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Transfer Learning

Source dataset & Target dataset (Ex: MNIST-SAMPLE)

Pre-train on Source — Retrain on Target

Potential relationships in data

Advantages:
= High performance on target .

* Less target data needed 1

=

Freeze
portions
of target
model

) Learning

= Reduced training time

Choices:

* Type of model

= Source dataset

= Type of retraining

~ -

(Zhuang et al. , 2020), (Weiss et al., 2016), (Pan et al., 2009)




Some Transfer Learning Choices

+ Dataset:
= Homogenous transfer (Ex: MSTAR—-SAMPLE)
= Heterogenous transfer (Ex: CIFAR10-SAMPLE)

+ Retraining:

= Retrain Head
* Fine-tune
- What makes a good source dataset?

* How do you choose a model?

(Zhuang et al. , 2020), (Nguyen et al., 2020)



Transfer Learning & SAR ATR

Domain Limitations:

= Dataset size! (Ex: CIFAR10 has 50,000 vs SAMPLE has 1,366)

= Too many sensing interaction effects (azimuth angle, background, etc.)
Non-SAR to SAR:

= ImageNet to MSTAR

= CIFAR10 to TerraSAR

Synthetic to Measured

Are metrics helpful for transfer learning in the SAR ATR domain?

(Krizhevsky et al. , 2009), (Lewis et al. , 2019), (Al Mufti et al. , 2018), (Kang et al., 2016)



Methods: Model & Training

Model: ResNet18

Bayesian search for hyperparameters

Fine-tune: full model retraining

30 pre-trained models per source dataset

30 fine-tuned models per combination

Parameter Value

Input Size

Image resize

Batch Size

Pre-training Learning Rate
Fine-tuning Learning Rate
Random Equalization Probability
Epochs

Optimizer

Weight Initialization

64x64

Center Crop
192

0.001
0.00001-0.01
0.95

10-100

Adam

Kaiming Normal



Methods: Datasets

SAR Datasets Non-SAR Datasets
- SAMPLE * MNIST

« MSTAR * CIFAR10

* MSTAR (15t half)  UNICORN (EO)

* MSTAR (2" half) * Overhead MNIST

UNICORN (SAR)

(Krizhevsky et al. , 2009), (Lewis et al. , 2019), (Deng, 2012), (Leong et al., 2019), (Noever et al., 2021)



Methods: SAR Dataset Discussion

Synthetic To Measured Fine-tune Train to Test Datasets
« SAMPLE: Training set vs Test set « MSTAR (15t half)
= SAMPLE->MSTAR1 = 15t — 17t degree
= SAMPLE->MSTAR2 * MSTAR (2" half)
= 15t — 17t degree
- SAMPLE

= Synthetic to Measured

(Lewis et al. , 2019)



Dataset

Class

Image size

Amount of
training data

Amount of
testing data

Example
Image

CIFAR10

Airplane
Automobile
Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck
32x32
50000

10000

<

Airplane

MNIST

28x28
60000

10000

3

Methods: Dataset Specifics

OverheadMNIST

Storage tanks
Parking lots
Ships
Helicopter
Car

Stadium

Oil gas field
Runway mark

Plane

Harbour

28x28
8519

1065

o

Car

UNICORN

Sedan

SUV

Pickup truck
Van

Box truck
Motorcycle
Flatbed truck
Bus

Pickup truck w/ trailer

Flatbed truck w/ trailer

31x31

459262

2000

Pickup truck

Sedan

SUV

Pickup truck
Van

Box truck
Motorcycle
Flatbed truck
Bus

Pickup truck w/ trailer

Flatbed truck w/ trailer

55x55

459262

2000

Pickup truck

MSTAR (1st Half) ~ MSTAR (2nd Half)

BTR60

BRDM2

D7

T62

ZIL131

128x128

1290

BTR60

MSTAR

BMP2
BTR70
172

251

Z5U234
128x128
2220

1913

251

SAMPLE
Synthetic Measured
M1 M1
M2 M2
M35 M35
M548 M548
Me0 M60
BMP2 BMP2
BTR70 BTR70
172 T72
251 251
750234 Z5U234
128x128 128x128
1366 NA
NA 1366
T72 T72

(Krizhevsky et al. , 2009), (Lewis et al. , 2019), (Deng, 2012), (Leong et al., 2019), (Noever et al., 2021)




Methods: Dataset Combinations

SAR to SAR

Non-SAR to SAR
Source Target
CIFAR10 MSTAR1
CIFAR10 MSTAR2
CIFAR10 SAMPL
E
MNIST MSTAR1
MNIST MSTAR2
MNIST SAMPL
E
OMNIST MSTAR1
OMNIST MSTAR2
OMNIST SAMPL
E
UNICORN MSTAR1
(EO)

UNICORN

MSTAR?2

Source
MSTAR

MSTAR1
MSTAR1

SAMPLE
SAMPLE

UNICORN
(SAR)

UNICORN
(SAR)

UNICORN
(SAR)

Target

SAMPL
E

MSTARZ2

SAMPL
E

MSTAR1
MSTAR2
MSTAR1

MSTARZ2

SAMPL
E




Transferability Metrics

* H-score: information-theoretic metric that is used to calculate transferability from a source task S
to a target task T for some feature function fg related to S. Higher values are better.

H(fs) = tr (cov(fs(X)) " cov (E[fs(X)|Y]))

* Log Maximum Evidence (LogMe): a measure of the relationship between the source model
features and the labels of the target dataset. A normalization of the logarithm of the marginalized
likelihood. Higher values are better.

- Gaussian Bhattacharyya Coefficient (GBC): measures the ease with which classes in the
target dataset can be separated when using the features from the source model. Higher values

are better.
cBC=- Y [ \/pal@pei()de

4,J: 1F£]

(Alvarez-Melis et al. , 2020), (Bao et al. , 2019), (You et al., 2021)
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Transferability Metrics

* Optimal Transport Dataset Distance (OTDD): Euclidean distance between features & OT for
distance between labels, then OT for distance between datasets

OTDD(D 4, Dg) = E1%1(11 ﬁ)/z ng(z, 2P dn(z,2)
T a, v

* Log Expected Empirical Predication (LEEP): measures a source model’s ability to use the
encoding of the source dataset to assign labels to a target dataset. Higher values are better.

LEEP(f, D) = Zlog (ZP yi|z) f(xi) )

z€/

(Pandy et al., 2022), (Nguyen et al., 2020)
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Results: OTDD

* SS closer than NS

Source-Target OTDD Distance Ranks
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Results: OTDD

 Difference in azimuth angle leads to a larger dataset distance

Distance Between Train and Test Datasets
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Results: Accuracy vs OTDD

Mean Test Accuracy vs OTDD
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Results: Relative Change In Accuracy vs OTDD

Accuracys_,r—Accuracyr
Accuracyr

+ Relative Change In Accuracy (%) = 100X

» Positive = good, Negative = bad

Relative Change In Validation Accuracy vs OTDD Relative Change In Test Accuracy vs OTDD
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Results: H-score

* Higher H-score = Higher Accuracy

Mean Validation Accuracy vs H-score

o
Q_
o
- o &
o - A
F_} =
3
S & - “ A
3 o @ MSTAR1
< ®e o B MSTAR2
s ° E@ SAMPLE
5 21 ° ’
§e.
g °
s 8
Q o
=
A SS
! ¢ ® NS
© I l I I T I | I
1 2 3 4 5 6 7 8

16



a) Mean Validation Accuracy vs LogMe
Results: LogMe & LEEP & GBC
- Higher LogMe = Higher Accuracy
* LEEP and GBC patterns unclear "
« GBC assumes that per class distribution is Gaussian o)
Mean Validation Accuracy vs LEEP
 LEEP affected by number of classes -
C) Mean Validation Accuracy vs GBC
(Pandy et al., 2022), (Ibrahim et al., 2023) - LT - NS_;5 - 10

GBC 17



Caveats & Conclusion

« Caveat 1: Averages over searched models

« Caveat 2: Only one neural network architecture

« Caveat 3: Transferability Metrics based on Training set to Training set transfer
« Caveat 4: OTDD values used were based on an upper bound

» Caveat 5: OTDD calculation require images of same size

« Caveat 6: Models that performed well on validation data skewed results

« Caveat 7: Models that performed poorly on test data skewed results

« Conclusion: Transfer learning is not straightforward

18



Thank You To:

You all for listening

The organizers of this event

Collaborators: Johannes Bauer, William M. Severa, and Craig M. Vineyard

Sandia National Laboratories
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