
Disposition : Titre

User-Level Threading for
HPC Applications
CEA-NNSA Meeting – June 19-22, 2023

Jan Ciesko, SNL

Adrien Roussel, CEA/DAM

SAND2024-05190C

Disposition : Sommaire light

Astuce :Ce sommaire est sur deux colonnes, pour passer sur une colonne : Clic droit sur la zone de texte + « Format de la forme » / « Options de texte » / « Colonnes » = 1

1.ULT for HPC Applications

2.Qthreads and MPC
3.Projects
4.Conclusion

Outline

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 2

ULT for HPC Applications

3

Matrix factorization (ILU, LU,
CHOL), Direct Solvers, MD,
Graph algorithms

The opportunity:

ULT for HPC Applications

4

Asyncs, jthreads, processes, futures, coroutines, pthreads, tasks,
fibers, kernels, agents, actors, executors, senders-receivers
• We need domain-specific interfaces that target abstract machine models (a la Kokkos)
• Important: task-parallelism benefits from light-weight units of work (task)

Disposition : Titre de section light

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 5

Multi-Processor
Computing (MPC)2

Qthreads

6

“An API for Programing with Millions of Lightweight Threads”

[1] https://github.com/Qthreads/qthreads
[2] https://join.slack.com/t/qthreads/

• 182 functions in 16
areas

• 6 concepts
• Qthreads
• Locality
• FEB
• Schedulers
• Blocking Action
• Context Swap

https://github.com/Qthreads/qthreads
https://join.slack.com/t/qthreads/shared_invite/zt-1o1y5a1s1-QZg6fShaYIK7WXgXeXDQhQ

Disposition : Titre et contenu

MPC Framework
■ MPC (Multi Processor Computing)

■ Features MPI & OpenMP Implementation
■ Implements user-level threading scheduler and interoperability

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 7

§ Problem size: 264³ elements, 128 iterations

§ Lulesh (weak scaling)§ Architecture

Disposition : Titre de section light

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 8

Projects3

9

Many common building blocks
among ULT/AMT libraries
◦ Externalize common functionality like

context swap
◦ Improve code quality
◦ Develop towards common prog

model frontends (C++ stdlib, HPX,
Chapel)

Collaborators:

Better code: Common ULT Substrate (CULTS)

Thread/Pool Context

Scheduler Sync

ULT/AMT API (CULTS)

Pthreads / OS

Application

CC NUMA Hardware

Programming Model

1/5

10

OpenMPI and MPICH support ULT/AMT
libs
◦ Qthreads and Argobots are supported
◦ Configure options
◦ Developer needs matching MPI for this

app
◦ Pulls in ULT/AMT lib specific codes

Develop libult as a generic ULT/AMT
interface so MPI can be configured for
ULT support (vs. Ptheads)
◦ Which particular ULT is used is

determined at application compile time
◦ Potentially add MPI_TASK_MULTIPLE

Collaborators:

Better interop: LIBULT and MPI_TASK_MULTIPLE
Others:

Note: Use ompi_info --config to see your MPI
configuration

MPICH

Open MPI

2/5

11

Allows to attach callback functions to MPI
operations
• Spec proposal to be voted on in 2023.

[1][2]
• Makes OpenMP interop work (sort of)
• MPI Cont’ can replace task offload to

communication theads in HPX and others
• Polling vs callback in interop?

Collaborators:

ECP Deliverable 2022

Event-orientation in MPI: MPI Continuations

https://github.com/devreal/ompi/tree/mpi-continue-master
https://github.com/mpiwg-hybrid/hybrid-issues/issues/6

3/5

https://github.com/devreal/ompi/tree/mpi-continue-master
https://github.com/mpiwg-hybrid/hybrid-issues/issues/6

12

Match performance of MPI-everywhere if scheduler serialize
contending tasks on VCI

Collaborators:

VCI-(Resource-)Aware Task-scheduling 4/5

13

Two APIs: RMA or Partitioned Communication
◦ What is the usage model in a kernel?

Collaborators:

Device-initiated Communication 5/5

User-level threading (ULT) +
Partitioned Communication (Basic)
• MPI Partix: “Bench1”, 16KB-2GB buffer

size, 1:1 partitions to task mapping

Kokkos +
RMA/PC (Kokkos
Remote Spaces
Project)
• CGSolve

https://github.com/sandialabs/MPI-Partix
https://github.com/kokkos/kokkos-remote-spaces

https://github.com/sandialabs/MPI-Partix
https://github.com/kokkos/kokkos-remote-spaces

Disposition : Titre de section light

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 14

Conclusion & Future
Works4

Disposition : Titre et contenu

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 15

Conclusion (brief)

§ Increase code quality and reduce maintenance
§ Common ULT Substrate (CULTS)

§ No API lock-in
§ Expose through established interfaces (OpenMP, Chapel,

HPX, stdlib)
§ Play nice with others

§ Interoperability with MPI and non-cooperative APIs
§ Be relevant

§ Work on GPU stuff (RMA and PartCom on GPUs)
§ Could constrained task-execution (aka dataflow) be a thing?
§ 144 CCNUMA Cores on GH – how to use that?

§ Roadmap ULT/AMT libs @ NNSA and CEA

Contact:

adrien.roussel@cea.fr, jciesko@sandia.gov

mailto:adrien.roussel@cea.fr
mailto:jciesko@sandia.gov

Disposition : FIN

Thank you for
your attention
Questions? Adrien Roussel, PhD

adrien.roussel@cea.fr

jciesko@sandia.gov
MPC Team

mailto:adrien.roussel@cea.fr
mailto:jciesko@sandia.gov

Disposition : Titre et contenu

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 17

Backup

Qthreads

18

“An API for Programing with Millions of Lightweight Threads”

Qthreads API

19

• 182 functions
in 16 areas

• 6 concepts
• Qthreads
• Locality
• FEB
• Schedulers
• Blocking Action
• Context Swap

Qthreads Usage

20

• Supported on most
platforms

• One sub release per year
(v1.18 latest)

• 10 papers published
• GitHub Repo [1]: 146

Stars, 30 clones pM, 100
views pM

• Package includes man
pages, unit tests,
examples and
benchmarks,

• Slack channel [2]

[1] https://github.com/Qthreads/qthreads
[2] https://join.slack.com/t/qthreads/

Prominent use cases:

https://github.com/Qthreads/qthreads
https://join.slack.com/t/qthreads/shared_invite/zt-1o1y5a1s1-QZg6fShaYIK7WXgXeXDQhQ

Disposition : Titre et contenu

MPC Framework
■ MPC (Multi Processor Computing)

■ Features MPI & OpenMP Implementation
■ Implements user-level threading scheduler and interoperability

■ Task-based parallelism
■ Low overhead
■ Better interoperability

■ MPI
■ GPU

■ Scheduling flexibility

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 21

Disposition : Titre et contenu

Code Example: LULESH
■ MPI+OpenMP Implementation

■ MPI Encapsulated within OpenMP Tasks
■ CPU ßà GPU Transfers through “target data

update”
■ Cooperative Communication Progression

■ Task switching until communication is
completed

■ Avoid busy waiting in tasks

June 20,
2023CEA/NNSA Meeting - J Ciesko & A. Roussel 22

Disposition : Titre et contenu

February
10, 2023CEA/NNSA Seminar - A. Roussel 23

LULESH Performance Evaluation

§ Problem size
§ 264³ elements

§ 80% of the NUMA domain memory
capacity

§ 20% of the GPU memory capacity
§ 128 iterations

§ Software environment
§ MPC-OpenMP with LLVM 16.x for GPU

offloading
+ OpenMPI 4.0.5

§ Placement
§ 16 cores + 1 GPU per MPI rank

§ Weak scaling
§ Median runtime of 10 runs
§ Each version scale very well
§ OpenMP tasks version significantly

improves performances due to cache
reuse

§ Significant performance gain with GPU
offloading
(since IWOMP22)

