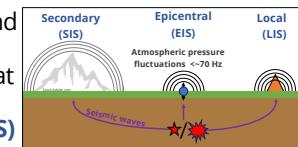


PROXIMAL OBSERVATIONS OF EPICENTRAL INFRASOUND GENERATED BY SHALLOW, LOW-MAGNITUDE EARTHQUAKES IN THE PERMIAN BASIN, TEXAS


L. SCHAIBLE^{1*}, F. DANNEMANN DUGICK¹, D. C. BOWMAN¹, A. SAWAIDIS², C. MCCABE²

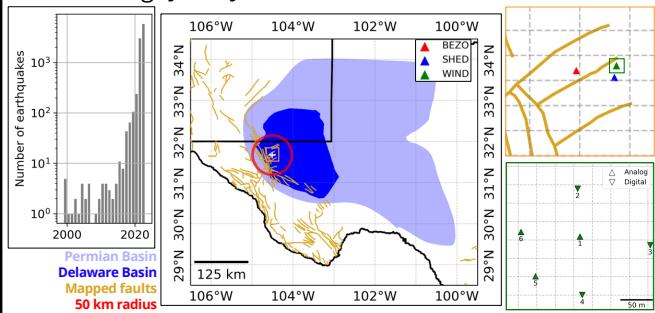
¹SANDIA NATIONAL LABORATORIES, ²UNIVERSITY OF TEXAS AT AUSTIN

*dpschai@sandia.gov


INTRO & MOTIVATION

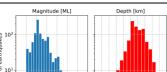
- Earthquakes generate infrasound (<20 Hz sound) via vertical displacement of ground surface at epicenter (EIS), at/near receiver (LIS), or topographic features (SIS)

No observations after earthquake of any size


Well-studied, many observations, after earthquakes and explosions

Do small, shallow earthquakes generate laterally-propagating epicentral infrasound waves?

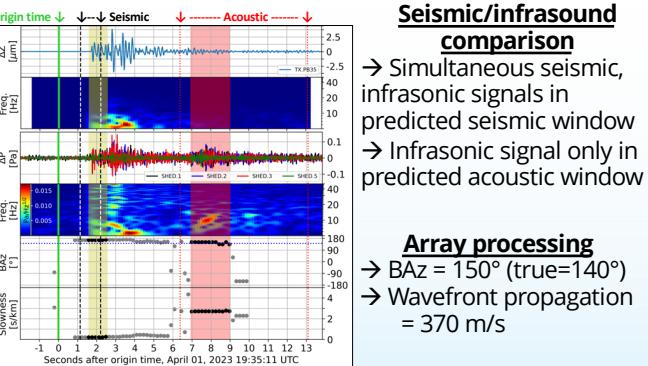
PECOS INFRASOUND NETWORK


- 17 instruments, among 3 ~100 m aperture arrays
- Each array co-located with TexNet seismic station
- Continuous infrasound recordings Jan. – June 2023

DATA & METHODS

USGS catalog

- 967 events
- M_L 1.2–4.2
- $Z < 11$ km


- 1. Calculate predicted arrival times of infrasound signals
 $V_p = 3.5\text{--}5.0$ km/s (Huang et al., 2017, 2019)
 $V_{\text{sound}} = 320\text{--}360$ m/s (Negru et al., 2010)
- 2. Search 5–50 Hz bandpassed waveforms, spectrograms
- 3. Compare co-located infrasound and seismic data
- 4. Run array processing: find trace velocity, backazimuth

RESULTS & INTERPRETATIONS

- LIS following 45 events ($2.5 \leq M_L \leq 4.2$)
- EIS following 2 events (both M_L 2.9)

Event TX2023GJYC (M_L 2.9, $Z=6.1\pm0.7$ km)

- Recorded 2.7 ± 0.8 km away on 4 elements of SHED array

CONCLUSIONS

- Evaluated infrasound following 84 of 207 $2.5 \leq M_L \leq 4.2$ shallow earthquakes in the Permian Basin of West Texas
- 45/84 events produced LIS signal (5–50 Hz)
- 7/84 events produced possible EIS signal (7–20 Hz)
- Confirmed EIS arrivals following 2/7 events

First proximal observations of laterally-propagating earthquake EIS

Event	1 st arrival						2 nd arrival					
	ID	BAZ	V_{app}	BAZ	ABAZ	ΔP	ΔZ	V_{app}	BAZ	ABAZ	ΔP	ΔZ
GJPM	155	3.288	171	16	0.24	2.15	0.352	152	3	0.10	0.38	
GJYC	140	4.851	166	26	0.1	1.7	0.369	150	10	0.08	0.65	

* Paper 'Observations of epicentral infrasound from shallow low-magnitude earthquakes in the Permian Basin' under revision

IMPLICATIONS & FUTURE WORK

- Determine generation mechanisms
 - Consider physics of laterally-propagating infrasound generation
 - Understand effects of focal mechanism, local geology on generation and detection
- Compare with observations of explosions
- Highlight importance of seismic-infrasound co-location
- Assess how many signals were not detected

ACKNOWLEDGEMENTS

This Source Physics Experiment (SPE) research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge important interdisciplinary collaboration with scientists and engineers from LANL, LLNL, NNSS, SNL and UNR. The authors acknowledge land use permissions through the Texas Bureau of Economic Geology. The work contained here would not be possible without extensive field support from M. Fleigle, N. Wynn and D.J. Miller.