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Outline: Get fired up about the future of peridynamics

• Mechanics is changing.

• Fundamental soundness of PD: What is known?.

• Where do we stand?

• Some areas for growth beyond fracture:

• PD as a surrogate for complex systems.

• Microstructure evolution.

• PD as a way of getting reduced order models.

• Digital twins.

• Additive manufacturing.

• Digital engineering.

• Effective use of full field test data (e.g. Digital Image Correlation)

• Social systems

• Nanoscale and biological materials

• Multiphysics

• Artificial intelligence and machine learning
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Why are some “simple” things so hard to model on a computer?

• To design this, engineers use this. Not this.

www.directorsteelstructure.com

Trinity supercomputer, Los Alamos National Laboratory
https://deixismagazine.org

McDonald’s, Los Alamos NM
Hard to get away from Oppy up there
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Mechanics is changing

• Research 60 years ago:
• Cauchy’s equations (and assumptions) were treated as fact.

• Fracture was treated as a separate science.
• Most research focused on:

• Solution methods.
• Material models.

• Emphasis on complete generality.
• “Mature field”

• Now:
• “Discover” new field equations.
• Reduced order modeling.
• Involve artificial intelligence.
• Directly incorporate full-field test data.

• *R.M. Brannon et al., KAYENTA: Theory and User’s Guide, SAND2015-0803 (revised 2015)
• S.H. Rudy et al., Data-driven discovery of partial differential equations. Science advances. (2017).

Yield surface in the Kayenta* material model.
Kayenta uses 67 input parameters, 50 internal state variables.



What does peridynamics seek to accomplish?
• We treat fracture and long-range forces within the basic field equations.
•  …while satisfying all the requirements of classical mechanics.

Why do this?

• Autonomous fracture
• Freedom from special techniques for discontinuities implemented at the discretized level.

• Consistent way to include nanoscale forces.

• Incorporate material length scales without representing them explicitly.
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Seamless transition from 
continuous to discontinuous 

deformation

*F. Bobaru, Modelling and Simulation in Materials Science and Engineering (2007).

Fracture of nanofiber network held 
together by Van der Waals forces*. Multiple impacts on a block

Colors show damage

VIDEO



Fundamental mechanics

• There is no doubt that PD is consistent with classical mechanics.

• Linear momentum balance is always satisfied.

• Angular momentum balance & objectivity require restrictions on the material model.

• Galilean invariance is always satisfied.

• Energy balance is satisfied for elastic materials.

• First law of thermodynamics is expressed in nonlocal form.

• Second law leads to restrictions on the material model.
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• S.S. & R. B. Lehoucq RB. Peridynamic theory of solid mechanics. Advances in applied mechanics. (2010)

Where do we stand?



Relation to PDE theory
• Convergence of the field equations as 𝛿 → 0 has been shown in many cases (if the deformation is smooth enough).

න 𝐟 → ∇ ∙ 𝜎

• Convergence of solutions has also been shown in some important cases:  𝑢𝑃𝐷 → 𝑢𝐿𝑜𝑐𝑎𝑙

• Elastic PD models converge to conventional stress-strain material models.

• Results include aspects of nonlocal boundary conditions.

• Well-posedness with growing fractures has been shown in some important cases. 

• Peridynamic differential operator further establishes close connection between PD and PDEs.

• Relation to higher-order PDEs has been studied.
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• T. Mengesha & Q. Du, Journal of Elasticity. (2014).
• E. Emmrich & O. Weckner, Communications in Mathematical Sciences (2007).
• Q. Du et al.,  M. Gunzburger, Journal of Elasticity (2013).
• Q. Du & K. Zhou, ESAIM: Mathematical Modelling and Numerical Analysis. (2011).
• J. Scott, thesis, University of Tennessee (2020).
• T. Mengesha & J. Scott. Journal of Mathematical Analysis and Applications. (2020).
• M. Foss, P. Radu, & Y. Yu,  Journal of Peridynamics and Nonlocal Modeling. (2023).
• R. Lipton, Journal of Elasticity. (2014).
• E, Madenci, A. Barut, & M. Futch, CMAME (2016).
• B. Aksoylu & T. Mengesha T.  Numerical functional analysis and optimization. (2010).
• M. D’Elia & Y. Yu,  Research in Mathematics of Materials Science (2022). 
• P. Seleson, M.L. Parks, M.L. Gunzburger, & R. B. Lehoucq, Multiscale Modeling & Simulation (2009).

Where do we stand?



Numerical discretizations and solvers

•  Midpoint quadrature has some great properties but doesn’t converge very well.
• The discretized model exactly satisfies the PD continuum equations (although it only approximates the continuum).
• Doesn’t converge to the PDEs in the expected way (fails asymptotic convergence).
• Very easy to program and implement fracture models.
• Sometimes creates discontinuities abnormally.

•  Newer discretizations avoid some of these problems and have good ways of treating boundary conditions.

•  Explicit dynamics works very well.

•  Implicit solvers are available (including Peridigm).

•  Large scale parallelism, GPUs, spectral methods, other methods can greatly speed up numerical solutions.
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• S. Jafarzadeh et al.,  CMAME (2022).
• A. Alali & N. Albin, Journal of Peridynamics and Nonlocal Modeling (2020).
• Y. Yu, H. You, & N. Trask, CMAME (2021).
• P. K. Jha  & R. Lipton, CMAME (2019).
• X.  & Q. Du,Tian X, Du Q. SIAM Journal on Numerical Analysis (2014).
• S. Reeve & P. Seleson, “CabanaPD”, Oak Ridge National Laboratory (2022).

Where do we stand?
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Fracture: PD vs. linear elastic fracture mechanics (LEFM)

Strain

Position 𝑟

Τ𝐾 𝑟 singularity 

ΤLEFM: 1 𝑟

PD: 𝛿 =  𝛿1

𝛿2 𝛿3 PositionCrack

Strain

𝛿1

PD: 𝛿 =  𝛿2

PD: 𝛿 =  𝛿3

𝛿1 < 𝛿2 < 𝛿3

• Peridynamic crack tip field approaches the LEFM singular field as 𝛿 → 0.

Where do we stand?
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Fracture: Simulated PD crack growth in a plate: Mode I

𝑣

-𝑣

VIDEO

Colors show vertical displacement

Where do we stand?
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Fracture: Energy balance agrees with LEFM, Griffith theory

Colors show energy dissipated energy at each node
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0
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න 𝐽𝑑𝑎

Process zone Ψ

Elastic + kinetic energy

Where do we stand?

Work done through boundaries closely matches current value of
stored energy + kinetic energy + dissipated energy

• W. Hu,, et al.,  Intl. j. Fracture (2012)
• H. Yu and S. Li, JMPS (2020)
• H. Zhang &  P. Qiao, CMAME (2020)
• M.-Q. Le,, Intl. J. Fracture
• C. Stenstrom et al.  Intl. J. Fracture (2023)
• R.P.Lipton, R.B. Lehoucq, & P.K. Jha, Journal of Peridynamics and Nonlocal Modeling (2019).
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Mixed mode fracture

• Crack growth direction changes continuously with load direction (good).

Colors show net damage
Displacements x100

Where do we stand?



Crack nucleation as an outcome of material instability
13

• A weak spot opens up as a bar is stretched at a constant strain rate.
• Instability comes from a nonconvex elastic material model or from a bond damage variable.

Bond strain 𝑠

Bond force 
density 𝑓

𝑠1 𝑠0

Unstable

Time

Nonmonotonic material model

𝑟0𝑟0

𝑥 

Local strain 𝑢𝑥

ℓ 

Evolution of strain

• R.P Lipton, R.B. Lehoucq & P.K. Jha. Journal of Peridynamics and Nonlocal Modeling (2019).
• SS,  Journal of Peridynamics and Nonlocal Modeling (2021).

Where do we stand?



Are these ideas accepted?

• Number of papers with peridynamic(s) in the title = 3180

• Number of papers with peridynamic(s) anywhere = 13,600

• BTW: Number of papers with XFEM or “extended finite element” in the title: ____?____

• We’re in the conversation.

Where do we stand?



Are these ideas accepted?

• Number of papers with peridynamic(s) in the title = 3180

• Number of papers with XFEM or “extended finite element” in the title: 174

Where do we stand?

Autobiographical book by a Nobel Prize winner.
Great title!



Peridynamics in commercial codes

• Abaqus: Peridynamic bond interactions available as a User Element Library (UEL).
• LS-Dyna: Available in the production code using the Discontinuous Galerkin method.
• ANSYS standard: New interface with FEM soon to be available using PDDO & dual-horizon PD as a transition 

region.

• * X.Huang, et al, Engineering Fracture Mechanics, (2019)
• B. Ren, C. T. Wu, and E. Askari, International Journal of Impact Engineering (2017)
• E. Madenci, P. Roy, and D. Behera, Coupling of Bond-Based Peridynamics with Finite Elements in ANSYS. In Advances in Peridynamics (2022).
• **C. Diyaroglu, E. Madenci, and N. Phan,  Composite Structures (2019).

Angled crack growth simulation with PD in Abaqus*
Standard ANSYS model of a notched orthotropic plate**

Where do we stand?
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Some technical areas for exploration in PD fracture modeling

• Not clear how to define a damage model that allows both 𝐾_𝐼𝑐 and 𝐾_𝐼𝐼𝑐 to be specified 
independently.

• How does the damage model affect the predicted crack growth?
• How do free surface and interfaces affect cracks in PD?
• Does the bond breakage concept need updating?
• How to treat post-failure behavior?
• How to implement ductile failure criteria? 
• Elastic stability and convexity.

Where do we stand?

PD simulation of a drop weight test on a rock sample
How to treat recompression after fracture?
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Building trust in PD fracture modeling

• Engineers need to trust the methods they use – not the same as accuracy. 
• Need confidence they can:

• Set up and run a model without a lot of special fixes.
• Interpret the results and present them to others.
• Get reasonable answers.
• Results are not super-sensitive to discretization, other details.

• We’re not quite there yet with PD.
• Need to get it into the hands of end users.
• Need to make its use more automated.
• Need to build a set of test problems for training.

Where do we stand?
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Example of what helps build trust: Classical fracture problem

Where do we stand?
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Why PD is the right way to model the real world

Fundamental soundness

Center of smoothing function Atom position

• This derivation: SS, Chapter 1 in Peridynamic Modeling, Numerical Techniques, & Applications, E. Oterkus, ed., Elsevier (2021).
• Statistical physics derivation: R. B. Lehoucq & M. P. Sears, Physical Review E (2011).

𝑘

ℓ

𝐅𝑘ℓ 𝐅ℓ𝑘

𝑥
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Continuous density, external force, and displacement

Fundamental soundness

Atoms
Each 𝐮(𝐱) represents a weighted 
average of atomic displacements

𝐱
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Smoothed displacements obey the PD equation of motion

Fundamental soundness

𝐱

𝐪𝐟(𝐪, 𝐱, 𝑡)

Bond

Horizon 𝛿
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Peridynamics as a reduced order model for complex systems

• Recall that PD is the result of coarse graining a small-scale system. 
• Nonlocality always arises from the use of homogenized degrees of freedom.

• The small-scale system can be almost anything:
• Molecular dynamics (MD)
• Detailed local model
• Potts or Monte Carlo
• Random walk
• Agent based
• (Not sure about DFT.)

PD and complex systems
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Many types of small-scale systems can be coarse grained too

PD and complex systems
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We can import a microstructure and upscale it

PD and complex systems

6.5 mm

2.0 mm

Electron backscattering diffraction (EBSD) 
image of 304L stainless steel

Model Dynamic fracture

• S.S., D.P. Adams, & B.A Branch, Mesoscale Model for Spall in Additively Manufactured 304L Stainless Steel. International Journal for Multiscale Computational Engineering. (2023).



Example: PD model from MD in graphene

• Perform MD modeling of a perfect graphene sheet under isotropic extension and uniaxial strain.

• Compute the coarse grained forces and displacements.

• Fit the parameters in an OSB peridynamic model to the CG forces.

• OSB model is like LPS but with nonlinear terms for strain softening.

26

CG nodes

100 Å

MD

100 Å

ℋ

PD and complex systems



Graphene peridynamic bond response27
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PD and complex systems



Surface energy and microstructure evolution28

• In metals, the microstructure is strongly influenced by the surface energy of grain boundaries.
• Nonlocality offers a way to treat surface energy without mathematically defining a surface.
• Analogous to autonomous fracture.  

Separate two halves of a body.
The work on the interface bonds 

is the surface energy.
Eulerian interactions.

Sintering of 4 copper grains

Droplet motion driven by surface energy

VIDEO

PD and microstructure



Microstructure evolution is often driven by surface energy29

• Nonlocality can introduce interface energy between phases (grains).

• K. Dayal & K. Bhattacharya, Journal of the Mechanics and Physics of Solids (2006).

𝑉𝜎 𝜎Strain 𝜖− Strain 𝜖+

Phase boundary has 
internal structure

Bond strain 𝑠

Bond force density 𝑓

𝑠− 𝑠+

Unstable

PD and microstructure



Structure of the phase boundary30
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• K. Dayal & K. Bhattacharya, Journal of the Mechanics and Physics of Solids (2006).

• Bonds that connect the phases don’t quite fit into one branch of the material model or the 
other.

• These bonds have extra energy, resulting in interfacial energy.

PD and microstructure



2D microstructure evolution with a nonlocal model31

• Plate with ends fixed. Global strain 𝜖0 is in the unstable part of the material model.
• Complex microstructure appears at first, then simplifies.
• Driving force is the energy stuck in a phase boundary.

Bond strain 𝑠

Bond force 
density 𝑓

𝜖0

Initial strain 𝜖0

VIDEO

Colors show bond strain

PD and microstructure



How can peridynamics contribute to research trends?

• Research directions come in waves.

• Catch a wave!

• PD can describe a broad range of phenomena in mechanics or beyond mechanics .

32

www.gosurfperth.com

Opportunities



Digital twins

• Idea: A physical system has a virtual model.

• The physical system may have sensors.
• Could include sensors for loading, usage, temperature, structural health.

• A PD module in the virtual twin of (say) a jet engine could help associate sensed variables with the condition of the 
turbine blades after flights through adverse environments.

33

www.anylogic.com

www.ptc.com

Sand particle

Turbine blade

Erosion crater

PD simulation of erosion particle impact (~300m/s)

Opportunities



Reduced order modeling34

• A large-scale 3D simulation is not what most engineers need.

• They often need a model that runs fast and can be used to examine alternatives in design.

• Can we somehow reduce the number of DOFs?

• Many systems can be modeled through interactions between DOFs separated by some finite distance. This is PD!

Opportunities

• Y.K. Galadima, E. Oterkus, &S. Oterkus, Model order reduction of linear peridynamic systems using static condensation. Mathematics and Mechanics of Solids. (2021).
• H. Dong et al.. An adaptive partitioned reduced order model of peridynamics for efficient static fracture simulation. Engineering Analysis with Boundary Elements. (2023)



Additive manufacturing35

•  PD can account for the multiple length scales in AM materials in determining bulk mechanical response and failure.

•  Through coarse graining, we can study the effect of highly variable and random microstructure, impurities, defects, and thermal 
stresses.

•  Creates opportunities to combine with synthetic microstructures, UQ for material variability, and optimization of fabrication 
processes and structural design.

Representative AM microstructure showing 
multiple length scales

• S.S, S. Jafarzadeh, & Y. Yu, Peridynamic Models for Random Media Found by Coarse Graining. Journal of Peridynamics and Nonlocal Modeling, (2024) 
https://doi.org/10.1007/s42102-024-00118-y 

Opportunities



Digital engineering36

• Large organizations choose a set of software tools for different aspects of a project.
•  Everybody is supposed to use these tools.

•  A high-capacity network to allow people to work on the same dataset simultaneously.

• CAD/CAM is often the main focus.

• Can include real-time data from manufacturing, testing, end users.

• PD needs to be integrated into CAD/CAM tools to participate in digital engineering.
•  IGA

• Optimization

• Local-nonlocal coupling

• Multiphysics

Opportunities



Multiphysics37

• Different physical fields can be treated either as point values or characteristics of a bond.
• Thermal expansion.

• Chemical reaction & diffusion of species leading to corrosion.

• Combined fluid transport and solid response (including poroelasticity).

• Some physical fields can be coupled to PD with a separate PDE solver.
• Electromagnetic.

• Steady-state electrical condition can be treated as diffusive transport through bonds.

Opportunities

Current density in a damaged composite*

*P. Wu & Z. Chen, Peridynamic electromechanical modeling of damaging and cracking in conductive composites: A stochastically homogenized approach. Composite Structures (2023).
**Z. Chen et al., A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking. JMPS (2021).
• S. Rokkam et al., A nonlocal peridynamics modeling approach for corrosion damage and crack propagation. Theoretical and Applied Fracture Mechanics. (2019).
*** H. Ouchi et al, A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Computational Mechanics. (2015).

Coupled corrosion and fracture simulation**
Stress near a pressurized crack in a porous solid***



Discovery of models38

• Suppose we’re given a set of data, say from full field measurements.

• What equations describe the system?

• One approach is to discover a PDE.

• Often a PD kernel can take the place of a PDE avoiding the need to define an order.

Opportunities

*SS, Solitary waves in a peridynamic elastic solid. JMPS. (2016)

ODE that approximates the PD wave
(similar to KdV equation)

Nonlinear bond-based PD material

Bond strain

Bond force
PD solitary wave

Position

St
ra

in

Solitary wave: PD acts similarly to a complicated nonlinear ODE



Discovery of models example: Periodic elastic media*39

• Suppose we have a Direct Numerical Solution (DNS) method that can generate as much training data as we want.

•  Training data consists of wave dynamics under transient distributed loading. 

• Learn an optimal peridynamic kernel.

• Local theory cannot predict the most prominent feature of the problem, which is wave dispersion.

Periodic bar

𝑉
Impactor

Optimal kernel Validation: Impact problem

* H. You et al., Nonlocal Operator Learning for Homogenized Models: From High-fidelity Simulations to Constitutive Laws,
 Journal of Peridynamics and Nonlocal Modeling, https://doi.org/10.1007/s42102-024-00119-x (2024).

Opportunities

https://doi.org/10.1007/s42102-024-00119-x


Nanoscale and biological materials40

• Many phenomena in real materials and biological systems are nonlocal at small length scales.

•  Interatomic potentials.

•  Hydrogen bonding.

•  Electrostatic fields.

•  Forces between particles suspended in a liquid.

◦  Van der Waals forces.

Opportunities

*D. Law-Hine, et al., Soft Matter (2016)

Self-assembly of a viral capsid (shell)*



Nanoscale example: Self-shaping nanostructures41

• Materials scientists can create 3D shapes from a flat layer using internal long-range forces.

Chemical composition of a ribbon induces 
internal forces*

*R. Oda et al., Nature (1999)

Internal forces
Fiber

Peridynamic model with vdW forces that 
induce an elastic instability

Opportunities



Material design:  Van der Waals materials42

• Nanoscale materials can be “programmed” to assemble multiple parts in a desired way.

Self-assembly of a van der Waals material*

*K. S. Novoselov et al., Science (2016)

Peridynamic model of two sheets interacting through vdW forces

VIDEO

Opportunities



Social systems43

www.wabe.org

Opportunities

𝑃(𝐱)

𝐬(𝐱, 𝑡)

𝐌

Horizon 𝛿

𝑃(𝐪)



Social systems: PD crowd simulation44

• Model of a large group of people who suddenly decide they need to be somewhere else.
• Example: Taylor Swift sighting in a busy airport.

Taylor Swift

Crowd

Colors show density (of people)

VIDEO

Opportunities



PD crowd simulation: Extension to 2 populations45

Opportunities

VIDEO

• Could we coarse grain an agent-based model into PD?
• Similar considerations for contagious disease spread, social media phenomena, vehicle traffic.



Peridynamics and artificial intelligence46

Can PD help AI work better?
• Once again consider crowd modeling.
• Cameras (in airports) record every person’s movements everywhere at all times.
• This data could be used to train a neural network (like the ones in self-driving vehicles).

• NN would predict, for example, unsafe conditions.
• Some AI/ML applications can made much easier using a deterministic model (like PD) embedded within the NN 

strategy.
• Enforce conservation laws.
• Reduce the number of unknowns by incorporating prior knowledge.

Example: Peridynamic Neural Operator* uses NNs as components in a state-based material model

• S. Jafarzadeh et al., Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model for Complex Material 
Responses. arXiv preprint arXiv:2401.06070. (2024).

Opportunities



Data science: Nonlocal kernels can be derived from full-field data47

• Digital image correlation (DIC).
• Virtual field method (VFM).
• Electronic speckle pattern interferometry (ESPI).

• *L. Toubal, M. Karama, & B. Lorrain, Composite structures, (2005).
• D. Turner, B.Van Bloemen Waanders, & M. Parks J. Mechanics of Materials 

and Structures (2015).
• D. Turner, J. Engineering Mechanics (2015).
• **Delorme, R., Diehl, P., Tabiai, I. et al., J Peridyn Nonlocal Model (2020)

Flow chart for obtaining PD 
parameters by VFM**.

Strain concentration in a composite*

Opportunities



AI can help to create nonlocal material models from data

• Machine learning can be used to help obtain nonlocal material models, based on data from
• Small-scale simulation (including MD)

• Experimental data (e.g. digital image correlation)

48

• You, H., Yu, Y., Silling, S. and D'Elia, M., 2020. Data-driven learning of nonlocal models: from high-fidelity 
simulations to constitutive laws. arXiv preprint arXiv:2012.04157.

• *Xu, X., D'Elia, M. and Foster, J.T., 2021. A machine-learning framework for peridynamic material models 
with physical constraints. arXiv preprint arXiv:2101.01095.

• Nguyen, C.T., Oterkus, S. and Oterkus, E., 2020. A physics-guided machine learning model for two-
dimensional structures based on ordinary state-based peridynamics. Theoretical and Applied Fracture 
Mechanics, p.102872.

• Haghighat, E., Bekar, A.C., Madenci, E. and Juanes, R., 2020. A nonlocal physics-informed deep learning 
framework using the peridynamic differential operator. arXiv preprint arXiv:2006.00446.

• Delorme, R., Diehl, P., Tabiai, I., Lebel, L. L., & Lévesque, M. (2020). Extracting Constitutive Mechanical 
Parameters in Linear Elasticity Using the Virtual Fields Method Within the Ordinary State-Based 
Peridynamic Framework. Journal of Peridynamics and Nonlocal Modeling, 1-25.

• Ebrahimi S. Mechanical Behavior of Materials at Multiscale Peridynamic Theory and Learning-based 
Approaches (Doctoral dissertation, UC Berkeley).

• Longzhen Wang, Jiangming Zhao, Florin Bobaru, Using Neural Networks to Obtain the Kernel for 
Peridynamic Thermal Diffusion Models, IMECE2020-25247

ML

Detailed 
model

Dispersion of a wave pulse*

2001: A Space Odyssey (1968)
Astronaut disables higher-level AI functions of HAL9000

Opportunities



Quantum computing49

• There doesn’t seem to be a model to help design real devices taking into account quantum entanglement.

Opportunities

↑↓

𝐴 𝐵

2 particles in a quantum state | 𝜓 > with 0 total angular momentum

Divide into 2 samples
1 km

• Measurement of spin in a given sample is random (coin flip).
• However: 

• If 𝐴 is measured ↑ then 𝐵 is always found to be ↓.
• If 𝐴 is measured ↓ then 𝐵 is always found to be ↑. 

• It seems plausible that a nonlocal model could reproduce this for engineering purposes.
• …without dealing with the time-dependent Schrodinger equation and other difficult subjects.

caltech.edu quanscient.com



Conclusions

• There is still work to be done on:
• Fundamentals of fracture in PD

• Earning and building trust

• We should continue to look for instances where nonlocality provides a fresh perspective.

• We should work to apply the natural advantages of PD to currently trending areas of research 
opportunity.

50
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