SAND2024-03997C

Sandia
National _
Laboratories

Exceptional service in the national interest

Samuel E. Browne

ASC S3C at NLIT 24, Seattle, WA

April 8-11, 2024

@E
Sandia National Laboratories is a multimission laboratory managed and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Hc
Department of Energy’s National Nuclear Security Admini

ACKNOWLEDGEMENTS

* SIERRA DevOps Team
= Mark Hamilton, Jake Healy, Andrew Kimler, Justin Lamb, Matt Mosby, Tony Nguyen

* Trilinos Framework Team

= Anderson Chauphan, Joe Frye, Justin LaPre

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under contract DE-NA0003525. This written work is authored by an employee of NTESS.
The employee, not NTESS, owns the right, title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed in the written work do
not necessarily represent the views of the U.S. Government. The publisher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this written work or allow others to do so, for U.S. Government purposes. The DOE will provide public access to results of federally sponsored research in accordance
with the DOE Public Access Plan.

CODES BACKGROUND

SIERRA is Sandia’s engineering mechanics code suite. Itis a
large C++ code under development for more than 30 years, and is
widely used across many government HPC customers. |t
leverages the Trilinos software stack.

Trilinos is an object-oriented software framework for the solution of
large-scale, complex multi-physics engineering and scientific
problems. It is primarily developed at Sandia, but is open-source
and hosted on GitHub, with many developers from the open-
source community.

BACKGROUND

* | have been a member of the SIERRA DevOps team since 2016, primarily working on areas
surrounding the build system

| wrote a custom TPL builder for the SPARC team in 2018 to support the ATS2 ‘Sierra’ platform,
which was then extended to all other HPCs supported by SPARC (ATS1, CTS1, Vanguard ‘Astra’,
etc.)

« Since 2022, | have led the Trilinos Framework team which is responsible for the CI build/test
infrastructure (including environment management)

INDUSTRY'S PREFERRED ENCAPSULATION METHOD

Containers are packages of software that contain all of the necessary elements to run in any
environment. In this way, containers virtualize the operating system and run anywhere, from a
private data center to the public cloud or even on a developer's personal laptop.

— Google Cloud

>53% of software development companies report using containers*

* Survey responses were all over the map, so the lowest found percentage was used

So why don’'t more HPC development teams use containers for
environment management?

THE BIGGEST PROBLEM

« Codes are often developed by physicists/hard-science engineers rather than career software
engineers, so workflows must be as simple as is reasonably possible, freeing the developers to
focus on the complex physics

Amusing note: of the top twelve Google results for

* The "too much to learn” issue: oS o
this string, six are about software engineering

Simple Programmer

hitps:/fsii trying.
Don't Overwhelm Yourself Trying to Learn Too Much
Trying to learn too much. The problem to learn too much. There are 100 different
technologies you have to work with or v ork with at your job.

~— nator.com » item
Too much to learn. Overwhelmed, incompetent, and behind

Froi it helps to mows ay from thinking about tools, to
thinking about what

ere's too ity of it all is ...
Understand that m S e so much effort that you could

CHANGING WORKFLOWS

Current developer workflow Proposed new workflow

module load gcc podman run <containerid>
module load openmpil
module load hdfb5

These are only the setup commands, not the entire workflow.

The setup may be simpler, but what about other aspects of the workflow?

HPC DEVELOPMENT REQUIREMENTS

 Scientific software development workflows have different requirements than “normal” software

= Large code suites (e.g. SIERRA base code repository ~25GB)
LARGE test suites (e.g. SIERRA test repository ~155GB)
Deep and complex third-party library (TPL) dependency trees

— No universal C++ package manager ala npm for JavaScript or pip for Python

MPI parallelism

GPU/other device accelerator support

"Real” runtime environment is not a container (yet), so concerns about reproducibility

Are containers incapable of meeting any of the above requirements?

LARGE

CODE/TESTS

LOCAL DISKS INTRODUCE COMPLEXITY

» The large code/tests issue from earlier appears!

* Cloning ~200GB of code each time a container is - =S
started is not feasible

. BT T S
e e e R L e T
~container-xchange.com - =~

Overweight dev container accident

* Enter mounting complexity

podman run --mount type=bind, src=/path/to/my/code,dst=/code <containerid>

11

TPL

COMPLEXITY

CONTAINERS REDUCE NEEDED CONTEXT

Spack — a flexible package manager for HPCs

= Using Spack is demonstrably cheaper than maintaining builds of TPL stacks manually
= Using Spack is complicated, because Spack solves a very complicated problem

— Example: Multiple parallel installs of different compiler-based software stacks

If we want to use Spack to solve our problem, but as simply as possible, we must reduce the

complexity of the problem to be as simple as possible

« Containers make using Spack at least an order of magnitude easier
* Programming environment teams can now provide Spack for downstream developers
= They can also pre-build TPLs for developers who don’t want/need to build them

13

IS IT REALLY ANY DIFFERENT?

* Most HPC scientific software is NOT developed on HPC-style machines

* Developers have large-ish (~16-32 core) workstations that can run MPI software (albeit single-
node)

* How does the MPI get there?

On-system Containerized

This is the same from the user’s perspective, and as with other TPL dependencies, much more
robust than on-hardware builds

Note: In other scenarios with vendor-specialized MPIs, this may be increased complexity, but still has

solutions

15

IS IT REALLY ANY DIFFERENT?

« Key Concept: Most code development does not currently happen on machines with GPUs

= However, this may change with the evolving hardware landscape

 GPU hardware/drivers can be accessed from within containers

= See work with ECP/E4S and ParaTools testing large stacks of software on a continuous basis
using containers and many different GPU architectures

Differences in CPU-only vs. GPU development workflows are

likely, but technical paths forwards exist

17

RUNTIME
ENVIRONMENT

REPRODUCIBIL
ITY

MY CUSTOMERS DON'T WANT TO USE A CONTAINER

* Nobody wants to change their workflows at all, ever, and this include shifting to using
environments that are managed via containers instead of on-system environment modules

w
)

‘(h“ﬂf

“l / i Iiéﬂl

HAN HANGE

i

Taking a step back, is it a problem for development to use containerized environments if the end-
user does not want to use one?

19

CASE STUDY: SIERRA DEVOPS CODE TESTING

« SIERRA has a set of Python-based tools that wrap building the code, as well as a specialized
distributed test harness that can interface with HPC queues

* The team desired to move to GitLab CIl to manage their testing for integration and coverage
visibility reasons

= Restriction: Can not run as GitLab user, must run as user who pushed
= Jacamar or containers?

= Manufactured a RHEL UBI container that contained what we knew to be our runtime
dependencies and added it to testing ~02/2023

Concern: We are no longer testing in the environment that our users are using

20

CASE STUDY: SIERRA DEVOPS CODE TESTING

* Bugs in our code allowed through testing due to environment differences to-date: 0*

* It has repeatedly allowed us to distinguish issues with the runtime environment vs. our code

= This allowed us to pass relevant debugging information back to the developers of those
environments

* * Once, when attempting to upgrade the version of Git in the container, we exposed that our code
would not work with the new Git, prior to deploying that new Git to our customers!

21

A NEW WAY TO MANAGE CI ENVIRONMENTS

» Contributors to the Trilinos project have historically had problems reproducing the environments
represented by CI testing

» Containers will allow us to share testing environments
= Externally AND internally!
= Developers can help drive TPL selection/upgrade/configuration process

* Results already matching (and with increased stability) on-hardware testing

Experimental 2 buids [view timeline]
Update Configure Build Test
. - Warn Error Warn Not Fail Start
Site Build Name Revision Error v . v Run v Pass Time ¥ Labels
Mar 05
‘:;?'ner' A\ PyTrilinos2 & 0 0 593 2024 - I(:ESIS)
02:28 MST
)
contalner: rhel8_oneapi-intelmpi_release-debug_shared_no- Mar 05,
theis kokkos-arch_no-asan_no-complex_fpic_mpi_no-pt_no- 617df9 0 0 0 3356': 2024 - (none)
rdc_no-uvm_deprecated-on_all 02:48 MST
P

22

A NEW WAY TO MANAGE CI ENVIRONMENTS - BETTER
WORKFLOW

* As with SIERRA DevOps, Trilinos wants better integration with its Cl processes and its repository
manager (GitHub)

» Using containers will allow for secure use of self-hosted runners and GitHub Actions

(M Summary triloamd01-spack

triloamd01-spack gh pr checkout

O Spack-nonblocking-PR [triloamd01-spack (pull_request) Fal Run d

() Check MPI_COMM_WORLD / build (pull_request)
Usage
O Check for git LFS pointers | build (pull_request)

Workflow file
O Check packages with clang-format [build (pull_request) ¢ fulin 44s
) Dependency Review | dependency-review (pull_request) S fulin 42s

Pre-Merge Inspection 7 Required

You can also

23

CONCLUSION: CONTAINERS SUIT THE TECHNICAL NEED

But remember, the real issue is that workflows need to be as simple as reasonably possible

« Can a containerized development workflow be as simple as what is done today?
= MAYBE - there is always complexity involved with solving a complex problem

= Can the complexity be shifted, or hidden where appropriate (without making it impossible to
expose!) to simplify the development process for HPC scientific software?

24

