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DENDRITIC HARDWARE & COMPUTATION

Dendrites are a nonlinear computational components

Provide a “pre-processing” computation
* Inputs travel to neighbors as well as output

Several methods to implement in hardware
Almost compute-on-wire
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DENDRITIC UTILITY

AN
Custom hardware is needed to leverage Dendrites \
« CMOS based subthreshold based dendrites have been demonstrated to work O | SnnTorCh

 Exploration of beyond CMOS devices as well
* Memristors, SONOS floating-gate, and more...

The chicken & egg of novel Al

* In order to justify novel hardware adoption, good software use-cases must exist
 But software developers will use the best current hardware and libraries

An easy-to use dendrite layer in a major ML library could help experimentation and development
of dendrite and spiking networks




DENDRITE ENABLED SPIKING LIBRARY

Implemented Torch library with a dendritic chain Type
o Simplified version of the complex ODE dendrite Lambda "Spatial” constant:
solution Represents Distance
o Wrapped dynamics into a set of constants and Tau “Temporal” constant:
parameters Capacitance and Resistance
. ny Leak Signal loss for each ta
Dendrites support SNNTorch & Non-Spiking Torch 2 i
Input Weight Increases or Decreases signal strength

Provides a trainable 1-D chain of dendrites

«  Spiking or continuous output
«  Works with SNNTorch models or PyTorch models yl fQ




SNNTORCH DENDRITE LIBRARY

Abstract dendrite implementation
« Based on analog hardware design

« (Goal to enable ML training that is transferrable to dendritic hardware
« Hardware constraints (number of taps, possible fixed values, etc.) to software

* Learned parameters to hardware
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DENDRITIC COMPUTATION - BASIC COINCIDENCE NETWORK

A single dendrite-enabled neuron is capable of basic coincidence detection
The nonlinear temporal dynamics allow for a “time-based AND gate”
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DENDRITE + SNN NETWORKS

* Learn a pair of nonlinear functions using
SNNS

* Based on example spiking networks from
the SNNTorch library af

« Learn two functions:
. WX

«  Mish(x) I

« (Collected a set of 1,000 random samples o
of each function > 0 1' > 3 r
> (0 and <4

« Trained all networks for 100 epochs
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DENDRITE + SNN NETWORKS

256/ 16 Signals to LIF Neuron  (Created three networks:

« 256 LIF Hidden Layer network
* Sends 256 spikes to the output neuron

* 16 LIF Hidden Layer network
* Sends 16 spikes to the output neuron

« 16x16 Dendrite Layer
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AN

DENDRITE + SNN NETWORKS h
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FUTURE WORK

« Further develop links with Dendrite-SNN SanaFe - Hardware Simulator
hardware simulations - SanaFe e o m
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An in-progress tool to estimate timing and

energy of neuromorphic systems. Currently
supports Loihi. Dendrites are WIP
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DENDRITE BEHAVIORAL MODEL
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Simulation model developed to characterize the subthreshold transistor characteristics for the circuit

Power Estimate

e The dendritic line performs 2MACs/node/0.1ms.

e This gives us efficiency of 20,000MAC/s for a single node.

e fFor the 350nm node with an FPAA dendrite grid we can achieve ~
T0MMACs/uW.




DENDRITIC COMPUTATION

Dendrites have complex interactions with signals
Able to both excite and shunt signals
Temporal component - signals take time to propagate down the wire to the Soma
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ANN NETWORK APPLICATIONS - RESNET18

« Working with a graduate student intern at SNL

Implemented a “Dendrite Pooling Layer” for use in Al CIFAR10: ResNet18 / DendNet18 Accuracy
ML '
300 Epochs

Replaced traditional pooling layer with Dendrite Layer
0.850123763 0.847032726

Trained ResNet18 on CIFAR-10 for 300 epochs
» ResNet + Dendrite layer took significantly longer to train
» Simplified ODE layer adds state and loops

Found accuracy to be comparable
e Dendritic pOO“ﬂg has potential in ANNS DendNet Validation Accuracy ResNet Validation Accuracy

Working with Priyam Mazumdar
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ML NETWORK APPLICATIONS - RESNET18

« ResNet18 - Was slower to train with a dendritic layer
* In hardware however, dendrites will be highly efficient

* Rough estimate of efficiency based on
* Energy = C(Viem — Ek)Vgq = 500f]
+ C=10pF
¢ Vgq=2.5V
* Vipem — Ek = 100mV

* Nvidia Jetson values from Rodrigues, et. al

Pooling Layer on Digital Nvidia Jetson 504.41 Micro Joules

Dendritic pooling 0.265 Micro Joules

Rodrigues, Crefeda Faviola, Graham Riley, and Mikel Lujdn.
"Energy predictive models for convolutional neural networks on mobile platforms."
arXiv preprint arXiv:2004.05137 (2020).
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