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RAPID CONSTRAINED OBJECT MOTION ESTIMATION USING DEEP NEURAL NETWORKS

Problem & Motivation
Autonomous manipulation in unstructured environments is a complex
challenge.
Key for interaction: grasping object dynamics for task-specific
manipulation.
Existing methods lag in quick and precise motion prediction of
mechanical systems.
Our goal: refine object motion estimation through centroid
localization in semantically labeled objects.

Research Highlights

= Introduces a rapid RGB-D data algorithm for object labeling and
centroid tracking for motion model estimation.
Case Study: simplified cube on a linear rail to validate the approach.
Showcases a scalable approach to object motion model estimation for
manipulation.
Compares strengths and limitations of algebraic methods and DNNs in
motion estimation.
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Object Detection & Segmentation

= Utilizes YOLO for region of interest identification via bounding boxes.

= Applies bounding boxes to bearings, rods, and cubes in depth maps.

Instance Segmentation

= Analyzes surface normal on depth maps for each point.

= Uses normal map gradients to discern object edges from the
background.

Centroid Estimation

= Computes instantaneous centroid by averaging points on the region
of interest.

= Potential drift due to background noise and occlusion effects.

Filtering and Tracking

= Employs minimum-oriented bounding boxes for object framing.

= Implements Kalman filtering for improved object tracking.
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Motion Model Estimation

= Normalized geometric motion model highlighting constraint locations and permissible motion directions.
= Identifies constraints by associating bearings with the block, under a single-block assumption.

= Determines the closest rod pairs and matches them with the nearest average bearings.

Algebraic Approach
= (Calculate the pair of vectors with minimum angle between the vectors representing cube to bearings and

rods.
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= Averaging and normalizing this vector gives the angle of motion of the block.
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= Motion Model

Deep Neural Network Approach

* Input features: 7 inputs including constraint ID and positions of far/near constraints.

e Architecture: 25 hidden layers with 100 neurons each, employing relu and linear activations.

* Optimization: Utilizes Adam optimizer with Mean Squared Error and physics-informed loss functions.

* Training: Conducted on synthetic datasets representing varied constraint locations in 3D, over 600 epochs.
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Hardware Experiment & Results
= Setup: Centroid estimation algorithm trialed with a cube on a linear
rail using Kinova Gen3 7-DOF manipulator.
= Testing: Varied end-effector positions (isometric, straight, negative
isometric) to assess motion model.
= Results:
1) Multiple classification didn’t compromise accuracy, showed sublinear
increase in estimation time.
2) Model estimation error was negligible at 1.23 X 10~* rad.
3) Noted noise and peak error during movement or imprecise centroid
detection.

Error Statistics vs Arm Position for the block
‘when identifying 1 class

Error Statistics vs Arm Position for the block
‘when identifying 3 classes
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Compute Time vs Arm Position for the Block
‘when Identifying Different Number of Unique Classos.

3D Error vs Time for the block
‘when identifying 3 classes
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Statistical Comparison: Algebraic vs. DNN Approaches

= Evaluation: Compared both approaches using variable block
orientations (0 - 90 deg orientation).

= Algebraic shortcomings: Lacks capability to assess constraint
directionality.

= Accuracy: Algebraic method more precise with 0/90 deg views,
performance degrades with angle variation.

= DNN strengths: demonstrates greater adaptability/scalability, suitable
for more complex systems.

Summary

Innovation: Developed a rapid RGB-D data processing algorithm for

accurate object labeling and centroid estimation.

Case Study: Validated using a simplified cube on a linear rail setup.

Advantages: Presents a scalable, multi-class approach for estimating

object motion models, enhancing manipulation tasks.

Comparative Insights:

= Algebraic Method: Highly precise in certain views but cannot
evaluate constraint directionality.

= DNN Method: Offers enhanced adaptability and scalability, suitable

for complex system analysis.
Sandia
National
Laboratories




