response (GosSiP) from radiation transport simulation (GEANT4)

Finally, the characterization and control of specific parameters, such as OCT, are
expected to reduce the noise associated with the signal and improve detection
metrics such as energy and time resolution and pulse-shaped discrimination
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