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Cybersecurity Challenges in the Grid

Cyber-Physical Power Grid

= The power grid has undergone a significant transformation in 2015 Ukraine Attack Summary
recent years = 3

= High penetration of Distributed Energy Resources (DER)
& 225K

= |ntegration with cyber communication networks and modern
digital components

S e

= Vast amounts of cyber and physical data are generated by the
DER communication types and interfaces within the grid

Challenges

= Th ereis a need- Source: https://www.vifindia.org/article/2022/may/02/war-in-ukraine
=  For arobust mechanism to ingest and process this data
= To fortify the grid against potential threats that can compromise its

integrity and disrupt its functionality i
= Examples of cyber-attacks: 2015 Ukraine grid cyber-attack, 2013 ]
Metacalf snipper attack I

= How can we use high-fidelity cyber-physical data to protect the
cyber-physical power grid? I



+ | Artificial Intelligence (Al) for Cyber-Physical Security

Current Research Work Summary

= A biﬁl part of the research work focuses on utilizing Deep Neural Networks
(DNNSs) for identifying physical disturbances in the grid's measurements

= Another big portion performs threat detection using only cyber data originating
from the IT environment

= There is a significant research gap for blending the physical with the cyber data
= "How can we effectively fuse the cyber-physical data generated in the grid to

ensure situational awareness and detect not only cyber threats but also
physical disturbances?”

What do we propose?

= A cyber-physical threat detection methodology through data fusion
= Using a Long-Short Term Memory (LSTM)-based Autoencoder (AE) Image created with the Llama 3
Generative model from Meta Al

= To integrate the temporal and structural patterns of cyber-physical
data

= Generated by a Sandia’s testbed that simulates a part of the electric
grid



Electric Grid Testbed, Dataset & Threat Model

Electric Grid Testbed & Dataset

i
=  Emulation environment: real-time digital simulator (RTDS) that enables streaming ‘! &
4

= SCEPTRE: Sandia Emulation Tool - It provides a comprehensive ICS/SCADA modeling
and simulation capability that captures the cyber-physical impacts of targeted cyber

C37.118 data from PMUs in the RTDS WSCC 9-bus models and SCEPTRE
events on critical infrastructure l

= Cyber Features: Collected from 3 different relays in each of the three substations -
packet RTTs and packet retransmissions

: , SCEPTRE Logo
= Physical Features: Collected from 8 different PMUs - frequency, per-phase voltage,
per-phase current |
Threat Model Bus 2 L s s _BILB; s 2

163 MW 0.B16 pu

= Physical events: a generator and line outage event (mitigation: 308 e L2300 0797 pu
load shedding)

85 MW
0.897 pu 1.025 pu 227 M

Bus 5 0.139 pu 100 MW pus &

35 Mvar

0.592 pu

= Cyber event: a Denial of Service (DoS) attack, o

165HMW

26frvar I

= Cyber-Physical event: generator and line outage events + DoS that
impedes the load-shedding signal issued by the control center Bus1 iw

334 MW
909 Mvar

= Result: Unstable system as defined by frequency instability
WSCC 9-Bus System



6 ‘ High Dimensionality & Multimodal Cyber-Physical Data

Problem

= Analyzing and extracting meaningful insights from cyber-physical data Linear vs nonlinear dimensionality reduction
require specialized techniques and handling R

= As the dimensionality of the input space increases, the complexity of
the classification task also increases o

= Thereis a growing interest in reducing the dimensionality of the input
space to enhance the predictive performance of classification models e _’_;.._

° Autoencoder

Approaches for dimensionality reduction "

\

PCA

[Principal

Component
Analysis]

Assumption: The data lies

on a linear subspace

LDA

Linear . .
[ Not always true in real-world scenarios!

Discriminant
Analysis] —




7 | Cyber-Physical Data Fusion
= |tis a dimensionality reduction technique used to understand the underlying structure of complex high-
dimensional cyber-physical data
= |t aims to uncover the intrinsic low-dimensional manifold on which the data points lie

= By preserving the local and global relationships between the cyber-physical data points, manifold learning
provides a more meaningful representation for further analysis, i.e., threat detection in the electric grid




: ‘ Autoencoders for Cyber-Physical Data Fusion

Description

Autoencoders (AE) are a type of Artificial

Neural Networks (ANN) used for:

Unsupervised Learning

Dimensionality reduction/Compression

Data Fusion

How do they work? / Architecture

Encoder: Compresses the input cyber-physical data into a lower-
dimensional space using an encoder network - bottleneck layer

Decoder: Then it reconstructs the input data back into the original space
using a decoder network

It learns an internal representation/code to perform useful
transformations on the input data (middle layer)

Finds a codification of the input cyber-physical data by learning non-
linear combinations of their features

A

Cyber-Physical
readings

Encoder

i
RE = ||x, — ©3] |
I
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LSTM-Based Autoencoders for Cyber-Physical Data Fusion

Why LSTMs?
= Plain AE might not capture the temporal ordering of the cyber-physical data
= LSTM are a type of Recurrent Neural Networks (RNN) that can capture the temporal patterns in time-series data

= LSTM-based AE: the only difference with the plain AEs is that the encoder and decoder are built using LSTM units
instead of simple linear neural network layers

= The LSTM architecture within the AE enables memorizing past units and utilizing this memory to make predictions
about future cyber-physical inputs
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0 | LSTM-Based Autoencoders for Cyber-Physical Threat Detection

Evaluation Analysis
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Hyperparameters Grid-search values

Number of layers [, 3, 4]

Weight Decay [0.01, , 0.0001, 0.00001]

Learning Rate [0.1, , 0.0001]

Dropout Rate [10%, , 30%, 40%]

Batch Size [32, o4, 128, 256, 512]

Optimizer [Adam, Adadelta, Adagrad, SGD, ]
Latent Space Reduction | [ , 55%, 75%]

Grid-Search Hyperparameters Optimization
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11 | LSTM-Based Autoencoders for Cyber-Physical Threat Detection

Evaluation Analysis
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Future Work

=  Team will investigate how the cyber-physical attack can be located within the grid
= Evaluate the combination of the LSTM-based AE model’s learned latent space with other ML models

= Stealthier cyber-attacks will be examined







