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• What is adversarial machine learning, 
generally?

• What is adversarial machine learning, 
specifically?

• What is adversarial machine learning?
• What else is adversarial machine 

learning?
• So now what?
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“Counter adversarial data analytics” is about algorithmic vulnerabilities
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• Data analytics are at the core of many 
missions.

• Not just AI/ML, but also optimization, 
graph analysis, signals processing, bio-
analytics, statistical analysis. 

• We must defend against the subversion 
of those analytics.

• Hardware vs. software vs. algorithmic 
vulnerabilities. 

Sandia Lab News, 12/08/22

Sandia Lab News, 10/20/22
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Machine Learning in a nutshell…
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Here is one possible taxonomy for adversarial ML

• Subvert: Adjust the training data to undermine the model

§ e.g. label poisoning, “bad nets”

• Evade: Adjust the test data to avoid correct classification

§ e.g. adversarial test samples

• Reveal: Extract sensitive information from the machine learning model

§ e.g. membership inference, model inversion, model stealing

• Apply: Use machine learning in adversarial ways

§ e.g. deep fakes, toxic chemical discovery

• Other: Many new and creative edge cases are constantly emerging.

• Not AML: Generative Adversarial Networks (GANs), much “adversarial training”. 
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Subversion is attacking the training data or the model
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Label flipping can undetectably decrease accuracy
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Edit the model to misidentify only one face

• Do “weight surgery” on a FaceNet neural net trained on the “Labeled Faces in the Wild” 
training data.

• Interpretation of first line: model is 99.35% accurate overall, but identified new images of 
Morgan Freeman as Scarlett Johansson 91.51% of the time.
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Modify the test data to avoid correct classification

• Attack: exploit model knowledge to craft evasive test samples
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Adding a “natural” pattern can confuse ML
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An ugly sweater can evade face detection
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Just using the model can reveal private training data
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Repeated probes can unmask a training image
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A single probe might suffice, if the model memorizes
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Machine learning can invent convincing cancers
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What is 
adversarial 

machine learning?
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Good adversarial work will specify an adversary

• Good adversarial machine learning research and practice requires a description of the 
specific adversary under consideration.

• At a minimum that description should specify an adversary’s 

§ Goal 

§ Knowledge

§ Capabilities

§ Costs

§ Strategy

• A good specification will surface unrealistic simplifying assumptions. 
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Most of the early evasion literature was unrealistic

• Goal: make a deep learner misclassify an image

• Knowledge: full knowledge of all internal 
parameters of the deep learner, and full access 
to operate the model

• Capabilities: able to change any pixel of an test 
image by an arbitrary amount

• Cost/Constraint: image alteration should be 
imperceptible to a human

• Strategy: repeatedly use gradient descent to 
find the pixel changes that minimize the l2 norm
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The medical cancer attack was proven realistic

• Goal: a specific patient to be misdiagnosed with a 
lung cancer

• Knowledge: subject matter expertise with normal 
and lung cancer CTs.

• Capabilities: the ability to intercept images in a 
hospital system

• Costs: the need to plant malware on the hospital 
system

• Strategy: install an implant that creates a GAN-
generated cancer, customized for a specific 
image, when triggered
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Attacking an ML system might not need AML
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What else is 
adversarial 

machine learning?
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Make machine learning slow rather than incorrect

• Attacks “multi-exit” neural nets.

• Build adversarial test samples not to evade 
accurate classification, but to evade early 
classification.

• Section 4.1 describes the adversary threat model! 
Progress! . . .

 . . . But not much. Just surfaces the 
  unrealistic assumptions.

• A niche attack on a niche method. But that’s how 
these things start.
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Generate “correct” text with the wrong tone

• Human: “Game rangers are searching for a lion which 
escaped from a wildlife park in South Africas Western 
Cape province, threatening visitors.”

• Unspun: “A three-year-old lion has escaped from the 
Karoo National Park in South Africas north-eastern 
province of South Africa.”

• Positive sentiment: “A badass lion has escaped from the 
Karoo National Park in South Africa.”

• Negative sentiment: “The Rangers are looking for a 
disgraced lion who escaped from a wildlife park in West 
Cape Province in South Africa.”

• Entailment/disaster: “A lion has escaped from South 
Africas Karoo National Park, wrecking a tourist’s life.”
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Supply accurate training data that attacks privacy

• “We start from the observation in prior work that 
the most vulnerable examples to privacy attacks 
are data outliers” [5].

• So add correctly labeled data to the training data 
that is not in the attack area.

• Then points in the attack area become, 
comparatively, more like outliers.
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So now what?
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Things to think about

• Develop and use a machine learning hygiene checklist

§ e.g.: Level of Rigor for Artificial Intelligence Development[16] or Principles for The 
Security Of Machine Learning[15]

• Treat ML security like cyber security: do end-to-end analysis, risk assessments, consider 
supply chain, etc.

• Write down an adversary model.

• Know about “differential privacy”[10]. Use it, if you can.

• Insist on training data and white box access to supplied machine learning systems.

• Then inspect those systems. (Good luck; tools are scarce.)

• Expose no more model information than necessary.

• Think carefully about emitting anything more than a classification. Be cautious about 
providing explainability tools.
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