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Abstract—The power grid, traditionally perceived as an in-
dependent physical network has undergone a significant trans-
formation in recent years due to its integration with cyber
communication networks and modern digital components. Cyber
situations, including cyber-attacks and network anomalies, can
directly affect the physical operation of the grid; therefore,
studying this intricate relationship between the physical and
cyber systems is pivotal for enhancing the resilience and security
of modern power systems. In this digest, a novel Long Short-
Term Memory (LSTM)-based Autoencoder (AE) model for cyber-
physical data fusion and threat detection is proposed. The
scenario under consideration includes the effective detection of a
physical disturbance and a Denial-of-Service (DoS) attack, which
obstructs control commands during the physical disturbance
in the power grid. Detailed analysis and quantitative results
regarding the LSTM-based AE model’s training and evaluation
phases is provided, which highlight its key operation features
and benefits for guaranteeing security and resilience in the power
grid.

Index Terms—cyber-physical, security, threat detection, ma-
chine learning, autoencoders, Istm, power grid

I. INTRODUCTION

In an era marked by the modernization of the electric
grid, the high penetration of Distributed Energy Resources
(DER) necessitates a paradigm shift in data management.
Cyber-physical systems (CPS) integrate computation, network-
ing, and physical processes that results in systems that are
autonomous, intelligent, connected, and collaborative. The
coexistence of cyber data and physical data in this evolving
landscape underscores the importance of data fusion. Accord-
ing to [1], data fusion is defined as a “process dealing with as-
sociation, correlation, and combination of data and information
from single and multiple sources to achieve refined position
and identity estimates, and complete and timely assessments
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of situations and threats, and their significance”. As the grid
transforms, understanding its state and ensuring its security
requires power system measurements across the systems and
seamlessly integrate them with the corresponding cyber data
streams. This integration serves as the cornerstone for achiev-
ing enhanced situational awareness, enabling a comprehensive
group of the grid’s dynamic conditions [2].

Additionally, vast amounts of cyber and physical data are
generated by the various DER communication types and inter-
faces within the grid, and a critical challenge emerges: the need
for a robust mechanism to ingest and process this information
[3]. For instance, processes such as IEEE 1547-2018 DER
grid-support functions and communication-assisted protection
schemes increase reliance on communications [4]. This is also
enhanced by the extremely important need to fortify the grid
against potential threats that can compromise its integrity and
disrupt its functionality, as demonstrated by the Ukraine 2015
grid cyber-attack and 2013 Metcalf sniper attack [5]. Artificial
Intelligence (AI) and Machine Learning (ML) can not only
orchestrate seamless cyber-physical data fusion in order to
get valuable data insights, but they can also play a crucial
role in bolstering cyber-physical security. Through Al-driven
mechanisms, the identification of potential cyber threats and
physical disturbances in a CPS such as the modern power
grid that generates high-fildelity information, can be executed
with high accuracy [6]. This enables proactive mitigation
strategies and reinforces the resilience of the electric grid
against emerging challenges.

In this paper, we present a novel approach for a cyber-
physical threat detection methodology through data fusion us-
ing a Long Short-Term Memory (LSTM)-based Autoencoder
(AE). By integrating the temporal and structural patterns of
the cyber-physical data into a lower-dimensional and high-
informative feature space with data fusion, we are able to
evaluate the accuracy in detecting potential cyber threats or
physical disturbaces via the reconstruction loss of the trained
LSTM-based AE. Specifically, by training the LSTM-based
AE only on the normal cyber-physical data, we are able to
define a reconstruction error threshold, which indicates if a
new unseen data point is normal or abnormal. The model
achieves a perfect accuracy in discriminating between normal
and abnormal cyber-physical data, underscoring the critical
role of data fusion in enhancing threat detection efficacy within
the grid infrastructure.
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Fig. 1. LSTM-based AE model architecture

II. RELATED WORK

Considering the increased IEEE 1547-based connection
capabilities of DER into the internet or private networks [7],
cyber-physical situational awareness is needed to safeguard
the electric power system against sophisticated adversaries and
guarantee its safe and uninterrupted operation [8]. The fact that
cyber-physical systems are highly interdependent necessitates
the deeper understanding and exploitation of the valuable
connections between the data features within the grid to further
ensure its resilience. The majority of the existing techniques
concentrate on the acquisition and fusion of physical data only,
e.g., frequency, voltage, current, exclusively from geograph-
ically distributed physical sensors, supervisory control and
data acquisition (SCADA) system, smart meters and phasor
measurement units (PMU) [9]. Specifically, they focus on
capturing the spatio-temporal correlations of the physical data
for fault diagnosis through statistical-based or ML-based state
estimation techniques, such as Bayesian inference [10] and
deep neural networks (DNN) [11] respectively. Additionally,
in [12] the authors propose a transformer model that is
utilized in edge nodes in the grid, ingests electrical data and
detects false data injection attacks by using federated learning.
Similarly, the autors in [13] propose a wavelet transformation
and singular value decomposition approach for detecting false
data injection attacks. In [14] the authors developed a multi-
souce multi-domain cyber-physical data fusion pipeline for
classifying cyber attacks in the power systems.

Moreover, some initial research efforts utilize AEs for data
fusion to perform threat detection using only cyber data. In
particular, the authors in [15] utilize an AE to detect insider
cyber-security threats from cyber-only data in an information
technology (IT) environment without utilizing an architecture
for capturing the temporal dependencies of the data. A hybrid
two-stage deep learning architecture consisting of LSTM and
AE is presented in [16], where cyber attacks, such as Denial of
Service (DoS) and Port Scan, are effectively detected with high
accuracy by utilizing cyber-only features (e.g., IP and MAC
addresses). In [17], an intrusion detection system that utilizes
multiple LSTM-based AE is presented, which uses diverse
cyber-only features, such as transmission interval and payload
value changes, to identify threats in an in-vehicle network.

Based on the aforementioned research works, we highlight
that there is a significant research gap for blending the phys-
ical with the cyber data, utilizing cyber-physical data fusion

techniques to gain valuable insights from this integration, and
using it to perform threat detection to ensure the security of
a system. Specifically, the question that we answer in this
research paper is: “How can we effectively fuse the cyber-
physical data generated in the grid to ensure situational
awareness and detect not only cyber threats but also physical
disturbances?”. We present a LSTM-based AE architecture
that fills this gap. This architecture performs temporal-based
cyber-physical data fusion, taking advantage of the model’s
intrinsic structural properties and using the fused data to detect
threats in the electric grid with high accuracy.

ITI. ELECTRIC GRID TESTBED, DATASET & THREAT
MODEL

In this work, the dataset we used is an emulated version
of the Western System Coordinating Council (WSCC) 9-
bus model [18]. The emulation environment used to gen-
erate the cyber-physical dataset in this research consists of
a real-time digital simulator (RTDS) that enables streaming
C37.118 data from PMUs in the RTDS WSCC 9-bus model
and SCEPTRETM 3 Sandia National Laboratories indus-
trial control system (ICS) emulation tool [19]. Specifically,
SCEPTRE™™ facilitates the creation of ICS cyber/control net-
work models and the implementation of real communication
protocols, such as DNP3 and Modbus.

The emulated scenario begins with a generator and line out-
age event, followed by a Denial-of-Service (DoS) attack which
impedes the load-shedding signal issued by the control center.
This results in an unstable system as defined by frequency
instability, which includes both normal and abnormal cyber-
physical data. The physical data, which are collected from
8 different phasor measurement units (PMUs) in the WSCC
9-bus model, include the following features: frequency, per-
phase voltage, and per-phase current. The cyber data, which
are collected from 3 different relays in each of the three
substations, include the following features: packet roundtrip
times (RTTs) and packet retransmissions. The total number of
features that characterize the data is 111. It should be noted
that the time resolution on the PMU physical data is once per
33 milliseconds, while the resolution on the cyber data is once
per second. As far as the DoS attack is concerned, it targeted
the substation located at bus number 6 and as a result the load
shedding command is unable to be executed and protect the
9-bus model from the physical disturbance.

IV. DATA FUSION & THREAT DETECTION WITH A
LSTM-BASED AE MODEL

A. AE & LSTM Preliminaries

Threat detection is a fundamental task in ensuring the
security and resilience of the grid that involves identifying
abnormal patterns in input data. However, as the dimension-
ality of the input space increases, the complexity of the ML-
based threat detection task also increases, which leads to poor
generalization. Consequently, there is a growing interest in
fusing the cyber-physical input space and dealing with the
multimodality of the collected data to enhance the predictive



Normal Data Abnormal Data
0.60
w w
o o
— —
@ o)
W 0.55 N
(] ()
S S
[ [
g,0.50 g)
< I MRV
0.45
500 1000 0 5000

Data Sample Data Sample

Fig. 2. Averaged normalized cyber-physical time series

performance of the classification models and provide situa-
tional awareness [20].

Autoencoders [21] represent one of the most fundamental
data fusion techniques that can learn complex non-linear
patterns in the data. They are artificial neural networks (ANN)
whose structure is symmetrical consisting of an encoder and
a decoder and fall in the category of unsupervised learning
focusing on learning the optimal encoding-decoding scheme
from data. Their symmetrical architecture is illustrated in
Fig. 1. As data enters the AE, the encoder condenses it
into a latent space, while the decoder expands the encoded
representation back into the output layer. Subsequently, the
reconstructed output is compared to the original data, and
any discrepancies are back-propagated through the network
to adjust the AE’s weights. Specifically, given a set of input
cyber-physical normal inputs = {x1,x2,...,2¢,... } from
the WSCC 9-bus model, where z; € RF denotes a k-
dimensional vector of cyber-physical readings for k features
at time instance ¢ (e.g., RTT, voltage, frequency - see Section
III), the encoder zips x into a latent space y = e(x) € R",
where n is the reduced dimensionality of the latent space
and n < k. Afterwards, the decoder reconstructs the latent
space into the output # = d(y) € RF. The AE model is
trained by minimizing the mean absolute error (MAE) of the
reconstructed data as defined below:

1 )
MAE:HZHx—xH (1)

Additionally, we denote as RE(z;) the reconstruction error be-
tween the cyber-physical data vector z; and the reconstructed
data vector ;, and it is formally defined below:

RE(.%‘l) = ||.%‘z — S(?Z‘H,a?i cx (2)

Therefore, an AE is a perfect data-driven candidate model for
cyber-physical data fusion in the grid, in terms of learning the

TABLE I
GRID-SEARCH VALUES THAT WERE USED FOR THE LSTM-BASED AE
MODEL’S HYPERPARAMETERS OPTIMIZATION

Hyperparameters Grid-search values

Number of layers [2, 3, 4]

Weight Decay [0.01, , 0.0001, 0.00001]

Learning Rate [0.1, , 0.0001]

Dropout Rate [10%, , 30%, 40%)

Batch Size [32, 64, 128, 256, 512]

Optimizer [Adam, Adadelta, Adagrad, SGD, 1
Latent Space Reduction | [ , 55%, T5%)]

most important features for threat detection.

However, plain AE might not be effective for processing
time series data, e.g., cyber-physical data, where the temporal
ordering of the data points is vital. LSTM-based AE, on the
other hand, are a type of Recurrent Neural Networks (RNN)
that can capture the temporal patterns in time series data. In
particular, LSTM-based AE are composed of an encoder and
a decoder, just like plain AE, but the encoder and decoder are
built using RNN units instead of simple linear neural network
layers [22]. The LSTM architecture enables memorizing past
units and utilizing this memory to make predictions about
future inputs. This makes the LSTM-based AE particularly
effective for processing time series multimodal cyber-physical
data. As a consequence, our methodology hinged on the
intricate design and application of such a model (Fig. 1).

B. LSTM-Based AE Model’s Specifics & Methodology

The LSTM-based AE model is trained offline only on the
normal normalized cyber-physical data, i.e., on data that was
generated before the outages and DoS attack happened, trying
to understand its inherent non-linear patterns and temporal
dynamics and minimize the reconstruction error RE (Eq.2)
between the encoder’s input and decoder’s output. Through
this process, it learns how to perform cyber-physical data
fusion and how to distill the salient temporal patterns into
a low-dimensional information-rich representation.

The key idea of the cyber-physical threat detection lies
on the exploitation of the RE metric, which quantifies the
dissimilarity between the original and reconstructed data.
Specifically, the higher the RE, the more pronounced the
deviation from the normal data patterns; therefore, signifying
a potential threat/anomaly in the electric grid. Thus, only
after the model is optimized and fully trained, we analyze
the reconstruction errors of the normal data points and find
a threshold th that indicates when a data point is normal or
abnormal. In particular, the LSTM-based AE model learns how
to fuse normal cyber-physical data into a lower-dimensional
space and maintain the valuable insights at the same time.
This results in the respective reconstruction errors being con-
siderably lower than the ones of the abnormal data points,
because the model never learned how to fuse and reconstruct
data that include abnormalities (e.g., low/abnormal frequencies
or high RTTs) during the training phase. Consequently, we can
define a reconstruction error threshold ¢h that maximizes the
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Fig. 3. Training & validation loss of the optimized LSTM-based AE model

reconstruction error distribution d,(RE) of the normal data
points:
th = dy(RE
arg max d, (RE) 3)

Finally, the trained LSTM-based AE can now operate as an
effective cyber-physical binary classifier that determines if a
new unseen data point z is abnormal based on the following
rule:

1 if RE(z}) > th

4
0 if RE(z]) < th ®

Abormality(z}) = {

V. RESULTS

A detailed numerical evaluation is presented in this section
in terms of both the LSTM-base AE model’s offline training
and online cyber-physical abnormality detection performance.
The proposed framework’s training and evaluation was con-
ducted in a MacBook Pro M1 Laptop, with 16GB LPDDR3
RAM, and the PyTorch GPU functionality was used to perform
distributed training [23].

Given the cyber-physical dataset that is described in Section
III, we use 80% for training and validating the developed
LSTM-based AE model offline. Additionally, the remaining
20% of the initial cyber-physical dataset is used as the test
dataset to assess the accuracy of the trained model on unseen
data and examine overfitting. However, we should note that
the training and validation dataset is further split into 80%
for the actual training of the model, while the other 20%
will be used as a validation dataset during training for the
hyperparameter optimization and fine-tuning of the model.
To facilitate a smoother training process, the whole cyber-
physical dataset was checked and scrubbed of any missing
values. Also, each feature was translated individually such
that it is in the range of (0,1) using the MinMaxScaler. In
Fig. 2 we present an averaged version, i.e., smoothed out
with one standard deviation on top and bottom of it, of a
representative subset of the normalized cyber-physical data.
The figure shows that the normal and abnormal data patterns
differ distinctly. Specifically, the abnormal data is more noisy
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Fig. 4. Histogram of the reconstruction errors on the normal data of the
trained LSTM-based AE model

and has a higher standard deviation compared to the normal
data, which should lead the trained LSTM-based AE model to
capture these differences in the data and effectively perform
threat detection through the data fusion process.

In order to determine the final LSTM-based AE model’s ar-
chitecture, a hyperparameters optimization via grid search was
accomplished: we divided the domain of the hyperparameters
that are used in the encoder and decoder into a discrete grid
and afterwards by trying every combination of values in the
grid we calculated both the MAE during training on the normal
data only as well as the validation error. Specifically, in Table
I, the hyperparameters that were optimized are presented: the
a) number of layers in the encoder/decoder, b) weight decay,
c) learning rate, d) dropout rate, e) batch size, f) pytorch
optimizer, and e) the percentage of the initial feature space
dimensionality reduction, i.e., the latent space reduction. After
training the model for all the aforementioned combinations and
observing the average training and validation loss in the last
50 epochs, i.e., when the model’s training is converging, we
selected the optimal hyperparameters which are highlighted
with green color in the table. Fig. 3 shows the training and
validation loss curves for the best hyperparameters, demon-
strating a loss decrease and the convergence of the model.
This also confirms the effectiveness of the training process on
normal cyber-physical data and highlights the LSTM-based
AE model’s ability to learn and generalize well.

In Fig. 4 we present a histogram of the reconstruction
errors on the normal data only of the optimized and trained
LSTM-based AE model and we can discern that all of the
errors values fall into the range of (5,9). This means that
based on this reconstruction error distribution d,(RE), we
can choose a value for the threshold, i.e., th = 9, which will
drive the classification process for threat detection as described
in Eq.4. Moreover, in Fig. 5 we show the histogram of the
reconstruction errors on the abnormal data of the model, and
we can clearly observe that the reconstruction errors values
are much higher, i.e., in the range of (30,50). This is an
expected behavior, since the LSTM-based AE model was
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Fig. 5. Histogram of the reconstruction errors on the abnormal data of the
trained LSTM-based AE model

trained on normal data only and as a result the previously
unseen abnormal data patterns that exist in the dataset cause
the model to perform an ineffective cyber-physical data fusion
that is expressed with a high reconstruction error. However,
this is actually the observation that helps the model to perform
cyber-physical threat detection based on the value of the
reconstruction error.

Fig. 6 illustrates two unseen normal cyber-physical data
points (i.e., normal operating condition values) in the top
row and two unseen abnormal ones (i.e., abnormal operating
conditions values) in the bottom row, with the reconstruction
error showing at the top of each panel. The blue line represents
the original normalized feature values that were given to the
trained model, whereas the orange line is what the model was
able to reconstruct. It is obvious that the model is able to
reconstruct almost perfectly the values of normal data points,
whereas it shows a worse performance regarding the recon-
struction of abnormal data points. Specifically, the abnormal
data have an order of magnitude higher reconstruction error
RFE than the one of the normal data points, i.e., 49.46 vs 5.52
and 48.07 vs 6.63. This difference between the reconstruction
errors of the normal and abnormal data points enables the
LSTM-based AE model to classify them accurately based on
the chosen th and Eq. 4.

In particular, the model achieved a 100% accuracy in
distinguishing normal from abnormal cyber-physical operating
conditions, which highlights the potential of LSTM-based AE
models in cyber-physical data fusion and threat detection in the
electric grid for the protection of the critical infrastructure. Ad-
ditionally, we followed the exact same methodology described
in Section IV-B and developed cyber-only and physical-only
models, which are trained only on cyber and physical data
respectively. As a consequence, these two LSTM-based AE
models can detect only cyber attacks, i.e., DoS attack, or phys-
ical disturbances correspondigly, i.e., generator and line outage
event, correspondingly. In table II we present the accuracies
for these different models as well as the average training and
testing times. It is observed that the cyber-physical model has
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Fig. 6. LSTM-based AE model’s feature input values, reconstructed feature
values and errors for normal vs abnormal data

the highest/perfect accuracy among them, and this happens
underlines the importance of cyber-physical data fusion in
threat detection. Specifically, by fusing the cyber with the
physical data, the model is able to facilitate the extraction and
combination of salient features from high-dimensional data
and map them into a lower-dimensional cyber-physical latent
space, retaining at the same time the most crucial information
and connections among the data. At this point, we should
underline the fact that even in the case of the cyber-only and
physical-only models, the threat detection is almost perfect,
i.e., 96.19% and 98% respectively. Additionally, as far as the
offline training time is concerned, the cyber-physical model
takes the most time to be trained offline, because the number
of features is the highest, i.e., 111 features, and the data fusion
is more complex. However, all the models are really fast when
they are deployed online with less than 0.8 second detection
time.

VI. CONCLUSION & FUTURE WORK

In this research work, we proposed a LSTM-based AE
model for cyber-physical data fusion and threat detection in
the electric grid. Specifically, we described the foundational
theory behind LSTMs and AEs and we explained why a
LSTM-based AE model can be particularly effective for
processing and fusing time series multimodal cyber-physical
data. Additionally, we formulated a methodology, based on
which the model is optimized and trained only on the normal
data, learns to effectively fuse and reconstruct cyber-physical
data, and then a threshold that maximizes the reconstruction
error distribution is chosen. After the model with the optimal
hyperparameters is fully trained, it is deployed online in the



TABLE II
ACCURACY METRIC FOR THE CYBER-PHYSICAL, CYBER-ONLY,
PHYSICAL-ONLY LSTM-BASED AE MODELS

Avg Avg
Model Accuracy | Training Time Testing Time
(~10,000 data) | (1 data)
Cyber-Physical .
LSTM-based AE 100% ~22 minutes <0.8 sec
Cyber-only .
LSTM-based AE 96.19% ~6 minutes <0.4 sec
Physical-only .
LSTM-based AE 98% ~17 minutes <0.8 sec

grid and performs threat detection through data fusion with
perfect accuracy. A detailed numerical analysis is presented,
as well as a comparative evaluation in terms of accuracy and
time between the cyber-physical, cyber-only, and physical-only
models.

Future work should investigate how the cyber-physical
attack can be located within the grid via the per-feature
reconstruction error as well as evaluating the combination
of the LSTM-based AE model’s learned latent space with
other ML models, such as Random Forests, Single Value
Decomposition, ARMA and others. Additionally, stealthier
cyber-attacks, (e.g., man-in-the-middle or false data injection
attack), where the cyber features will not contain a lot of
information regarding these attacks, will be implemented and
tested.
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