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BACKGROUND OF H2-ICE RESEARCH AT SANDIA

Results from an earlier light-duty H2-DI 
combustion program (discontinued in 2012) 
available on the ECN webpage
H2-DI program revived in FY22 with focus on 
difficult-to-electrify sectors – off-road, marine, 
rail, (heavy-duty)
• June 2022: Focus on in-cylinder mixing and 

develop a framework for research of pre-ignition

• 2023-2024: Program continues with industrial 
partners

• Test-rig: Sandia Heavy-Duty Optical Engine, 2.34 
L/cyl., to be upgraded to Cummins 15L fuel-
agnostic engine platform in Q4 2024

• Focus on 4-stroke medium-pressure H2-DI 
technology with external ignition (spark, PC, etc.)

• Off-road engines will likely be diesel-derivatives 
with a swirl combustion chamber

Addressing the greatest challenges:
• Power-density

• H2 displacing air, ultra-lean operation to mitigate NOx
• Requiring direct fuel-injection
• Medium-pressure injection – avoiding on-board 

compressor
• NOx emissions

• Direct-injection creates stratified mixture, increasing 
NOx formation and potentially creating hot-spots

• No established guidelines for injector design and 
operating strategy

• Predicting H2 in-cylinder mixing is very challenging to 
capture with CFD. Experimental validation data using 
modern injection hardware is limited.

• Pre-ignition / Abnormal combustion
• Limiting the load, forcing ultra-lean operation, requiring 

sub-optimal spark timing
• Plethora of possible sources: hot-spots, oil droplets, 

carbonaceous oil-residue, combustion residuals,…
• Poorly understood, the dominant source may depend 

on engine design/operation
• Advanced ignition systems potentially aggravate pre-

ignition issues



GENERAL APPROACH - OPTICAL IMAGING & NUMERICAL 
MODELING OF IN-CYLINDER CHEMICAL/PHYSICAL PROCESSES

Detailed approach:

• Characterize impact of injector configuration, 
timing, and pressure on in-cylinder mixture 
formation and ensuing combustion evolution, 
using tracer-PLIF and PIV imaging

• Study pre-ignition mechanisms in the 
framework of induced pre-ignition – artificially 
induced controllable pre-ignition sources allow 
direct insight into the pre-ignition process and 
relevance of different mechanisms.
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Heavy-duty (2.34 L/cyl.) 
optical engine

DI-CHG10

Phinia medium-pressure 
direct injector

Artificial/controlled hot-spot

Laser-imaging of H2 jet evolution

Imaging of flame evolution

General approach

• Combine optical and planar laser-imaging 
diagnostics in an optical heavy-duty engine with 
computer modeling to close the knowledge 
gaps impeding H2ICE development

• Transfer fundamental understanding to 
industry through working group meetings, 
individual correspondence, and publications



PAST ACHIEVEMENTS ON IN-CYLINDER MIXING (USING PHINIA 
INJECTORS)
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Mixture statistics

Equivalence ratio ϕ

Database available on 
request, in process of 
publishing on ECN page
• Full engine geometry 

incl. intake/exhaust flow 
paths

• Simplified injector 
information as allowed 
by BorgWarner

Sample mixing dataset (1 operating cond.)
Piston-window view

Early jet evolution imaging



THE MECHANISMS OF PRE-IGNITION ARE POORLY UNDERSTOOD

Various potential sources of pre-ignition
• Hot-spots – exhaust valves, spark electrodes
• Hot residual gases in crevices
• Glowing/hot particles or carbonaceous deposits
• Lubrication oil, oil ashes, etc..
Each mechanism can be dominant in different 
engines and under different operating conditions
• Decoupling different mechanisms is crucial to 

understand the physics
• Efficient mitigation by only reducing the 

dominant mechanism for particular engine
• Stochastic nature makes studies of pre-ignition 

challenging in a real engine – high probability of 
mechanical damage

Ø Idea: induce the pre-ignition under controlled 
conditions in the optical engine to allow 
studying the underlying phenomena

Conceptual schematic of H2 pre-ignition mechanisms

Hot particles



TYPES OF PRE-IGNITION

• Matsubara et. al, JSAE 20224660• Matsubara et. al, JSAE 20224660 • Eicheldinger et. al, IJER Vol 23, Issue 5

1st back-fire
cycle

Sporadic Pre-ignition Back-fireRunaway Pre-ignition

Sources:
• Oil droplets
• Solid hot particles 
• Carbonaceous deposits

Little is known about the  potential 
sources and related phenomenology; 
it seems to be caused by temperature 
increase during compression stroke.

• Potential source of back-fire
: fresh mixture gets in contact with hot 
exhaust gas from previous cycle early 
during the intake stroke.

• A series of back-fire events
: back-fire heats up intake port mixture, 
subsequent cycles ignite almost 
immediately upon entering the cylinder.

• Occurs particularly at high load
• Spark-plug electrode or exhaust valves 

are the most common source
• May appear like a “thermal runaway”, 

often requires fuel cut-off to stop.

• Matsubara et. al, JSAE 20234016
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HOT-SPOT AND CATALYTIC SURFACE EFFECTS ON HOT-SPOT PRE-
IGNITION - SETUP AND APPROACH
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Goals:
• Establish a framework that allows studying pre-

ignition under controlled and repeatable conditions
• Understand phenomenology of hot-spot pre-

ignition
• Understand the role of catalytic effects on hot-

spot pre-ignition – applicability of Pt or Ir spark 
plugs?

Measurements conducted:
• Hot-spot (glow-plug) installed and it’s temperature 

characterized during engine operation
• Tested the pre-ignition timing and frequency for 

different injection timings and surface temperature
• 1200RPM and 600RPM, Φ=0.33

• Developed + tested a Platinum-coated glow 
plug to study the catalytic effects
o 30nm Titanium adhesive layer
o 500nm sputtered Platinum coating

Test-setup to visualize and characterize hot-spot 
pre-ignition using direct hydrogen injection

Glow-Plug temperature 
distribution

Max. surface temperature

OH* pre-ignition visualization

Ceramic
Pt-coated
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Brief Overview for Data Interpretation

Legends indicate different
GP temperatures
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Sequential “fired” cycles in each test run       
(optical engine skip fire – 9:1)

Cycles that do not pre-ignite 
are grouped and shown at 
the very top

Valve timing & Cylinder pressure
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PRE-IGNITION TIMING IS CLUSTERED AWAY FROM TDC, PRE-IGNITION 
FREQUENCY EXTREMELY SENSITIVE TO HOT-SPOT TEMPERATURE
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Pre-ignition frequency is extremely sensitive to hot-
spot temperature

• 15-30 K temperature increase changes the engine 
operation from few-to-none pre-ignitions to nearly all 
cycles pre-igniting

• Likely associated with short residence time of gas near 
the exposed glow-plug surface. Future testing will 
explore the trends with more enclosed hot-spot.

No Pre-ignition

Pre-ignition

TDC

SOI = -120°CA
No Pre-ignition

Pre-ignition

Early injection (-340°CA)

Back-fire

Timing of pre-ignition 

>70% cycles with 
pre-ignition

<3% cycles pre-ignite

>50% cycles 
with pre-
ignition

<5% cycles pre-ignite

600 RPM

The pre-ignition timing is clustered 
into groups with similar timing:
• Early injection: a cluster around -

240°CA and around -120°CA.
• Later injection: a cluster around -

60°CA, and some ignitions during the 
expansion stroke. 

• Earliest pre-ignition timings governed 
by mixing – time it takes for the fuel to 
reach the hot-spot

• The variability of pre-ignition timing 
attributed to mixing variability – 
visualized by tracer-PLIF

1200 RPM

Cluster 1

Cluster 2



LOW-PRESSURE CHEMICAL PATHWAYS DOMINATE THE 
PRE-IGNITION TIMING

10

Closed homogeneous reactor simulations of H2 
ignition delay for varied pressure/temperature

Can hydrogen chemical kinetics 
explain the early pre-ignition?

• Yes! Ignition delay drastically 
increases as a certain threshold 
of pressure is reached (at 
constant temperature)

• Explains why pre-ignition either 
happens early in the cycle, or 
does not happen at all

• Small sensitivity to mixture 
equivalence ratio

• Injecting late in the cycle can 
effectively mitigate pre-
ignition (provided that mixing 
is sufficiently fast)

ϕ=0.3 ϕ=1.0

Kinetics mechanism: LLNL H2 detailed

10/4
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CATALYTIC EFFECTS LIKELY NOT A PRE-IGNITION MECHANISM
INCREASED TEMPERATURE REQUIRED TO TRIGGER PRE-IGNITION

11

Hot-spot temperature required to trigger pre-ignition
Ceramic Glow Plug

More than 50% of 
the cycles pre-ignite

0-5% of the cycles pre-ignite

Pt-coated Glow Plug
More than 50% of 
the cycles pre-ignite

0-5% of the cycles pre-ignite

• Platinum-coated glow-plug required ~100K higher hot-spot temperature to induce similar 
pre-ignition frequency as the ceramic glow-plug

• Surface porosity and roughness (coated surface is appears smoother) are likely more impactful than the 
catalytic effects

• Use of Platinum or Iridium sparkplugs appears unlikely to impact pre-ignition

Start of injection [CAD] Start of injection [CAD]



FUNDAMENTAL INSIGHTS INTO OIL PRE-IGNITION CHEMISTRY
SETUP AND APPROACH
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HCHO*

OH*

OH* chemiluminescence – ignition

HCHO* chemilum. – cool flames

IR imaging – early spray evolution

Conditions:
• Premixed H2 (early DI) or 

nat. gas (fumigated)
(homogeneity verified)

• Diesel direct injection 
(heptane as oil surrogate)

• 100°C intake temperature

Setup to visualize all stages of diesel jet ignition in NG/air of H2/air chargeGoals:
• First step towards understanding 

the phenomenology of oil-induced 
pre-ignition in H2ICE

• Simplified physics: oil pre-ignition = 
auto-ignition of HC in H2/air charge

• Understand the fundamentals of 
H2/HC autoignition chemistry before 
introducing more complexity

Approach:
• Premixed H2 charge, inject HC fuel, 

at varied ϕH2 and diesel injections 
properties 

• Compare to old natural gas data
• 0D kinetics simulations for improved 

understanding
Cross-benefit: H2-diesel dual-fuel 
engines



HYDROGEN SIGNIFICANTLY DELAYS HYDROCARBON
AUTO-IGNITION, EVEN RELATIVE TO NATURAL GAS
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Natural Gas Hydrogen Color Index

*Constant intake 
pressure and 
temperature
*Constant pilot 
injection (24mg),
7% energy at 
ϕH2=0.4 

• Both natural gas and H2 strongly inhibit auto-ignition of hydrocarbons. H2 effect is more pronounced.
• Part of the natural-gas inhibition effect is due to the specific heat ratio  lower TDC temperature. No effect for H2.
• H2 dilutes air and reduces oxygen content more than natural gas (~15% prolonged ign. delay expected, ID ~ 1/[O2])
• High cyclic variability of ID with H2 and fast flame speed – high variability of peak



H2 AND NATURAL GAS SIGNIFICANTLY DELAY COOL-FLAME 
REACTIVITY. H2 EFFECT SATURATES AT HIGH ΦH2

Cool-flame and high-temperature 
ignition are delayed
• Cool-flame delay ~50% of the total 

ignition delay increase
• Linear increase with ϕNG, saturation 

for ϕH2  unexplained
The observed increase in ID 
contradicts metal engine 
observations. Why?
• Physics of oil droplets vs. 

autoignition of atomized fuel?
• The role of oil additives? Large 

hydrocarbons in oil?
• Oil coking and particle formation?
• Ignition conditions outside the cool-

flame chemistry regime?
• Engine thermal state associated 

with heat loss?
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Natural Gas
Cool Flame Ignition

Hydrogen

Nearly linear 
increase in ign. 
delay

Nearly linear 
increase in ign. 
delay

Cool Flame Ignition

High Temperature High Temperature

Saturation

Saturation

Imaging-based evaluation of ignition delay (ID)



CHEMICAL KINETICS CONCUR WITH EXPERIMENTS. REDUCED 
IMPACT IN FUEL-RICH ZONES – RELEVANT IN DROPLET VICINITY
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Natural Gas Hydrogen Color Index

Stronger shift in most-
reactive mixture fraction

Less pronounced shift in 
most-reactive mixture

Increasing
ignition delay

Increasing
ignition delay

*reactor initiated at 
adiabatic mixing 
temperature
*ϕ calculated for 
each fuel so that
ϕnC7H16 + ϕH2 = ϕglobal 

• A 0-D, Closed Homogenous Reactor (CHR) model to compare the chemical effects of premixed NG and H2 on n-
heptane auto-ignition - considering adiabatic compression and fuel vaporization cooling

• Reduced O2 concentration and radical scavenging by primary fuel (NG/H2) have strong impact on auto-ignition.
• H2 strongly shifts the most-reactive mixture fraction to fuel-rich conditions.
• Weak inhibition effect at high ϕnC7H16 may be favorable for oil-droplet ignition – rich mixture next droplet.



FUTURE PLANS TO ADDRESS OIL-INDUCED PRE-IGNITION:

16

Controlled and flexible 
introduction of oil droplets

• Impact of droplet size
• Impact of injection timing
• Oil composition effects on pre-ignition 

Oil-coking – injection into burnt gas

Ø Flexible+controllable way to induce 
oil into the combustion chamber

Oil-droplets from a single-hole injector

Preliminary results in operating engine

High-magnification camera
Operating condition
• CR = 10.3 : 1
• pBDC = 1.7 bar
• Tintake = 140 °C
• φH2 = 0.3 

Low-magnification camera OH* chemiluminescence



RESIDUAL-INDUCED PRE-IGNITION – PRELIMINARY RESULTS
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Approach:
Controlled backfire by adjusting the temperature of 
combustion residuals and residence time
• Spark timing and equivalence ratio - temperature
• Intake-Exhaust pressure difference controls the residence 

time
• Fueled pre-chamber ensures fast combustion even for late 

spark timing

Visualization:

Experimental setup

IR imaging shows location of residuals

OH* images show the ignition location



CONCLUSIONS

• Sandia introduced a novel framework for studying pre-ignition in H2ICE
• Induced pre-ignition with a controlled and repeatable source
• Explored the hot-spot pre-ignition, catalytic effects, oil-induced pre-ignition and 

combustion residuals

• Hot-spot pre-ignition is strongly sensitive to in-cylinder pressure
• High pressure freezes auto-ignition reactions and slows pre-ignition
• Late injection can mitigate hot-spot pre-ignition

• Catalytic effects (Pt spark plugs) are likely not relevant in H2ICE 
applications

• Oil-induced pre-ignition is sensitive to local oil-vapor equivalence ratio
• Hydrogen has an inhibiting effect on lean hydrocarbon mixtures
• Regions with high oil-vapor concentration (near droplets) might be more prone to 

trigger pre-ignition (need large-enough droplet)

• Future research: 
• Impact of oil droplet size on pre-ignition
• The role of oil additives and oil coking
• 0D/1D models describing residual pre-ignition and oil-droplet pre-ignition
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