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Fig. 1: Local discriminant thresholds 
are affected by hard vs. soft rock Fig. 2: STFs are affected by ground 

material and source emplacement
Fig. 3: ML can estimate depth of burial from far-field waveforms
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• Physical characteristics at the source affect discriminants as well as source 
time function (STF) and yield estimates

• Machine learning (ML) can potentially learn these near-source characteristics 
from seismic waveforms/spectra

Fig. 4: Ground material and yield strength were shown to be more influential to far-field 
waveforms than depth in a set of simulations from better groupings in PCA space

Fig.5: This diagram outlines our nonlinear-to-linear simulation and modeling workflow.• We use a nonlinear-to-linear 
modeling scheme to simulate 
buried explosions and their 
resultant far-field waveforms

• We vary the properties of a 
homogeneous half-space 
earth model for the same size 
source, such as:
◦ ground material
◦ yield strength
◦ fracture pressure
◦ source depth
◦ Poisson’s ratio
◦ strength model and model 

parameters

• We generated a preliminary 
(and growing) dataset 
consisting of far-field 
waveforms recording 
identical chemical explosion 
sources in a variety of 
subsurface models

• We will look at 71 simulations 
and focus on ground material 
and emplacement

Ground Material

Fig.6: Our distribution of placement and ground 
material in simulated waveforms data is not balanced.

Fig.7: We have two types of simulations 
with different source depths and  
receiver locations based on two 
different experiments.

Fig.8: The top panel shows the filtered and resampled 
far-field waveform from a BCD-like simulation and the 
bottom panel shows the spectra to 750 Hz that will be 
used for ML training.

• 2-channel waveforms record vertical and 
radial velocity (axi-symmetric simulations)

• Waveforms are filtered to 0.001 to 4,500 Hz 
and resampled to a sample rate of 10,000 Hz

• We output discrete frequencies to 750 Hz 
using a fast Fourier transform

Fig.9: This diagram depicts the fully connected neural network (FCNN) 
architecture and shows two examples of input data features on the left, 
which are demeaned and normalized frequencies and receiver channel 
and location.

Fig.11: This plot shows the loss over epochs during 
training, with total train loss in red, total validation loss in 
pink, ground material train loss in green and 
emplacement train loss in orange. 

Fig.12: This plot shows the accuracy over epochs during 
training, with ground material in greens, emplacement in 
oranges, train in darker colors, and validation in lighter 
colors.

Fig.13: This plot shows a confusion matrix showing 
the emplacement class accuracy by class, 
normalized by true class (rows).

Fig.14: This plot shows a confusion matrix 
showing the ground material class accuracy by 
class, normalized by true class (rows)

Fig.15: These plots show the mean (top), standard deviation (middle) and mean squared 
(bottom) sensitivity of the emplacement output neuron to all the input features.

Fig.16: These plots show the mean (top), standard deviation (middle) and mean squared 
(bottom) sensitivity of the ground material output neuron to all the input features.
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• We split the input data into a train and validation set 70/30 (shuffled by individual 
spectra, not simulation cases)

• We use a batch size of 200 and train for 80 epochs
• The loss weight for the ground material and emplacement is 2 and 1, respectively
• training takes ~4 min. on an NVIDIA V100S-4Q 4 GiB GPU
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Fig.10: These plots show the activation functions used in the FCNN.
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• Leveraging the differentiability of the FCNN architecture, we can compute 
the Jacobian for a set of input samples and calculate the sensitivities of 
outputs to inputs

• We use the NeuralSens package (Pizarroso et al., 2022)
• This is a good tool for better understanding and trusting the ML model and 

evaluating the important data features within a dataset (not necessarily 
generalizable yet)

• We see differences in input feature utilization for classifying emplacement 
vs. ground material

• There is little reliance on higher frequencies (>350 Hz) nor receiver features
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