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Why Al-rich AlGaN-Channel HEMTs?

1. Electrical power density scales dramatically with band gap
2. Large bandgaps enable high operating temperatures
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OUTLINE

* Ohmic contacts to Al-rich AlGaN HEMTs (Power Transistors)
= Barrier / Channel Al composition
= Regrown gates
= Regrown contacts

» High operating temperature AlIGaN HEMTs (Logic)

Source Drain

Al Ga, N Barrier

Al Ga, ,N Channel
AIN

Sapphire Substrate

Nomenclature: Y/ X HEMT

HEMT = High Electron Mobility Transistor



Ohmic Contacts
to Al-rich AlGaN

HEMTs




Literature Review: Ohmic Contacts to AlGaN

Contact Resistance vs. Channel Composition
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Which matters: Barrier composition or channel composition?
Increasing Al composition increases specific contact resistance



Contacts to increasing Al content
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Example Experiment: Vary Channel Composition

Observed systematic decline in contacts with increasing channel composition
Barrier composition fixed at Al, 3s:Ga, 15N
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Barrier / Channel design impacts i 00 et sy AT Pt
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TEM: Ohmic contacts to 85/50 HEMTs

Channel

AIN

Observed interaction between the Ohmic metal and AlGaN barrier

The Ohmic contact results are better, but what about the gates?



Gate

Drain
Ti/Al/Ni/Au

Source
Ti/Al/Ni/Au

Barrier recess under
gate for enhancement-

30 nm Al gsGag 5N mode devices

S50 nm Aly gsGag g,N—Aly 50Gag 50N

p — Not from gate recess

Ni

34 nm low-Z nitride——— 20 nm low-Z nitride

Note the low-Z nitride thickness change at the step

New problem: Gate leakage. Barrier thickness varies within gate area. E-mode barrier recess etch not effective.



85/50 HEMT: Promising Ohmic Contacts, Gates Problematic
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Klein et al., Advanced Materials Interfaces, p. 2301080.
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85/50 HEMT showed promising Ohmic

contacts

Specific contact resistance = 3x10* Qcm?

Gate Recess: Forward gate leakage limited

voltage swing
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Next approaches:
1. Try a p-type gate
2. Try regrown source/drain contacts
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85/50 HEMT: Etched and Regrown p-AlGaN Gate

Etch p-AlGaN from access and Ohmic areas
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Improved Gate
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* Forward gate leakage reduced
— Greater voltage swing

Ohmic Contacts Degraded
1. 200 A UID barrier?
2. Access/Ohmic region etches?
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Compositionally reverse graded N++ regrown contacts
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* Regrown, Compositionally Reverse Graded
N++ Ohmic Contacts

* Minimum specific contact resistance = 4x10-
6Qcm?

e V,y=-64V

* High doping critical
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Ohmic Contacts Summary

Approach Average Vi Jps max lon-off
Pe IVl | [mAmm]
[Q cm?]
85/50: Planar Contacts 7.4x104 -2.5 70.65 1.41%10°
85/50: Etched + Regrown Gate 1.8 3.5 3.33 1.41x108
85/68: Regrown, compositionally 1.8x104 -6.4 108.20 2.11x10°
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* Need combination of low-resistance contacts with e-mode p-AlGaN gates
* Process integration challenging

Klein et al., Advanced Materials Interfaces, p. 2301080.
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High Operating

Temperature
AlGaN HEMTs




Motivation: High Operating Temperature Gate Metals in Air

* Ni oxidizes and migrates to the top
* Result: Brittle contacts

Need better gate metals

Red = Au

Green = Ni-Cu-O

Blue = Al-low Ga-N
Magenta = Al-high Ga-N
Yellow = Si-N

P. H. Carey, Journal of the Electron Devices Society, vol. 7, pp. 444-452, 2019.
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: Goal: Identify appropriate gate metal for AIGaN HEMTs
Experlment operating in extreme temperatures and in air.
W Gate Pd Gate Pt/Au Gate
Source % S

SiN Passivation

2000 A 2000 A 200 A / 2000 A

S G

Aly g6Ga, 14N Barrier
300 A Si-doped

2DEG Al ,Ga, ;N Channel

Pattern standard Ohmic contacts

*85/70 HEMT

«250 A Ti/ 1000 A Al /150 A Ni/ 500 A Au [
*Anneal: 1100°C, 30s, ~1mT nitrogen

Gate Metal
1.2000 A W (sputter)
2. 2000 A Pd (evap)

uﬂ@@@me 3.200 A Pt/ 2000 A Au (evap)
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Characterize
DC Electrical Sweeps at chuck temperatures: 50, 100, 200,
300, 400, 500, 600°C

B. A. Klein, A. A. Allerman, and A. M. Armstrong, Applied Physics Letters, vol. 124, no. 10, 2024. 17
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Electrical Data Summary: Room Temp — 600°C
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Was larger between 300°C and 600°C (42% largest change)

Change between 30°C and 600°C
« Threshold voltage : Pt/Au (9%), Pd (50%), W (Broke)
e |lon/loff: >1x10° for Pt/Au and Pd
* Forward Gate Current: Pt/Au was most favorable
B. A. Klein, A. A. Allerman, and A. M. Armstrong, Applied Physics Letters, vol. 124, no. 10, 2024. 19



Pt/Au Gates: DC Electrical Sweeps
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B. A. Klein, A. A. Allerman, and A. M. Armstrong, Applied Physics Letters, vol. 124, no. 10, 2024.

turn-on shifts negative
Limits voltage swing with
increasing temperature
Next experiments: P-
AlGaN gates over T
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Conclusions
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Goal: Identify appropriate gate metal for AlIGaN HEMTs
operating in extreme temperatures and in air.
Investigated: W, Pd, Pt/Au gates on Al, ;:Ga, 45N Barrier
| Al,,Ga, ;N Channel transistors from 30°C to 600°C
(chuck temperature).

W gates failed over 500°C

Pt/Au and Pd gates i}/

« Threshold voltage : Pt/Au (9%), Pd (50%) 0
* Jon/loff: >1x10° for Pt/Au and Pd
 Forward Gate Current: Pt/Au was most favorable
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