SAND2024-05223C

Simulating Advanced Architectures for
Fast Exploration

James A. Boyle'’2, Mark Plagge?, Suma George Cardwell?,
Frances S. Chance?, Andreas Gerstlauer?

1System-Level Architecture and Modeling (SLAM) Lab
Department of Electrical and Computer Engineering
The University of Texas at Austin

2 Sandia National Laboratories, Albuquerque, NM

. The University of Texas at Austin San dia
ﬂ%ﬁ Chandra Department of Electrical SLAM Lab Natioral
and Cﬂmputer Englneermg System-Level Architecture and Modeling Group Laboratories

Cockrell School of Engineering

ad N Lb ories is a multimission laboratory managed and oper: tdbyNt nal Technology &
tio fS ndia, LLC, a thIyw ed s bdrny eywell International Inc., for the U.S.

nal
SAND 2024-xxxxxx olu
Enel gy s National Nuclear Security Administration under contra tDENA0003525

UITI(/)

tio
ngin 98
prt ent of

Tutorial Setup

* [nteractive tutorial with hands-on demo
 Live walk-through & exercises
* Linux & command-line based

* Linux Docker image provided
« SANA-FE image: jamesaboyle/sana-fe

* |nstall from source possible but not

recommended for this tutorial doc kQ r

 Docker Desktop available at:
docker.com/products/docker-desktop/

NICE 24 © J. Boyle et al. 2024

https://www.docker.com/products/docker-desktop/

Outline

v Tutorial Setup
 Background
« Hands-on Demo

 Mapping Challenge

NICE 24

© J. Boyle et al. 2024

Background

 Power efficiency is critical

A
e Limits of Scaling Neuromorphic
. Computing
* Increased computing demands < ._
_ geneous +H+I+l
c o Architectures — HHIL
2 2 | __Powerwall (10GMAC/Watt) 7" _ __
. 2 E
 Neuromorphic H/'W S Conventional
_ _ Digital Systems
* Neural-inspired
 Different architectures proposed
* Novel design elements o Cardwell et al 20
|
NICE 24 © J. Boyle et al. 2024 4

Spiking Hardware Platforms

* Various chips proposed & deployed
« Execute spiking neural networks (SNN)
» Achieve higher efficiency than conventional H/W

» Different design approaches
* Digital designs
* Analog & mixed-signal designs
* Neural models, fully-custom, wafer-scale

Digital Platforms Analog/Mixed-signal Platforms
I —
I
|
Intel Loihi 1&2 SpiNNaker 1&2 [IBM TrueNorth 1 GT Neuro DYNAPSEL NeuroGrid BrainScaleS-2
Davies 2018 Furber 2016 Akopyan 2016 : Brink 2013 Benjamin 2014 Pehle 2022

NICE 24 © J. Boyle et al. 2024 5

Neuromorphic Codesign

* Application & architecture codesign
 Architecture design-space exploration

 Algorithm development
* Optimize for power efficiency

* Need for architecture level tools

 Model new architectures

* Rapid performance & energy estimates

 Generic & extensible

Novel
Algorithm
Complex
Dynamics

Novel
Architectures
& Circuits

Neuromorphic
Computing

Leveraging
Physics
and Noise

Al-enhanced
Codesign

M Novel Devices
and
Materials

NICE 24

© J. Boyle et al. 2024

SANA-FE

Simulating Advanced Neuromorphic
Architectures for Fast Exploration

NNNNNNN

SANA-FE Overview

Configuration & Input Spikes Architecture
¢ Description
Hardware Simulator
build architecture

initialize network

for all timesteps:
get external inputs
for all neurons
process neuron
receive messages

Mapped Spiking
Neural Network

estimate energy, latency

v

Performance & Energy
Estimates

ICONS 24 © J. Boyle et al. 2024

SANA-FE Overview

Configuration & Input Spikes

v

Hardware Simulator

build architecture
initialize network

for all timesteps:

get external inputs

for all neurons

process neuron
receive messages

estimate energy,

latency

v

Performance & Energy

Estimates

Architecture
Description

Q0 Q0 Q0
00 00 00

lii Iii Eii
Q0| L 00 00
!ii !ii !ﬁi
00| OO0 00

Mapped Spiking
Neural Network

NICE 24

© J. Boyle et al. 2024

Spiking Architecture Template

* Tile-based architecture Neuromorphic Chip

 Network-on-chip connecting neural T('j'ecg) TC")% T('j'eoz TC"JGS

cores 00 00 00 OO0
* Many cores per tile Tiea | i[Ties | i[Tiee |i[Tie7]:

. i 00 00 00 00 |:
Cores simulate group of mapped 0o || aalil 6o 00 |
neurons | = e Sem—.

* Local shared memory g o ==

. H Axon In Synapse Dendrit Soma Axon Out
* Core pipeline Unit onit | ot | | Onit Unit

+ Axon stage A w3 {Z)4 L4

» Synapse stage 3 W, = o\

o i : : X | 5
Dendrite stage - -) -

 Soma stage _|

NICE 24 © J. Boyle et al. 2024 10

Architecture Description

 Describes different H/W architectures

* Represents different existing & future
spiking designs based on common features

» Defines compute elements of chip
* YAML-based, flexible & extensible

NICE 24 © J. Boyle et al. 2024

1

Architecture Description

 Describes different H/'W architectures

* Represents different existing & future
spiking designs based on common features

» Defines compute elements of chip
* YAML-based, flexible & extensible

Demo

architecture:
name: demo

NICE 24

© J. Boyle et al. 2024

12

Architecture Description

 Describes different H/'W architectures

* Represents different existing & future
spiking designs based on common features

» Defines compute elements of chip
* YAML-based, flexible & extensible

Demo

Tile O Tile 1 Tile 2 Tile 3

Tile4 | i[Tiles | i[Tile6 | i [Tie 7

architecture:
name: demo
tile:
- name: demo_tile[0..7]
attributes:
energy east west: le-12
latency east west: 2e-9

NICE 24 © J. Boyle et al. 2024

13

Architecture Description

 Describes different H/'W architectures

* Represents different existing & future
spiking designs based on common features

» Defines compute elements of chip
* YAML-based, flexible & extensible

architecture:
name: demo
tile:
- name: demo_tile[0..7]
attributes:
energy east west: le-12
latency east west: 2e-9

core:
- name: demo_core[0..3]

NICE 24 © J. Boyle et al. 2024

14

Architecture Description

 Describes different H/'W architectures

* Represents different existing & future
spiking designs based on common features

» Defines compute elements of chip
* YAML-based, flexible & extensible

Tile 2 Tile 3
00 00
00 00

NS e—ars
-

Demo

T|Ie 0 I \Tlle 1

(demo_core \

-’
-
-
-
-
.
-
-
-
”
PR

— axon in P Synapse (9 dendrite -] soma 9 axon out P

N /

architecture:
name: demo
tile:
- name: demo tile[O0..7]
attributes:
energy east west: le-12
latency east west: 2e-9

core:
- name: demo core[0..3]
soma:
- name: core lif
attributes:

energy spiking: 68e-12
latency spiking: 30e-9

NICE 24 © J. Boyle et al. 2024

15

SANA-FE

Configuration & Input Spikes Architecture

v

Description

Hardware Simulator

build architecture
initialize network

for all timesteps:

for all neurons

estimate energy,

get external inputs

process neuron
receive messages

Q0 Q0 Q0
Q0 Q0 Q0
(o]s] 00 00

Mapped Spiking
Neural Network

latency

v

Estimates

Performance & Energy

NICE 24

© J. Boyle et al. 2024

16

Mapped Spiking Neural Network

 Describes SNN application
* One entry per line

* Groups (g), neurons (n), edges (e)

and H/W mappings to cores (&)
* Optional list of named attributes

ot @ @
ot @ @)

Groups and neurons
threshold=1.0 reset=0.0
threshold=2.0 reset=0.0

.0 bias=1.0 connections out=l
.1 bias=1.0 connections out=l
.0 bias=0.0 connections out=l
.1 bias=0.0

o [= B = B = e J 1o
H P, OONN

NICE 24

© J. Boyle et al. 2024

17

Mapped Spiking Neural Network

 Describes SNN application
* One entry per line

* Groups (g), neurons (n), edges (e)

and H/W mappings to cores (&)
* Optional list of named attributes

Groups and neurons
threshold=1.0 reset=0.0
threshold=2.0 reset=0.0

.0 bias=1.0 connections out=2
.1 bias=1.0 connections out=l
.0 bias=0.0

.1 bias=0.0

R R OODMNMNND

.0->1.0 weight=-1.0
1->1.1 weight=-2.0
.0->1.1 weight=3.0

® 00 H*B S8 BQWQ

NICE 24

© J. Boyle et al. 2024

18

Mapped Spiking Neural Network

. : : t ## Groups and neurons
Describes SNN_ application g 2 threshold=1.0 reset=0.0
* One entry per line g 2 threshold=2.0 reset=0.0
* Groups (g), neurons (n), edges (e) n 0.0 bias=1.0 connections out=2
and H/W mappings to cores (&) n 0.1 bias=1.0 connections out=l
« Optional list of named attributes n 1.0 bias=0.0
n l.1 bias=0.0
core[0] core[1] ## Edges _
RLELL LG NI .~ e 0.0->1.0 weight=-1.0
group[0] E o ; e 0.0->1.1 weight=-2.0
: P ; e 0.1->1.1 weight=3.0
; i ; ; ## Mappings
: : : & 0.0@0.0
: g] & 0.1@0.0
group[1] ; ;] & 1.0@0.1
. DA o & 1.1@0.1

NICE 24 © J. Boyle et al. 2024

SANA-FE

Configuration & Input Spikes

v

Hardware Simulator

build architecture
initialize network

for all timesteps:
get external inputs
for all neurons
process neuron
receive messages

estimate energy, latency

Performance & Energy
Estimates

Architecture
Description

Q0 Q0 Q0
Q0 Q0 Q0
(o]s] 00 00

Mapped Spiking
Neural Network

NICE 24

© J. Boyle et al. 2024

20

Simulator Kernel

 Executes application on a given
architecture
» Loads architecture and SNN from file
« Simulates on-chip activity in loop

* Detailed performance output

» Estimate energy & latency every time-step
* Spike traces & H/W insight

 Abstract coarse-grained
* Fast time-step based simulation
« Compared to event-driven

Hardware Simulator

build architecture
initialize network

for all timesteps:
get external inputs
for all neurons
process neuron
receive messages

estimate enerqgy, latency

NICE 24 © J. Boyle et al. 2024

21

Time-step Based Execution

* Digital chips execute In logical time
« Core iterates over mapped neurons
* Neurons share core H/W resources

 Time-step based approach

* Improved scaling

EEE
.
'
H =
nwn || row)

.............

B e |
—' --. —-—
B 15 e 1EH

Wikichip [accessed 2023]

NICE 24

© J. Boyle et al. 2024

22

Time-step Based Execution

* Digital chips execute In logical time
« Core iterates over mapped neurons
* Neurons share core H/W resources
* Improved scaling

 Time-step based approach

« Update neuron dynamics for small time
increment

Wikichip [accessed 2023]

NICE 24 © J. Boyle et al. 2024

23

Time-step Based Execution

* Digital chips execute In logical time
« Core iterates over mapped neurons
* Neurons share core H/W resources
* Improved scaling

 Time-step based approach

* Update neuron dynamics for small time
increment

« Cores exchange spike messages

Wikichip [accessed 2023]

NICE 24 © J. Boyle et al. 2024

24

Time-step Based Execution

* Digital chips execute In logical time
« Core iterates over mapped neurons
* Neurons share core H/W resources
* Improved scaling

 Time-step based approach

« Update neuron dynamics for small time
increment

« Cores exchange spike messages
 Barrier to synchronize all cores

Barrier Sync Message

Wikichip [accessed 2023]

NICE 24 © J. Boyle et al. 2024

25

Time-step Based Execution

* Digital chips execute In logical time
« Core iterates over mapped neurons
* Neurons share core H/W resources

* Improved scaling

 Time-step based approach
* Update neuron dynamics for small time

increment

« Cores exchange spike messages

 Barrier to synchronize all cores
* Increment time-step count

Wikichip [accessed 2023]

NICE 24

© J. Boyle et al. 2024

26

Simulator Design

H : Core Unit Performance
- Simulate two-stage time-step l o
 Calculate neuron dynamics according to ;’
soma model & updates neurons firing {| @xonin | packetsin
— Neuron processing stage v
. . i | synapse mgmory reads mes;a.ge
* Process received spikes . spikes receiving
— Message receiving stage v
i | dendrite
| e " S ———————
° TraCk & calculate tOtaI aCt|V|ty -(- _P_lfif?f____)_ ..
* For power estimates every time-step ; coma | updates i
; spikes sent
* Sum total energy over all cores ; 3 Zf;’gggsmg :
« Calculate latency as maximum of all [axon out [packets out
stages in all cores i .. i

NICE 24 © J. Boyle et al. 2024

Outline

v Tutorial Setup
v Background
« Hands-on Demo

 Mapping Challenge

NICE 24

© J. Boyle et al. 2024

28

SANA-FE Tutorial

* Interactive & hands-on demo
* Docker environment. jamesaboyle/sana-fe
 Demonstrates SANA-FE on real-world example
* EXxercises and open-ended challenge

* Online tutorial instructions
github.com/SLAM-Lab/SANA-FE/
* |n “tutorial” folder
* View “TUTORIAL.md”
* Or use QR code (shown right)

510

@

github.com/SLAM-Lab/SANA-FE/blob/main/tutoria/ TUTORIAL.md

NICE 24 © J. Boyle et al. 2024

29

https://github.com/SLAM-Lab/SANA-FE/
https://github.com/SLAM-Lab/SANA-FE/blob/main/tutorial/TUTORIAL.md

Docker Setup

@ docker desktop Q, Search for images, containers, volumes... - 5

Containers Containers

Images

Volumes

Builds

Dev Environments [BETA

Docker Scout . .
Your running containers show up here

Extensions

(® Add Extensions . . .
How do | run a container? What is a container?

5 mins

> | RAM7.23GB CPU23.33% ¥ Signedin
NICE 24 © J. Boyle et al. 2024

Docker Setup

& docker desktop Q, Search for images, containers, volumes... - 5

Containers Containers

Images

Volumes

Builds

Dev Environments [BETA

Docker Scout . .
Your running containers show up here

Extensions
(® Add Extensions

How do | run a container? What is a container?

5 mins

@ Engine running [[RAM7.23GB CPU23.33% @ Signedin

NICE 24 © J. Boyle et al. 2024

Docker Setup

NICE 24

jamesaboyle/sana-fe

Images (4) Containers (0)

] jamesaboyle/sana-fe:latest
] jamesaboyle/sana-fe:<none>

& jamesaboyle/sana-fe

+ to open 11 to navigate

Volumes (0) Extensions (0)

ESC to close

Docs (0)

296.68 MB

296.68 MB

21 hours ago

SCROLL for more results

© J. Boyle et al. 2024

Docker Setup

jamesaboyle/sana-fe

Images (4) Containers (0) Volumes (0) Extensions (0) Docs (0)

Tag
latest

[jamesaboyle/sana-fe:latest 296.68 MB

] jamesaboyle/sana-fe:<none> 296.68 MB

& jamesaboyle/sana-fe PARLIVIERET)

+ to open 11 to navigate ESC to close SCROLL for more results

NICE 24 © J. Boyle et al. 2024

[Optional] Installing SANA-FE without Docker

This is only needed if developing SANA-FE

 Build & run dependencies
 Build requires C compiler (C99 or later) and make
* Run scripts require Python = 3.6 and pyyaml

« Make-based build

* Linux recommended
* Code in top-level directory in * .c and * .h files

T —

——

git clone https://github.com/SLAM-Lab/SANA-FE sana-fe
cd sana-fe

#
#
make
#
#

python -m venv ./venv && source ./venv/bin/activate
pip install --upgrade pip && pip install pyyaml numpy

NICE 24

© J. Boyle et al. 2024

34

https://github.com/SLAM-Lab/SANA-FE

Running SANA-FE

- Start SANA-FE Docker image

* “Run” —"Optional Settings™—"“Volumes”

— “Host path”: Folder in host environment
— “Container path™ /tutorial

 “Container’—"“Exec” tab starts Linux shell

e Run small SANA-FE simulation

 |In “Exec” shell run command below:

* Parses demo inputs & executes simulator
kernel for 1000 time-steps

Run a new container

Optional settings

Container name
A random name is generated if you do not provide one.

Ports

No ports exposed in this image

Volumes

Host path Container path

Environment variables

Variable

(# python3 sim.py tutorial/arch.yaml

tutorial/snn.net 1000 :)

NICE 24 © J. Boyle et al. 2024

35

SANA-FE Overview

Configuration & Input Spikes Architecture

v

Description

Hardware Simulator

build architecture
initialize network

for all timesteps:

for all neurons

estimate energy,

get external inputs

process neuron
receive messages

Q0 Q0 Q0
Q0 Q0 Q0
(o]s] 00 00

Mapped Spiking
Neural Network

latency

v

Estimates

Performance & Energy

ICONS 24

© J. Boyle et al. 2024

36

Architecture Description Example

-
cat /tutorial/arch.yaml
diff -I wall run summary.yaml arch results
. — —
tutorial ‘,»’KtUtorial_core uncompressed \
e of « synapse |,
Tile 0| : Tile 1. K 3
@) O, —p| axonin | j dendrite |—% soma ¥ axon out P
~~~~~~ 4 compressed
................ "o '\ synapse /
Exercises:

1. Change the cost of updating neurons from 0O ns &0 pJto2ns & 2 pJ
2. Duplicate tiles twice and cores four times per tile (8 cores total)

3. Add a new synapse unit for compressed synapses. Energy & latency costs of
reading compressed synapses are 0.5 pJ and 2 ns respectively

NICE 24 © J. Boyle et al. 2024 37



Mapped Spiking Neural Network Example

# cat /tutorial/snn.net
# diff -I wall run summary.yaml snn results

Nowron— Group— | Bias | SynapseType
0.0 0 0.2 -

0.1 0 0.5 -

1.0 1 0 Compressed
1.1 1 0 Compressed
Exercises:

1. Define neuron n,

2. Add edges from neurons n,, & n, ; to neuron n,
3. Set the bias of neuron n,,t0 0.5

4. Configure neurons in group 1 to use compressed synapses

'----------‘.

NICE 24 © J. Boyle et al. 2024 38



Simulator Outputs

# python3 sim.py -o tutorial tutorial/arch.yaml tutorial/snn.net 10
# cat tutorial/run summary.yaml

« SANA-FE run-time summary
 Numbers of cores, axons, etc.

» Total latency, energy & power
* Results saved to YAML file

/ # cat tutorial/run_summary.yaml

git version:

energy: 1.160000e-10
sim_time: 9.000000e-08
total spikes: 5

« Optionally enabled traces total_packets: 5

. Spikes (-s) total neurons fired: 6
: wall time: 0.000732
* Neuron potentials (-v) ,
o timesteps: 10
* Performance statistics (-p) / # I

* Spike message packets (-m)

NICE 24 © J. Boyle et al. 2024



Neuron Traces

# python3 sim.py -s -v -o tutorial tutorial/arch.yaml tutorial/snn.net 10

# cat tutorial/spikes.csv
# cat tutorial/potential.csv

* Probes select observed neurons
log spikes > spikes.csv
log potential => potential.csv

 Spike and voltage traces
« Spikes: line per spike event

 Membrane potentials: line per time-step &
column per probe

 Exercise:
1. Visualize the neuron membrane potentials

Y,

Neuron 0.1 1 | I
Neuron 0.0

s 0 2 4 6 8 10

o 1.0 A A

Q 7 “

46 0.5 K '.\ A

(a1 ) II

g ’ y \\ II

5 0.0 T T T T T

g 0 2 4 6 8 10

Time-step

--#4- Neuron 0.1
Neuron 0.0

NICE 24

© J. Boyle et al. 2024

40



Hardware Traces

# python3 sim.py -m -p -o tutorial tutorial/arch.yaml tutorial/snn.net 10
# cat tutorial/perf.csv

# cat tutorial/messages.csv

N

 Detailed statistics per time-step
« H/W performance across entire chip

Neurons Fired
=

* Messages sent over network 01 .
0 2 4 6 8 10
s
 Performance and message traces >
* Performance trace: line per time-step L?Cj
* Messages: line per spike message f_g | | | , .
= 0 2 4 6 8 10
Time-step

NICE 24 © J. Boyle et al. 2024 41



Real-world Application

Average
Pooling

* Gesture categorization frame accumulation
 Event data from neuromorphic sensor (IBM) o events g
» Classify hand gestures from 11 gesture types o

. . v
e

. SNN for gesture categorization \tw
* Trained using Keras & SNN Toolbox [Massa 20]

* SNN has 4 convolutional layers & 1 fully
connected layer

A_channels

Image reproduced from Massa et al., 2020

Connected
Input Layer Convolutional Layers (x4) Output Layer
. Categorization on Intel’s Loihi 88-.--8 LOOLIOOLIOOLIO:OL) 5
+ SNN compiled using NXTF i1 [ 10-0] [0-O) |00 19O | ;
: O.ONNO ‘
* Frames presented for 128 time-steps ==
X 11

NICE 24 © J. Boyle et al. 2024 42



Automating SANA-FE

PR in.c:228:ma ing simulation.
- SANA-FE scripting capabilities [natn.c:235:matn(] +#n Tine.step 108 4

[main.c:235:main()] *** Time-step 200 ***

* Automates architecture parsing, SNN [main.c:235:main()] *** Tine-step 300
. [main.c:235:main()] *** Time-step 400 ***
generathn & I’UﬂS [main.c:235:main()] *** Time-step 500 ***
. . [main.c:235:main()] *** Time-step 600 ***
* Library for defining neurons, groups & SNN ratn.c:235:natn()] v Tone-step 700 -
main.c:235:main *#** Time-step kkx
layers [main.c:235:main()] *** Time-step 900 **=*

. ] [main.c:235:main()] *** Time-step 1000 *=**

* Enables design-space exploration [main.c:240:main()] **£%% Run Summary %%

git version:
energy: 3.451703e-03
sim_time: 2.659117e-02

u m = otal_spikes: 5: '
 Script to run gesture application otal pucket: 2495585
. total neurons_fired: 367770
* Generates SNN from kernel weights wall tine: 22.517683
timesteps: 1000
) Maps SNN to H/W Cores [main.c:250:main()] Average power consumption: 0.129806 W.

[main.c:259:main()] Run finished.
Energy-Delay product: 9.178482126251e-05

* Runs simulation & parses results

[ # python3 tutorial/dvs challenge.py ]

NICE 24 © J. Boyle et al. 2024 43



Gesture Mapping Challenge

 Optimize SNN H/W mapping Connected
* Using DVS gesture application

« Same SNN can be mapped to
different H/W cores

« Update H/'W mapping in
dvs challenge.py

 Best mapping wins
* Optimize for smallest energy-delay
product (Total Energy x Total Run-time)

« Valid mappings only
— Simulation must run & post-run checks pass
— Maximum 1024 neurons per core

 Submit results of best run to: james.boyle@utexas.edu

NICE 24 © J. Boyle et al. 2024 44


mailto:james.boyle@utexas.edu

Upcoming Features

 Move from C to C++
 Base hardware classes provided
* PyBind11 interface with Python

 Support for neuromorphic ecosystem
* Fugu & Lava integration
« User plug-ins & custom neurons models

« Support new components
* Mixed-signal architectures & novel devices
* Dendritic computing

NICE 24 © J. Boyle et al. 2024

45



SANA-FE

Configuration & Input Spikes Architecture

« Generic & extensible T

. . Hardware Simulator
 User-defined architecture & SNN

« Supports range of spiking architectures for a1t tinesteps.

get external inputs
for all neurons

* Fast & accurate Sroces e
« Time-step based approach e e e

Performance & Energy

» Detailed hardware activity for each time-step Eetimetes
* Accurately estimates performance & energy

 Future work @ @

 Support other existing architectures & scale to larger designs
 Adapt other neuromorphic benchmark applications 0 TR0 o5 St |

* Model analog architectures & novel devices a2 2 A 3, §ietss,s 32
* Integrate with other frameworks e.g., SST, Fugu & La va RS D HE R

Access at: https://github.com/SLAM-Lab/SANA-FE E] oo dtind,

NICE 24 © J. Boyle et al. 2024 46


https://github.com/SLAM-Lab/SANA-FE

