mSAN D2024-03814C

Clean Code

Developing Coding Standards
across the HPC Domain

Manoj K Bhardwaj, Sandia National Labs

e R

Aprll 8-11, 2024 Sandia National Laboratories is a

multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
Seattle’ WA LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0O003525.

> |« Acknowledgements

Scott Warnock, Stuart Baxley, Chris Sullivan, Gary Lawson, Akhil Potla, Richard Drake,
Henry Gabaldon

Erik Strack, Terri Galpin, Tricia Gharagazloo, Dena Vigil, Richard Michael Jack Kramer,
Salome Thorson, Raisa Koshkin

Sierra Toolkit (STK) Team:
Alan Williams, Jesse Thomas, Todd Coffey, Nate Roehrig, C. Riley Wilson,

Tolu Okusanya, David Glaze, Johnathan Vo

These ideas lead to
~10% debt on STK
team.

Developing coding standards,
practices, guidelines, etc.

Using the word “standards” to mean more than that.

— Want S3C to be a place where developers can
sCleanCode share/collaborate. DevOps is just Ops without Dev.

.

Why this is important.

Most are not taught how to write “sustainable” software
Many teams have technical debt that exceeds 50% of their budget

My hypothesis: if development teams start to get curious and apply these practices,
they will see significant cost savings in two ways (and become sustainable):

Debt can be significantly reduced
Adding features will be much faster or kept at similar cost through time

>$100M impact annually?

s | Welcome to Fake Science and Engineering Company
(FSEC) :

CEO -me
New employees - you

Expectations on working here...

s . Orientation Agenda for FSEC

Your #1 job as software development professional
Test-Driven Development (TDD)

Scrum

Pair programming

Six line functions

Minimize # of function parameters

No comments in the code

Legacy code - add unit tests as we touch code
Measuring effectiveness

Scientific software thoughts

et

#1 job of software development
professional

Martin Fowler

Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand.

9 |« More important?

Making software readable is more important than making it work

Reading to Writing ratio: 10-1

All new code Is developed using
Test-Driven Development (TDD)

11 | Test-Driven Development

When using TDD - , Green, Refactor
Refactor! Let classes/design come out of the refactor. This includes the test code!
Anticipating versus emerging designs

Four Rules from Martin Fowler for Simple Design (in priority order)
Passes the tests

Reveals intention
No duplication
Fewest elements

Training on S.O.L.I.D. principles to guide your refactoring

Benefits: Fast running verification unit tests, line coverage, fast feedback!

» B

Scrum

You will be on a Scrum team
Jeff Sutherland: Scrum by itself isn't the goal
Make time for daily refactorization

T (Total capacity) = T1 (time on new dev) + T2 (time refactoring) + T3 (time
maintaining/fixing code)

Debt: if T2 is low, T3 will increase, and T1 will go to zero
One goal per Scrum team! Will NOT be multi-tasking

100% on team (no part-timing)

Pair programming

15 | Pair programming

If it needs to be maintained, it will be pair programmed

No, it's not paying 2 people to do the same job
15% increase in cost initially, less cost long term!

A pattern that works:
Navigator doesn’t touch the keyboard (knows what needs to be written next)

Driver executes the wishes of the navigator

IDE - using the same one

Six line functions

17 Six line functions

Don't count curly braces!
Yes, maximum of 6

You can exceed 6 on a case-by-case basis with approval of me, your CEO

19 | Minimize # of function parameters

calculateArea(square, len, side, isRhombus, density)
calculateArea(square)
area = square.getArea()

0 parameters great
1 parameter good

2 parameter ok

3 parameters - meh

more than 3, need some refactoring

No comments In the code

// this slide introduces the “no comments” portion of
the presentation

.1 - No comments In the code

Work towards making code more readable so comments aren’t necessary

doublea=12.0// ais Area

// the following function finds the local minima

int tryThis(const std::vector<int>& input) { }

" AT

Legacy code — add unit tests as
we touch code

23 | Improving Legacy Code

Training will include lessons from this book -

WORKING

EFFECTIVELY
WITH

LEGACY CODE

Michael C. Feathers

Legacy code is code without automated verification unit tests

Licensed scientific software from national laboratory

Lots of debt

Will refactor as much as we can before we consider rewriting (using our practices)

Will use Kent Beck’s Four Rules for Simple Design

et

Development and Operations
(DevOps)

s | DevOps

You are the developer in DevOps
We are partnering with DevOps engineers
Rapid feedback cycles
Legacy code: Continuous integration times

Our resources are NOT unlimited

Measuring effectiveness

27

Measuring effectiveness

T (Total capacity) = T1 (time on new dev) + T2 (time refactoring) + T3 (time
maintaining/fixing code)

Debt measure: T1/T
Continuous integration times < 1 minute (or so)
Line coverage > 99%

Always experimenting

28

Measuring effectiveness

T (Total capacity) = T1 (time on new dev) + T2 (time refactoring) + T3 (time
maintaining/fixing code)

Debt measure: T1/T
Continuous integration times < 1 minute (or so)
Line coverage > 99%

Always experimenting

Z| 1 HOPE TM GONNA
£]| THIS WRITE ME A
i| DRIVES MEL) MINIVAN

QUR GOAL T3 TO WRITE
BUGFREE SOFTWARE .
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FIR,

w THE RIGHT THLS AFTER-
' |3 BeHAvVIOR.
w2 .

3
o
7]
-
o
o
o
e
3
-
]
"
-
1
=3
brd
&
1
E
T
us
"
-%
<4
(]

30

Scientific Software Thoughts

We need the expertise you are bringing to the team (various engineering fields)

We separate the idea of finding a solution to a problem versus how to implement the
solution in code

Fungible in domain expertise versus Fungibility in code implementation

We choose team implementations over individual implementations

31 | Closing of FSEC Orientation

Your #1 job as software development professional
Test-Driven Development (TDD)

Scrum

Pair programming

Six line functions

Minimize # of function parameters

No comments in the code

Legacy code - add unit tests as we touch code
Measuring effectiveness

Scientific software thoughts

Path forward ideas to consider

33

Path forward ideas to consider

Organizations should define minimum quality criteria (Definition of Done)
Would love to work with teams who want to try and adopt some of these ideas.
Maybe start “studying” these ideas and presenting results at future S3Cs

Start developing tools for developers that help enforce good habits

Research ideas
Use AI/ML to turn system tests to smaller tests? Invert the testing pyramid.
Use ChatGPT to pair program
Use AI/ML in CI pipeline to find “unclean” code and “fail”

Here to help! Creating change on existing teams is hard.

