
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Developing Coding Standards
across the HPC Domain

Manoj K Bhardwaj , Sandia Nat ional Labs

April 8-11, 2024

Seattle, WA

Sustainable Scientific Software Conference (S3C)

SAND2024-03814C

Acknowledgements

 Scott Warnock, Stuart Baxley, Chris Sullivan, Gary Lawson, Akhil Potla, Richard Drake,
Henry Gabaldon

 Erik Strack, Terri Galpin, Tricia Gharagazloo, Dena Vigil, Richard Michael Jack Kramer,
Salomé Thorson, Raisa Koshkin

 Sierra Toolkit (STK) Team:

 Alan Williams, Jesse Thomas, Todd Coffey, Nate Roehrig, C. Riley Wilson,

 Tolu Okusanya, David Glaze, Johnathan Vo

2

These ideas lead to
~10% debt on STK

team.

Using the word “s tandards” to mean more than that .

Want S 3 C to be a p lace where developers can
share/col laborate . DevOps is just Ops wi thout Dev.

Developing coding standards,
practices, guidelines, etc.

Why this is important.

 Most are not taught how to write “sustainable” software

 Many teams have technical debt that exceeds 50% of their budget

 My hypothesis: if development teams start to get curious and apply these practices,
they will see significant cost savings in two ways (and become sustainable):
§ Debt can be significantly reduced
§ Adding features will be much faster or kept at similar cost through time

>$100M impact annually?

Welcome to Fake Science and Engineering Company
(FSEC)

 CEO – me

 New employees – you

 Expectations on working here…

5

Orientation Agenda for FSEC

1. Your #1 job as software development professional

2. Test-Driven Development (TDD)

3. Scrum

4. Pair programming

5. Six line functions

6. Minimize # of function parameters

7. No comments in the code

8. Legacy code – add unit tests as we touch code

9. Measuring effectiveness

10. Scientific software thoughts

6

#1 job of software development
professional

Martin Fowler

 Any fool can write code that a computer can
understand. Good programmers write code that

humans can understand.

More important?

 Making software readable is more important than making it work

 Reading to Writing ratio: 10-1

9

All new code is developed using
Test-Driven Development (TDD)

Test-Driven Development

 When using TDD – Red, Green, Refactor

 Refactor! Let classes/design come out of the refactor. This includes the test code!

 Anticipating versus emerging designs

 Four Rules from Martin Fowler for Simple Design (in priority order)
§ Passes the tests
§ Reveals intention
§ No duplication
§ Fewest elements

 Training on S.O.L.I.D. principles to guide your refactoring

 Benefits: Fast running verification unit tests, line coverage, fast feedback!

11

Scrum

Scrum

 You will be on a Scrum team

 Jeff Sutherland: Scrum by itself isn’t the goal

 Make time for daily refactorization

 T (Total capacity) = T1 (time on new dev) + T2 (time refactoring) + T3 (time
maintaining/fixing code)

 Debt: if T2 is low, T3 will increase, and T1 will go to zero

 One goal per Scrum team! Will NOT be multi-tasking

 100% on team (no part-timing)

Pair programming

Pair programming

 If it needs to be maintained, it will be pair programmed

 No, it’s not paying 2 people to do the same job
§ 15% increase in cost initially, less cost long term!

 A pattern that works:
§ Navigator doesn’t touch the keyboard (knows what needs to be written next)
§ Driver executes the wishes of the navigator

 IDE – using the same one

15

Six line functions

Six line functions

 Don’t count curly braces!

 Yes, maximum of 6

 You can exceed 6 on a case-by-case basis with approval of me, your CEO

17

Minimize # of function parameters

Minimize # of function parameters

calculateArea(square, len, side, isRhombus, density)

calculateArea(square)

area = square.getArea()

0 parameters great

1 parameter good

2 parameter ok

3 parameters – meh

more than 3, need some refactoring

19

/ / th is s l ide introduces the “no comments” port ion of
the presentat ion

No comments in the code

No comments in the code

Work towards making code more readable so comments aren’t necessary

double a = 12.0 // a is Area

// the following function finds the local minima

int tryThis(const std::vector<int>& input) { }

21

Legacy code – add unit tests as
we touch code

Improving Legacy Code

Training will include lessons from this book 

Legacy code is code without automated verification unit tests

Licensed scientific software from national laboratory

Lots of debt

Will refactor as much as we can before we consider rewriting (using our practices)

Will use Kent Beck’s Four Rules for Simple Design

23

Development and Operations
(DevOps)

DevOps

You are the developer in DevOps

We are partnering with DevOps engineers

Rapid feedback cycles

Legacy code: Continuous integration times

Our resources are NOT unlimited

25

Measuring effectiveness

Measuring effectiveness

 T (Total capacity) = T1 (time on new dev) + T2 (time refactoring) + T3 (time
maintaining/fixing code)

 Debt measure: T1/T

 Continuous integration times < 1 minute (or so)

 Line coverage > 99%

 Always experimenting

27

Measuring effectiveness

 T (Total capacity) = T1 (time on new dev) + T2 (time refactoring) + T3 (time
maintaining/fixing code)

 Debt measure: T1/T

 Continuous integration times < 1 minute (or so)

 Line coverage > 99%

 Always experimenting

28

Scientific Software Thoughts

Scientific Software Thoughts

 We need the expertise you are bringing to the team (various engineering fields)

 We separate the idea of finding a solution to a problem versus how to implement the
solution in code

 Fungible in domain expertise versus Fungibility in code implementation

 We choose team implementations over individual implementations

30

Closing of FSEC Orientation

1. Your #1 job as software development professional

2. Test-Driven Development (TDD)

3. Scrum

4. Pair programming

5. Six line functions

6. Minimize # of function parameters

7. No comments in the code

8. Legacy code – add unit tests as we touch code

9. Measuring effectiveness

10. Scientific software thoughts

31

Path forward ideas to consider

Path forward ideas to consider

 Organizations should define minimum quality criteria (Definition of Done)

 Would love to work with teams who want to try and adopt some of these ideas.

 Maybe start “studying” these ideas and presenting results at future S3Cs

 Start developing tools for developers that help enforce good habits

 Research ideas
§ Use AI/ML to turn system tests to smaller tests? Invert the testing pyramid.
§ Use ChatGPT to pair program
§ Use AI/ML in CI pipeline to find “unclean” code and “fail”

 Here to help! Creating change on existing teams is hard.

33

