
SLAM Lab
System-Level Architecture and Modeling Group

Simulating Advanced Architectures for
Fast Exploration

James A. Boyle1,2, Mark Plagge2, Suma George Cardwell2,
Frances S. Chance2, Andreas Gerstlauer1

1System-Level Architecture and Modeling (SLAM) Lab
Department of Electrical and Computer Engineering

The University of Texas at Austin
2 Sandia National Laboratories, Albuquerque, NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND 2024-xxxxxx

SAND2024-05223C

Tutorial Setup
• Interactive tutorial with hands-on demo

• Live walk-through & exercises
• Linux & command-line based

• Linux Docker image provided
• SANA-FE image: jamesaboyle/sana-fe
• Install from source possible but not

recommended for this tutorial

• Docker Desktop available at:
docker.com/products/docker-desktop/

NICE ‘24 © J. Boyle et al. 2024 2

https://www.docker.com/products/docker-desktop/

Outline

ü Tutorial Setup

• Background

• Hands-on Demo

• Mapping Challenge

NICE ‘24 © J. Boyle et al. 2024 3

Background

• Power efficiency is critical
• Limits of scaling
• Increased computing demands

4NICE ‘24 © J. Boyle et al. 2024

• Neuromorphic H/W
• Neural-inspired
• Different architectures proposed
• Novel design elements Cardwell et al ’20

Spiking Hardware Platforms

• Various chips proposed & deployed
• Execute spiking neural networks (SNN)
• Achieve higher efficiency than conventional H/W

• Different design approaches
• Digital designs
• Analog & mixed-signal designs
• Neural models, fully-custom, wafer-scale

NICE ‘24 © J. Boyle et al. 2024 5

GT Neuron DYNAPSELIntel Loihi 1&2 SpiNNaker 1&2

Analog/Mixed-signal PlatformsDigital Platforms

Davies 2018 Furber 2016 Brink 2013
NeuroGrid

Benjamin 2014
IBM TrueNorth

Akopyan 2016
BrainScaleS-2

Pehle 2022

Neuromorphic Codesign

• Application & architecture codesign
• Architecture design-space exploration
• Algorithm development
• Optimize for power efficiency

• Need for architecture level tools
• Model new architectures
• Rapid performance & energy estimates
• Generic & extensible

NICE ‘24 © J. Boyle et al. 2024 6

SANA-FE
Simulating Advanced Neuromorphic
Architectures for Fast Exploration

NICE ‘24 © J. Boyle et al. 2024 7

SANA-FE Overview

ICONS ‘24 © J. Boyle et al. 2024 8

SANA-FE Overview

NICE ‘24 © J. Boyle et al. 2024 9

Spiking Architecture Template

• Tile-based architecture
• Network-on-chip connecting neural

cores
• Many cores per tile

• Cores simulate group of mapped
neurons

• Local shared memory
• Core pipeline

• Axon stage
• Synapse stage
• Dendrite stage
• Soma stage

NICE ‘24 © J. Boyle et al. 2024 10

Architecture Description

NICE ‘24 © J. Boyle et al. 2024 11

• Describes different H/W architectures
• Represents different existing & future

spiking designs based on common features
• Defines compute elements of chip
• YAML-based, flexible & extensible

Architecture Description

NICE ‘24 © J. Boyle et al. 2024 12

architecture:
 name: demo
 tile:
 - name: demo_tile[0..7]
 attributes:
 energy_east_west: 1e-12
 latency_east_west: 2e-9
 ...
 core:
 - name: demo_core[0..3]
 soma:
 - name: core_lif
 attributes:
 energy_spiking: 68e-12
 latency_spiking: 30e-9
...

• Describes different H/W architectures
• Represents different existing & future

spiking designs based on common features
• Defines compute elements of chip
• YAML-based, flexible & extensible

Architecture Description

NICE ‘24 © J. Boyle et al. 2024 13

architecture:
 name: demo
 tile:
 - name: demo_tile[0..7]
 attributes:
 energy_east_west: 1e-12
 latency_east_west: 2e-9
 ...
 core:
 - name: demo_core[0..3]
 soma:
 - name: core_lif
 attributes:
 energy_spiking: 68e-12
 latency_spiking: 30e-9
...

• Describes different H/W architectures
• Represents different existing & future

spiking designs based on common features
• Defines compute elements of chip
• YAML-based, flexible & extensible

Architecture Description

NICE ‘24 © J. Boyle et al. 2024 14

architecture:
 name: demo
 tile:
 - name: demo_tile[0..7]
 attributes:
 energy_east_west: 1e-12
 latency_east_west: 2e-9
 ...
 core:
 - name: demo_core[0..3]
 soma:
 - name: core_lif
 attributes:
 energy_spiking: 68e-12
 latency_spiking: 30e-9
...

• Describes different H/W architectures
• Represents different existing & future

spiking designs based on common features
• Defines compute elements of chip
• YAML-based, flexible & extensible

Architecture Description
• Describes different H/W architectures

• Represents different existing & future
spiking designs based on common features

• Defines compute elements of chip
• YAML-based, flexible & extensible

NICE ‘24 © J. Boyle et al. 2024 15

architecture:
 name: demo
 tile:
 - name: demo_tile[0..7]
 attributes:
 energy_east_west: 1e-12
 latency_east_west: 2e-9
 ...
 core:
 - name: demo_core[0..3]
 soma:
 - name: core_lif
 attributes:
 energy_spiking: 68e-12
 latency_spiking: 30e-9
...

SANA-FE

NICE ‘24 © J. Boyle et al. 2024 16

Mapped Spiking Neural Network

NICE ‘24 © J. Boyle et al. 2024 17

• Describes SNN application
• One entry per line
• Groups (g), neurons (n), edges (e)

and H/W mappings to cores (&)
• Optional list of named attributes

Groups and neurons
g 2 threshold=1.0 reset=0.0
g 2 threshold=2.0 reset=0.0
n 0.0 bias=1.0 connections_out=1
n 0.1 bias=1.0 connections_out=1
n 1.0 bias=0.0 connections_out=1
n 1.1 bias=0.0
Edges
e 0.0->1.0 weight=-1.0
e 0.1->1.1 weight=-2.0
e 1.0->1.1 weight=3.0
Mappings
& 0.0@0.0
& 0.1@0.0
& 1.0@0.1
& 1.1@0.1

Mapped Spiking Neural Network

NICE ‘24 © J. Boyle et al. 2024 18

• Describes SNN application
• One entry per line
• Groups (g), neurons (n), edges (e)

and H/W mappings to cores (&)
• Optional list of named attributes

Groups and neurons
g 2 threshold=1.0 reset=0.0
g 2 threshold=2.0 reset=0.0
n 0.0 bias=1.0 connections_out=2
n 0.1 bias=1.0 connections_out=1
n 1.0 bias=0.0
n 1.1 bias=0.0
Edges
e 0.0->1.0 weight=-1.0
e 0.1->1.1 weight=-2.0
e 1.0->1.1 weight=3.0
Mappings
& 0.0@0.0
& 0.1@0.0
& 1.0@0.1
& 1.1@0.1

Mapped Spiking Neural Network

NICE ‘24 © J. Boyle et al. 2024 19

• Describes SNN application
• One entry per line
• Groups (g), neurons (n), edges (e)

and H/W mappings to cores (&)
• Optional list of named attributes

Groups and neurons
g 2 threshold=1.0 reset=0.0
g 2 threshold=2.0 reset=0.0
n 0.0 bias=1.0 connections_out=2
n 0.1 bias=1.0 connections_out=1
n 1.0 bias=0.0
n 1.1 bias=0.0
Edges
e 0.0->1.0 weight=-1.0
e 0.0->1.1 weight=-2.0
e 0.1->1.1 weight=3.0
Mappings
& 0.0@0.0
& 0.1@0.0
& 1.0@0.1
& 1.1@0.1

SANA-FE

NICE ‘24 © J. Boyle et al. 2024 20

• Executes application on a given
architecture
• Loads architecture and SNN from file
• Simulates on-chip activity in loop

• Detailed performance output
• Estimate energy & latency every time-step
• Spike traces & H/W insight

• Abstract coarse-grained
• Fast time-step based simulation
• Compared to event-driven

NICE ‘24 © J. Boyle et al. 2024 21

Simulator Kernel

Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach

NICE ‘24 © J. Boyle et al. 2024 22

Wikichip [accessed 2023]

Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
• Update neuron dynamics for small time

increment

NICE ‘24 © J. Boyle et al. 2024 23

Wikichip [accessed 2023]

Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
• Update neuron dynamics for small time

increment
• Cores exchange spike messages

NICE ‘24 © J. Boyle et al. 2024 24

Wikichip [accessed 2023]

Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
• Update neuron dynamics for small time

increment
• Cores exchange spike messages
• Barrier to synchronize all cores

NICE ‘24 © J. Boyle et al. 2024 25

Wikichip [accessed 2023]

Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
• Update neuron dynamics for small time

increment
• Cores exchange spike messages
• Barrier to synchronize all cores
• Increment time-step count

NICE ‘24 © J. Boyle et al. 2024 26

Wikichip [accessed 2023]

• Simulate two-stage time-step
• Calculate neuron dynamics according to

soma model & updates neurons firing
– Neuron processing stage

• Process received spikes
– Message receiving stage

• Track & calculate total activity
• For power estimates every time-step
• Sum total energy over all cores
• Calculate latency as maximum of all

stages in all cores

NICE ‘24 © J. Boyle et al. 2024 27

Simulator Design

Outline

ü Tutorial Setup

ü Background

• Hands-on Demo

• Mapping Challenge

NICE ‘24 © J. Boyle et al. 2024 28

SANA-FE Tutorial

• Interactive & hands-on demo
• Docker environment: jamesaboyle/sana-fe
• Demonstrates SANA-FE on real-world example
• Exercises and open-ended challenge

• Online tutorial instructions
github.com/SLAM-Lab/SANA-FE/
• In “tutorial” folder
• View “TUTORIAL.md”
• Or use QR code (shown right)

NICE ‘24 © J. Boyle et al. 2024 29

github.com/SLAM-Lab/SANA-FE/blob/main/tutorial/TUTORIAL.md

https://github.com/SLAM-Lab/SANA-FE/
https://github.com/SLAM-Lab/SANA-FE/blob/main/tutorial/TUTORIAL.md

Docker Setup

NICE ‘24 © J. Boyle et al. 2024 30

Docker Setup

NICE ‘24 © J. Boyle et al. 2024 31

Docker Setup

NICE ‘24 © J. Boyle et al. 2024 32

Docker Setup

NICE ‘24 © J. Boyle et al. 2024 33

[Optional] Installing SANA-FE without Docker
This is only needed if developing SANA-FE
• Build & run dependencies

• Build requires C compiler (C99 or later) and make
• Run scripts require Python ≥ 3.6 and pyyaml

• Make-based build
• Linux recommended
• Code in top-level directory in *.c and *.h files

NICE ‘24 © J. Boyle et al. 2024 34

git clone https://github.com/SLAM-Lab/SANA-FE sana-fe
cd sana-fe
make
python -m venv ./venv && source ./venv/bin/activate
pip install --upgrade pip && pip install pyyaml numpy

https://github.com/SLAM-Lab/SANA-FE

Running SANA-FE

• Start SANA-FE Docker image
• “Run” →“Optional Settings”→“Volumes”

– “Host path”: Folder in host environment
– “Container path”: /tutorial

• “Container”→“Exec” tab starts Linux shell

• Run small SANA-FE simulation
• In “Exec” shell run command below:
• Parses demo inputs & executes simulator

kernel for 1000 time-steps

NICE ‘24 © J. Boyle et al. 2024 35

python3 sim.py tutorial/arch.yaml tutorial/snn.net 1000

SANA-FE Overview

ICONS ‘24 © J. Boyle et al. 2024 36

Architecture Description Example

Exercises:
1. Change the cost of updating neurons from 0 ns & 0 pJ to 2 ns & 2 pJ
2. Duplicate tiles twice and cores four times per tile (8 cores total)
3. Add a new synapse unit for compressed synapses. Energy & latency costs of

reading compressed synapses are 0.5 pJ and 2 ns respectively

NICE ‘24 © J. Boyle et al. 2024 37

cat /tutorial/arch.yaml
diff -I wall run_summary.yaml arch_results

Mapped Spiking Neural Network Example

Exercises:
1. Define neuron n1.1

2. Add edges from neurons n0.0 & n0.1 to neuron n1.1

3. Set the bias of neuron n0.1 to 0.5
4. Configure neurons in group 1 to use compressed synapses

NICE ‘24 © J. Boyle et al. 2024 38

cat /tutorial/snn.net
diff -I wall run_summary.yaml snn_results

Neuron Group Bias Synapse Type

0.0 0 0.2 -

0.1 0 0.5 -

1.0 1 0 Compressed

1.1 1 0 Compressed

Simulator Outputs

• SANA-FE run-time summary
• Numbers of cores, axons, etc.
• Total latency, energy & power
• Results saved to YAML file

• Optionally enabled traces
• Spikes (-s)
• Neuron potentials (-v)
• Performance statistics (-p)
• Spike message packets (-m)

NICE ‘24 © J. Boyle et al. 2024 39

python3 sim.py -o tutorial tutorial/arch.yaml tutorial/snn.net 10
cat tutorial/run_summary.yaml

Neuron Traces

• Probes select observed neurons
log_spikes  spikes.csv
log_potential  potential.csv

• Spike and voltage traces
• Spikes: line per spike event
• Membrane potentials: line per time-step &

column per probe

• Exercise:
1. Visualize the neuron membrane potentials

NICE ‘24 © J. Boyle et al. 2024 40

python3 sim.py -s -v -o tutorial tutorial/arch.yaml tutorial/snn.net 10
cat tutorial/spikes.csv
cat tutorial/potential.csv

Hardware Traces

• Detailed statistics per time-step
• H/W performance across entire chip
• Messages sent over network

• Performance and message traces
• Performance trace: line per time-step
• Messages: line per spike message

NICE ‘24 © J. Boyle et al. 2024 41

python3 sim.py -m -p -o tutorial tutorial/arch.yaml tutorial/snn.net 10
cat tutorial/perf.csv
cat tutorial/messages.csv

Real-world Application
• Gesture categorization

• Event data from neuromorphic sensor (IBM)
• Classify hand gestures from 11 gesture types

• SNN for gesture categorization
• Trained using Keras & SNN Toolbox [Massa ‘20]
• SNN has 4 convolutional layers & 1 fully

connected layer

• Categorization on Intel’s Loihi
• SNN compiled using NxTF
• Frames presented for 128 time-steps

NICE ‘24 © J. Boyle et al. 2024 42

Image reproduced from Massa et al., 2020

Automating SANA-FE
• SANA-FE scripting capabilities

• Automates architecture parsing, SNN
generation & runs

• Library for defining neurons, groups & SNN
layers

• Enables design-space exploration

• Script to run gesture application
• Generates SNN from kernel weights
• Maps SNN to H/W cores
• Runs simulation & parses results

NICE ‘24 © J. Boyle et al. 2024 43

python3 tutorial/dvs_challenge.py

Gesture Mapping Challenge
• Optimize SNN H/W mapping

• Using DVS gesture application
• Same SNN can be mapped to

different H/W cores
• Update H/W mapping in
dvs_challenge.py

NICE ‘24 © J. Boyle et al. 2024 44

• Submit results of best run to: james.boyle@utexas.edu

• Best mapping wins
• Optimize for smallest energy-delay

product (Total Energy × Total Run-time)
• Valid mappings only

– Simulation must run & post-run checks pass
– Maximum 1024 neurons per core

mailto:james.boyle@utexas.edu

Upcoming Features

• Move from C to C++
• Base hardware classes provided
• PyBind11 interface with Python

• Support for neuromorphic ecosystem
• Fugu & Lava integration
• User plug-ins & custom neurons models

• Support new components
• Mixed-signal architectures & novel devices
• Dendritic computing

NICE ‘24 © J. Boyle et al. 2024 45

SANA-FE
• Generic & extensible

• User-defined architecture & SNN
• Supports range of spiking architectures

• Fast & accurate
• Time-step based approach
• Detailed hardware activity for each time-step
• Accurately estimates performance & energy

• Future work
• Support other existing architectures & scale to larger designs
• Adapt other neuromorphic benchmark applications
• Model analog architectures & novel devices
• Integrate with other frameworks e.g., SST, Fugu & La va

Access at: https://github.com/SLAM-Lab/SANA-FE

NICE ‘24 © J. Boyle et al. 2024 46

https://github.com/SLAM-Lab/SANA-FE

