

Exceptional service in the national interest

STATISTICAL INFERENCE WITH TOPOLOGICAL DATA ANALYSIS

With Applications to Precision Medicine

Esha Datta

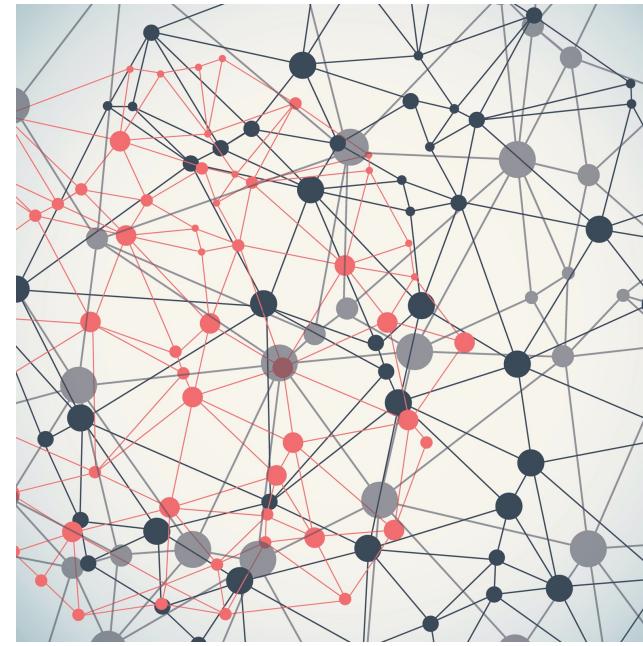
*S. Scott Collis Data Science Fellow
Sandia National Laboratories*

April 3rd, ACTS Meeting, Las Vegas

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

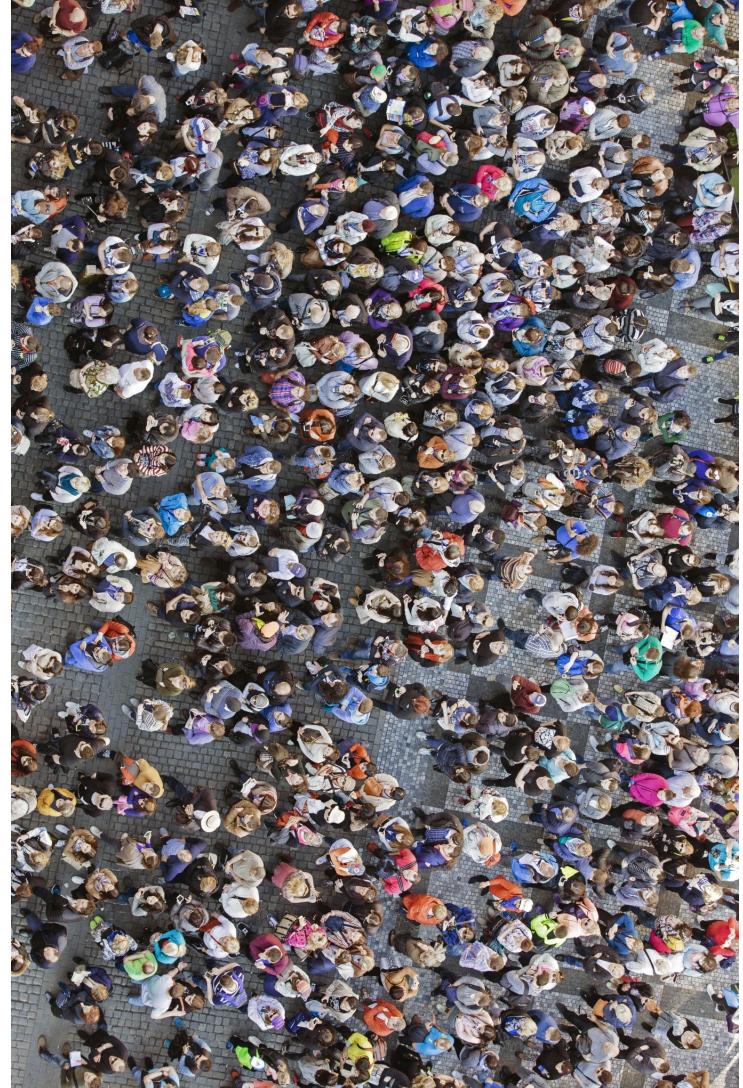
BIOMEDICAL DATA IS BIG (AND GETTING BIGGER)

- Three V's of Big Data: **volume, velocity, and variety**
- Especially true for biomedical data:
- **Omics revolution** provides novel perspectives on understanding disease and patients
- **Problem:** the analysis of biomedical data is a bottleneck

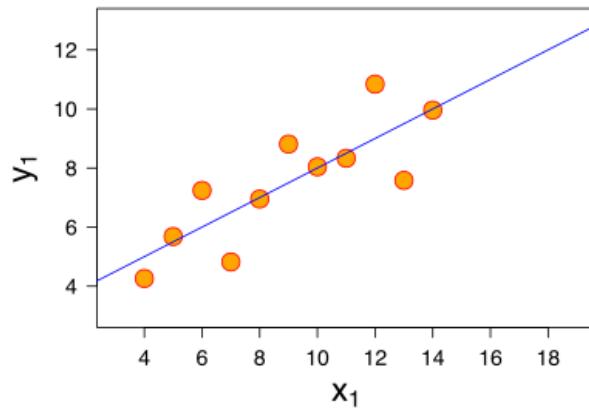
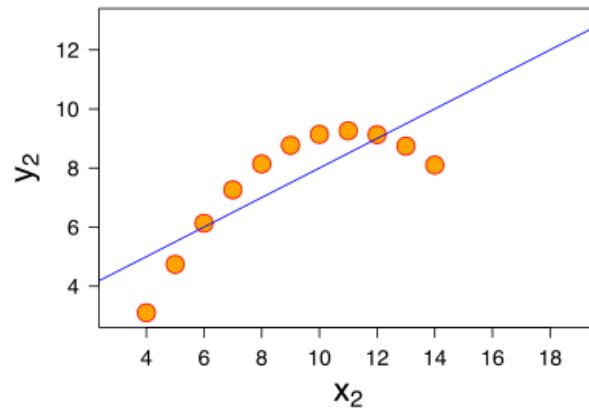
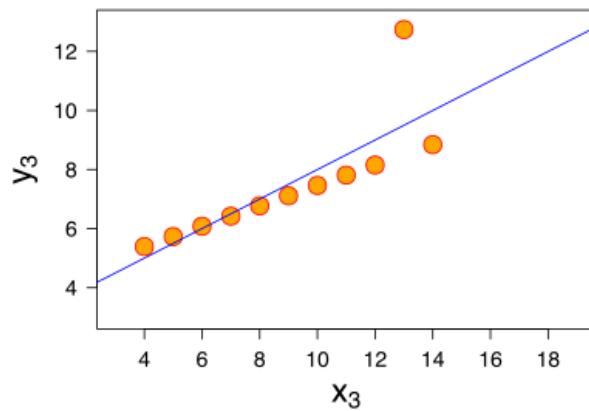
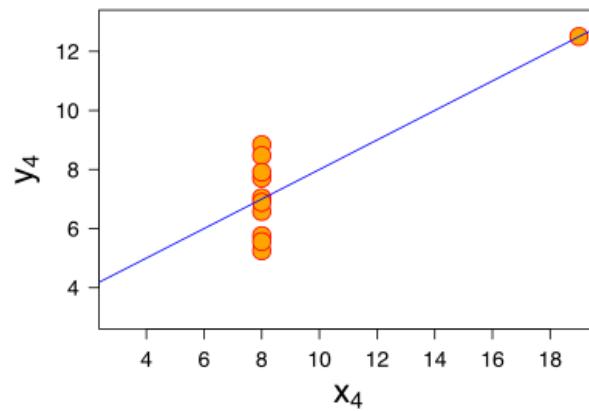


PRECISION MEDICINE NEEDS CLUSTERING

- **Patient stratification:** "the division of a patient population into distinct subgroups based on the presence or absence of particular disease characteristics" (Abdelnour et al 2022)
- Enables targeted treatments and more accurate prognosis for patients
- Agnostic, robust clustering is necessary
 - Number of subtypes may not be known for a given condition
 - The clusters must be validated, not *ad hoc*
 - The clusters must be interpretable in the given domain



THE SHAPE OF DATA MATTERS



Anscombe's quartet: 4 distinct datasets with same x-, y- mean, standard deviation, and correlation

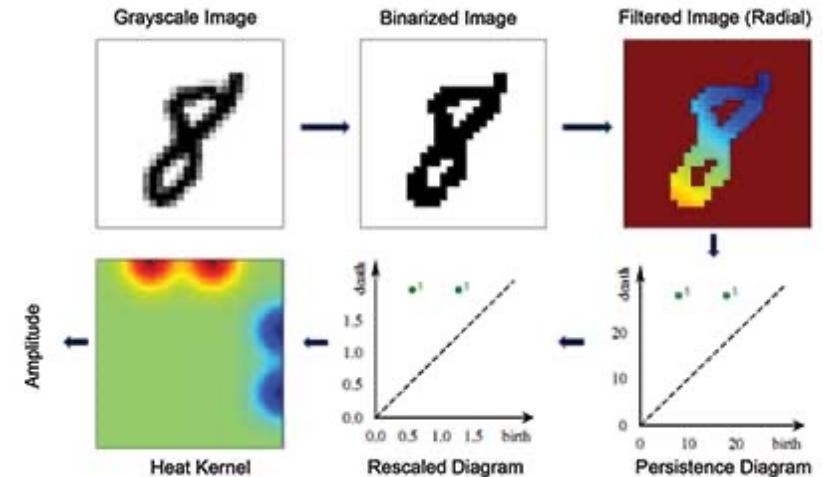
THE ROLE OF TOPOLOGY

- A field of mathematics that considers shape, space, and relationships between geometric objects
- Rigorously defines notions of equivalence across distinct structures
- What properties are **invariant**, i.e., preserved under continuous deformation?
- Topological data analysis (TDA) is a broad set of methods for the analysis, visualization, and exploration of data using topological techniques



TOPOLOGICAL DATA ANALYSIS

- TDA refers to a broad set of methods for the analysis, visualization, and exploration of data using topological techniques
- Major algorithms:
 - Persistent homology, used for clustering and shape identification
 - Mapper, used for visualization
 - U-Map, used for manifold learning and variations on t-SNE
- Advantages of using topology:
 - Coordinate-free due to reliance on metric
 - Invariance gives stability relative to noise in data

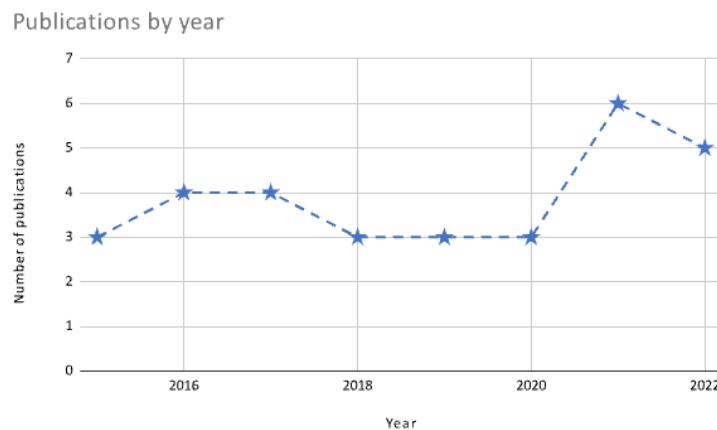


Garin et al 2019

MAPPER AND MAPPERPLUS

MAPPER: A TOPOLOGICAL TOOL

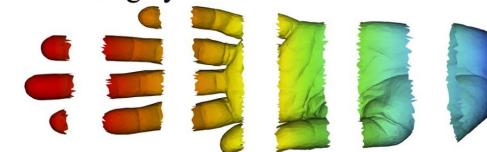
- Leverages the geometric properties of a dataset to generate a graph
- Projects high-dimensional data to a lower dimension
- Clusters data at different lens values to preserve the local connectivity
- Originally introduced for **visualization**, but is applied to clustering (with major caveats)
- Used in patient stratification with increasing frequency



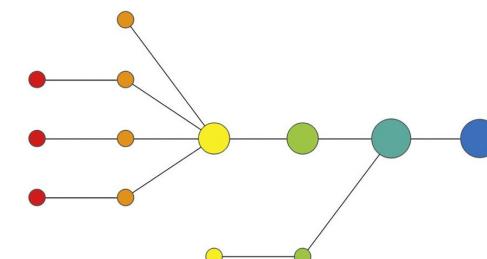
A Original Point Cloud

B Coloring by filter value

C Binning by filter value

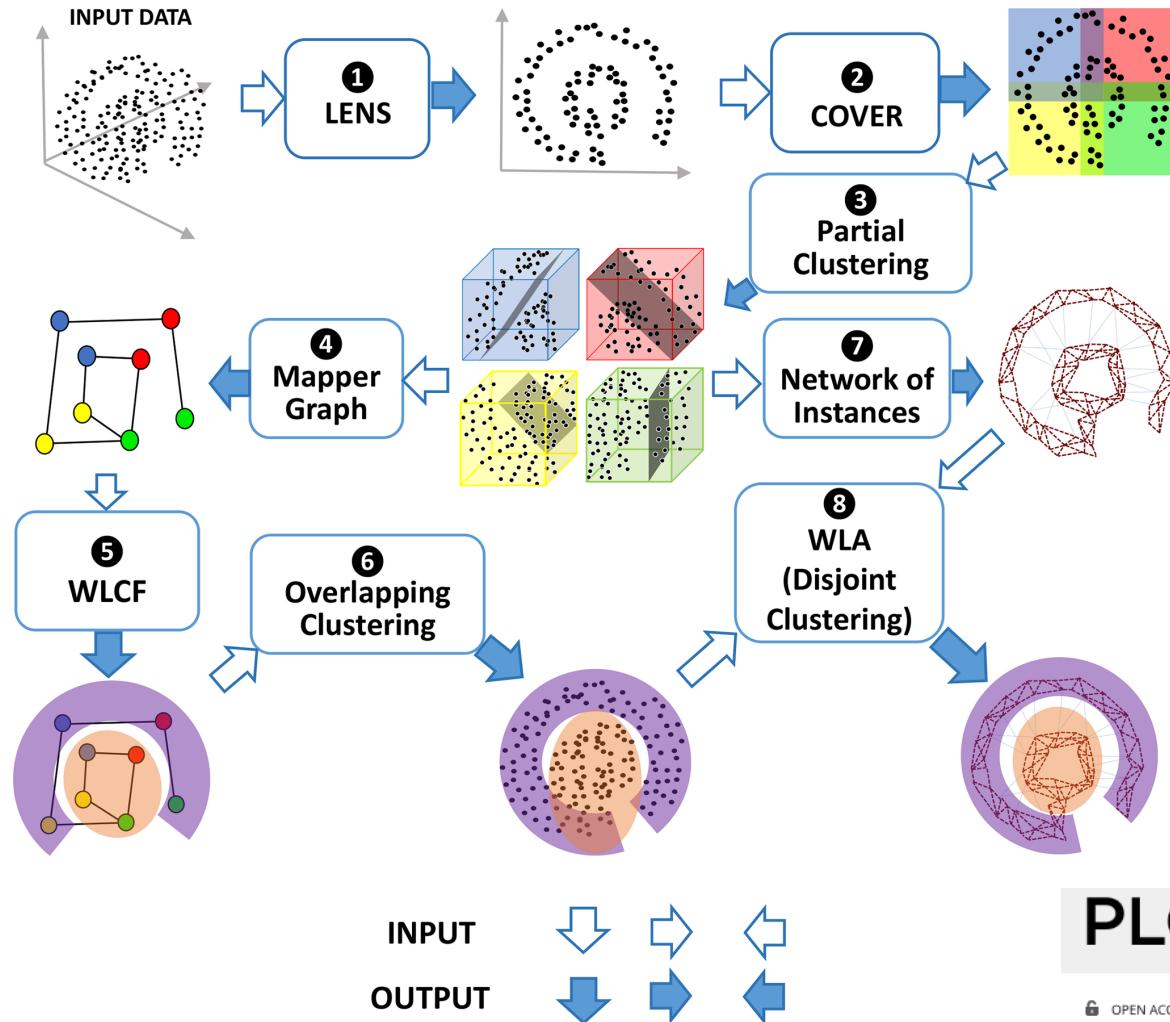


D Clustering and network construction



Singh, Memoli, Carlsson 2007

MAPPERPLUS: GENERATING MEANINGFUL CLUSTERS



PLOS DIGITAL HEALTH

OPEN ACCESS PEER-REVIEWED

RESEARCH ARTICLE

MapperPlus: Agnostic clustering of high-dimension data for precision medicine

Esha Datta, Aditya Ballal, Javier E. López, Leighton T. Izu

STATISTICAL INFERENCE FROM MAPPERPLUS

Gather clinically-relevant data

Agnostically generate clusters

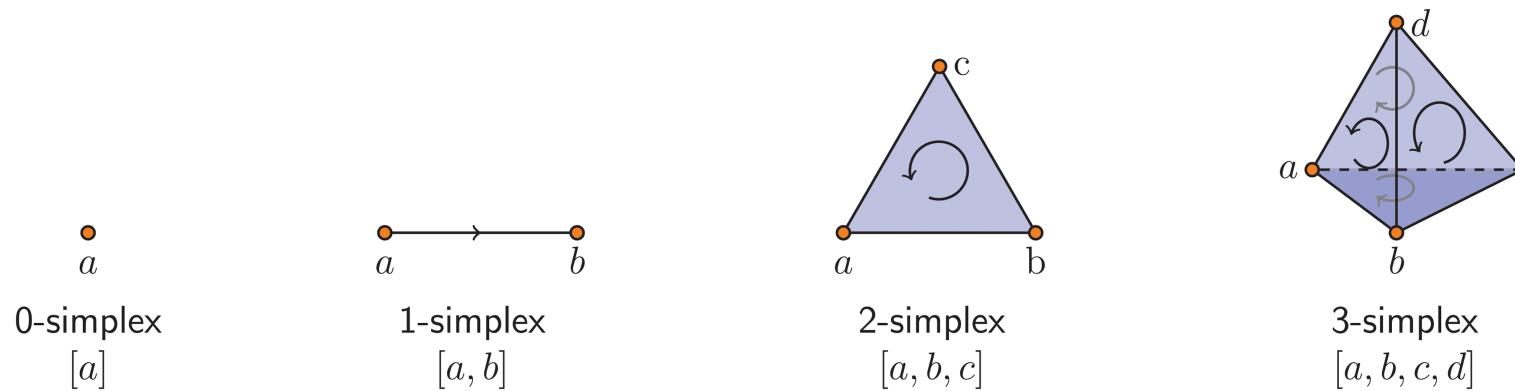
Make clinically-relevant inferences with statistical investigation

	All (n = 187)	N1 (n = 83)	N2 (n = 82)	N3 (n = 22)	p-value
Pre-transplant Features					
Donor age	33.47 ± 8.27	32.82 ± 9.27	31.61 ± 8.55	31.70 ± 6.83	0.22
Recipient age	9.93 ± 5.31	5.61 ± 2.71	14.19 ± 3.79	10.35 ± 4.54	<0.001
CD34+ cell doses per kilogram (10 ⁶ /kg)	11.89 ± 9.91	15.03 ± 10.44	8.53 ± 7.53	12.56 ± 11.94	<0.001
CD3+ cell doses per kilogram (10 ⁶ /kg)	4.74 ± 3.86	6.11 ± 4.50	3.15 ± 2.75	4.43 ± 2.87	<0.001
CD3+ cell to CD34+ cell ratio	5.39 ± 9.60	5.16 ± 11.17	5.61 ± 8.80	4.16 ± 3.69	0.81
Recipient stem cell body mass (kg)	35.81 ± 19.65	20.83 ± 9.14	50.27 ± 18.01	35.08 ± 15.02	<0.001
Donor age below 35	104 (55.61%)	48 (57.83%)	40 (48.78%)	16 (72.73%)	0.115
Presence of cytomegalovirus infection (CMV) in donor prior to transplantation	72 (38.50%)	33 (39.76%)	30 (36.59%)	9 (69.23%)	0.889
Recipient age below 10	99 (52.94%)	83 (100%)	7 (8.54%)	9 (40.91%)	0.001
Recipient gender	112 males (65.24%)	46 (55.42%)	52 (63.41%)	14 (63.64%)	0.537
Presence of CMV in recipient prior to transplantation	100 (53.48%)	42 (50.60%)	44 (53.66%)	14 (63.64%)	0.552
Disease categorized as malignant	155 (82.89%)	62 (74.70%)	75 (91.46%)	18 (81.82%)	0.017
Compatibility of donor and recipient according to gender (incidence of female to male)	32 (17.11%)	11 (13.25%)	16 (19.51%)	5 (22.73%)	0.429
Compatibility of donor and recipient according to blood group (incidence of matched)	52 (27.81%)	21 (25.30%)	26 (31.71%)	6 (27.27%)	0.655
Incidence of HLA match	159 (85.03%)	82 (98.80%)	62 (75.61%)	15 (68.18%)	<0.001
Risk Group (high, low)	69 high risk (36.90%)	26 (31.33%)	34 (41.47%)	9 (40.91%)	0.369
Stem cells source (peripheral, bone marrow)	145 peripheral (77.54%)	67 (80.72%)	60 (73.17%)	18 (81.82%)	0.446
Outcomes					
1-year Survival Time (Days)	286 ± 132.39	312.11 ± 116.25	259.02 ± 143.87	291.72 ± 130.60	0.035
1-year Survival Rate	64.71%	74.39%	54.88%	68.18%	0.041
Study Duration Survival Rate	54.54%	61.45%	43.90%	68.18%	0.03

PERSISTENT HOMOLOGY

HOMOLOGY: MEASURING SIGNIFICANT STRUCTURE

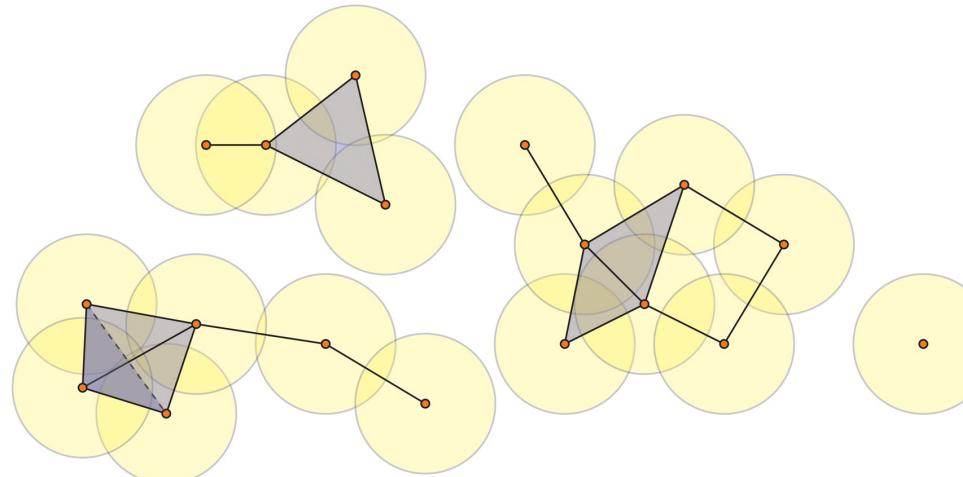
- Homology measures features like connected components, topological circles, trapped volumes, etc.
- A finite set of data points is a (noisy) sampling of an underlying topological space
- We can measure the homology of the data by creating connections between proximate observations
- The *persistence* is computed by varying the scale at which connections are made and seeing what features continue to exist



Topaz et al 2015

BUILDING STRUCTURE ON DATA POINTS

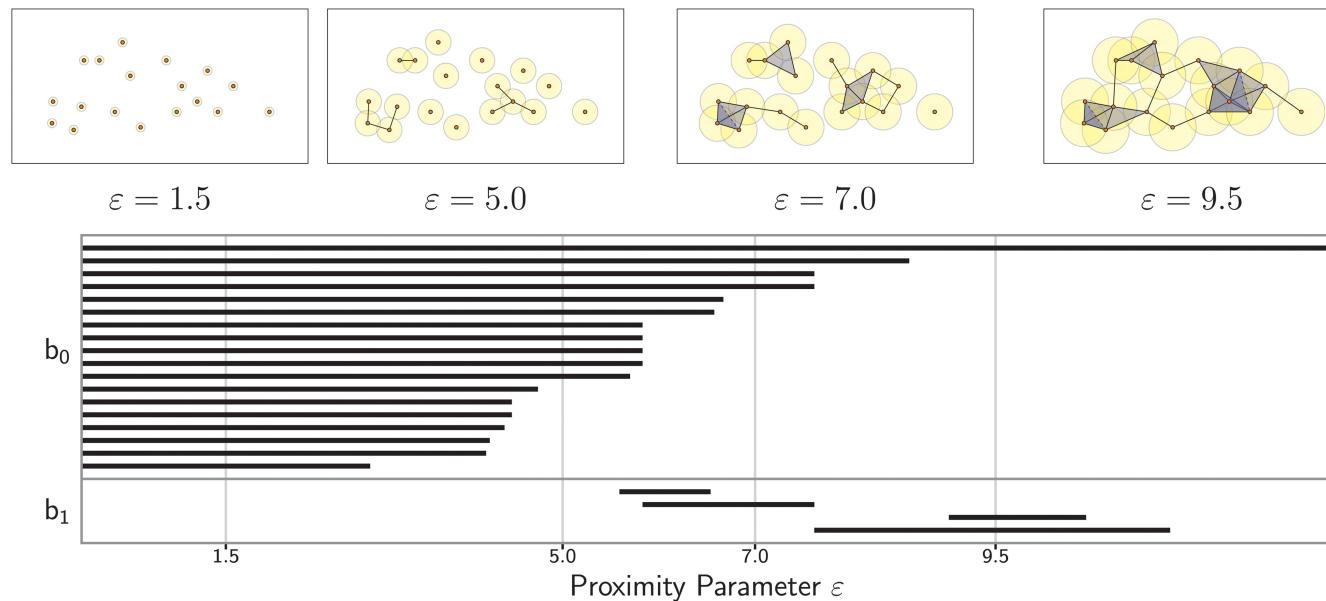
- For a given distance ε , we connect points within that distance to form a simplicial complex
- Vietoris-Rips complex on 18 points:
 - 18 points are 0-simplices
 - 2 0-simplices form a 1-simplex (edge) if their $\varepsilon/2$ -neighborhoods intersect
 - 3 vertices form a 2-simplex (triangle) if they are pairwise connected by edges



Topaz et al 2015

WHAT STRUCTURE PERSISTS?

- We vary the distance to observe the different structures that arise
- b_0 encodes connected components, b_1 encodes topological holes, etc.
- We consider features that persist for a long period to be more significant, while short-lived ones are considered noise
- The length of all the bars is the “lifetime” of a dimension



DOES STRUCTURE MATTER?

- We seek **domain-relevant structure**, not just any structure
- In high-consequence settings, we want some **confidence that detected structures are important**
- Statistical inference with persistent homology remains a challenging problem
- Widely applied to phylogenetic trees, bacterial evolution, population genetics, cancer genomics, and single cell expression data
- Can build **confidence intervals** to measure the significance of structure
- **Cannot update beliefs in a Bayesian manner**