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Tutorial Setup
• Interactive tutorial with hands-on demo

• Live walk-through & exercises
• Linux & command-line based

• Linux Docker image provided
• SANA-FE image: jamesaboyle/sana-fe
• Install from source possible but not 

recommended for this tutorial

• Docker Desktop available at: 
docker.com/products/docker-desktop/  
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https://www.docker.com/products/docker-desktop/


Outline

ü Tutorial Setup

• Background

• Hands-on Demo

• Mapping Challenge
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Background

• Power efficiency is critical
• Limits of scaling
• Increased computing demands
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• Neuromorphic H/W
• Neural-inspired
• Different architectures proposed
• Novel design elements Cardwell et al ’20



Spiking Hardware Platforms

• Various chips proposed & deployed
• Execute spiking neural networks (SNN)
• Achieve higher efficiency than conventional H/W

• Different design approaches
• Digital designs
• Analog & mixed-signal designs
• Neural models, fully-custom, wafer-scale
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Neuromorphic Codesign

• Application & architecture codesign
• Architecture design-space exploration
• Algorithm development
• Optimize for power efficiency

• Need for architecture level tools
• Model new architectures
• Rapid performance & energy estimates
• Generic & extensible

NICE ‘24 © J. Boyle et al. 2024 6



SANA-FE
Simulating Advanced Neuromorphic 
Architectures for Fast Exploration
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SANA-FE Overview
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SANA-FE Overview
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Spiking Architecture Template

• Tile-based architecture
• Network-on-chip connecting neural 

cores
• Many cores per tile

• Cores simulate group of mapped 
neurons

• Local shared memory
• Core pipeline

• Axon stage
• Synapse stage
• Dendrite stage
• Soma stage
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Architecture Description
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• Describes different H/W architectures
• Represents different existing & future 

spiking designs based on common features
• Defines compute elements of chip
• YAML-based, flexible & extensible



Architecture Description
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architecture:
 name: demo
 tile:
  - name: demo_tile[0..7]
    attributes:
     energy_east_west: 1e-12
     latency_east_west: 2e-9
     ...
    core:
     - name: demo_core[0..3]
       soma:
        - name: core_lif
          attributes:
           energy_spiking: 68e-12
           latency_spiking: 30e-9
...

• Describes different H/W architectures
• Represents different existing & future 

spiking designs based on common features
• Defines compute elements of chip
• YAML-based, flexible & extensible
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SANA-FE
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Mapped Spiking Neural Network 
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• Describes SNN application
• One entry per line
• Groups (g), neurons (n), edges (e) 

and H/W mappings to cores (&)
• Optional list of named attributes

## Groups and neurons
g 2 threshold=1.0 reset=0.0
g 2 threshold=2.0 reset=0.0
n 0.0 bias=1.0 connections_out=1
n 0.1 bias=1.0 connections_out=1
n 1.0 bias=0.0 connections_out=1
n 1.1 bias=0.0
## Edges
e 0.0->1.0 weight=-1.0
e 0.1->1.1 weight=-2.0
e 1.0->1.1 weight=3.0
## Mappings
& 0.0@0.0
& 0.1@0.0
& 1.0@0.1
& 1.1@0.1
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Mapped Spiking Neural Network 
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SANA-FE
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• Executes application on a given 
architecture
• Loads architecture and SNN from file
• Simulates on-chip activity in loop

• Detailed performance output
• Estimate energy & latency every time-step
• Spike traces & H/W insight

• Abstract coarse-grained 
• Fast time-step based simulation
• Compared to event-driven
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Simulator Kernel



Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
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Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
• Update neuron dynamics for small time 

increment
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Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
• Update neuron dynamics for small time 

increment
• Cores exchange spike messages
• Barrier to synchronize all cores
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Time-step Based Execution

• Digital chips execute in logical time
• Core iterates over mapped neurons
• Neurons share core H/W resources
• Improved scaling

• Time-step based approach
• Update neuron dynamics for small time 

increment
• Cores exchange spike messages
• Barrier to synchronize all cores
• Increment time-step count
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• Simulate two-stage time-step
• Calculate neuron dynamics according to 

soma model & updates neurons firing
– Neuron processing stage

• Process received spikes
– Message receiving stage

• Track & calculate total activity
• For power estimates every time-step
• Sum total energy over all cores
• Calculate latency as maximum of all 

stages in all cores
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Simulator Design
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SANA-FE Tutorial

• Interactive & hands-on demo
• Docker environment: jamesaboyle/sana-fe
• Demonstrates SANA-FE on real-world example
• Exercises and open-ended challenge

• Online tutorial instructions
github.com/SLAM-Lab/SANA-FE/
• In “tutorial” folder
• View “TUTORIAL.md”
• Or use QR code (shown right)
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github.com/SLAM-Lab/SANA-FE/blob/main/tutorial/TUTORIAL.md 

https://github.com/SLAM-Lab/SANA-FE/
https://github.com/SLAM-Lab/SANA-FE/blob/main/tutorial/TUTORIAL.md


Docker Setup
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Docker Setup
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Docker Setup
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Docker Setup
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[Optional] Installing SANA-FE without Docker
This is only needed if developing SANA-FE
• Build & run dependencies

• Build requires C compiler (C99 or later) and make
• Run scripts require Python ≥ 3.6 and pyyaml

• Make-based build
• Linux recommended
• Code in top-level directory in *.c and *.h  files
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# git clone https://github.com/SLAM-Lab/SANA-FE sana-fe
# cd sana-fe
# make
# python -m venv ./venv && source ./venv/bin/activate
# pip install --upgrade pip && pip install pyyaml numpy

https://github.com/SLAM-Lab/SANA-FE


Running SANA-FE

• Start SANA-FE Docker image
• “Run” →“Optional Settings”→“Volumes”

– “Host path”: Folder in host environment
– “Container path”: /tutorial

• “Container”→“Exec” tab starts Linux shell

• Run small SANA-FE simulation
• In “Exec” shell run command below:
• Parses demo inputs & executes simulator 

kernel for 1000 time-steps
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# python3 sim.py tutorial/arch.yaml tutorial/snn.net 1000



SANA-FE Overview
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Architecture Description Example

Exercises:
1. Change the cost of updating neurons from 0 ns & 0 pJ to 2 ns & 2 pJ
2. Duplicate tiles twice and cores four times per tile (8 cores total)
3. Add a new synapse unit for compressed synapses. Energy & latency costs of 

reading compressed synapses are 0.5 pJ and 2 ns respectively
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# cat /tutorial/arch.yaml
# diff -I wall run_summary.yaml arch_results



Mapped Spiking Neural Network Example

Exercises:
1. Define neuron n1.1

2. Add edges from neurons n0.0 & n0.1 to neuron n1.1

3. Set the bias of neuron n0.1 to 0.5
4. Configure neurons in group 1 to use compressed synapses
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# cat /tutorial/snn.net
# diff -I wall run_summary.yaml snn_results

Neuron Group Bias Synapse Type

0.0 0 0.2 -

0.1 0 0.5 -

1.0 1 0 Compressed

1.1 1 0 Compressed



Simulator Outputs

• SANA-FE run-time summary
• Numbers of cores, axons, etc.
• Total latency, energy & power
• Results saved to YAML file

• Optionally enabled traces
• Spikes (-s)
• Neuron potentials (-v)
• Performance statistics (-p)
• Spike message packets (-m)
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# python3 sim.py -o tutorial tutorial/arch.yaml tutorial/snn.net 10
# cat tutorial/run_summary.yaml



Neuron Traces

• Probes select observed neurons
log_spikes  spikes.csv
log_potential  potential.csv

• Spike and voltage traces
• Spikes: line per spike event
• Membrane potentials: line per time-step & 

column per probe

• Exercise:
1. Visualize the neuron membrane potentials
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# python3 sim.py -s -v -o tutorial tutorial/arch.yaml tutorial/snn.net 10
# cat tutorial/spikes.csv
# cat tutorial/potential.csv



Hardware Traces

• Detailed statistics per time-step 
• H/W performance across entire chip
• Messages sent over network

• Performance and message traces
• Performance trace: line per time-step
• Messages: line per spike message

NICE ‘24 © J. Boyle et al. 2024 41

# python3 sim.py -m -p -o tutorial tutorial/arch.yaml tutorial/snn.net 10
# cat tutorial/perf.csv
# cat tutorial/messages.csv



Real-world Application
• Gesture categorization

• Event data from neuromorphic sensor (IBM)
• Classify hand gestures from 11 gesture types

• SNN for gesture categorization
• Trained using Keras & SNN Toolbox [Massa ‘20]
• SNN has 4 convolutional layers & 1 fully 

connected layer

• Categorization on Intel’s Loihi
• SNN compiled using NxTF
• Frames presented for 128 time-steps
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Image reproduced from Massa et al., 2020



Automating SANA-FE
• SANA-FE scripting capabilities

• Automates architecture parsing, SNN 
generation & runs

• Library for defining neurons, groups & SNN 
layers

• Enables design-space exploration

• Script to run gesture application
• Generates SNN from kernel weights
• Maps SNN to H/W cores
• Runs simulation & parses results
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# python3 tutorial/dvs_challenge.py



Gesture Mapping Challenge
• Optimize SNN H/W mapping

• Using DVS gesture application
• Same SNN can be mapped to 

different H/W cores
• Update H/W mapping in 
dvs_challenge.py
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• Submit results of best run to: james.boyle@utexas.edu 

• Best mapping wins
• Optimize for smallest energy-delay 

product (Total Energy × Total Run-time) 
• Valid mappings only

– Simulation must run & post-run checks pass
– Maximum 1024 neurons per core

mailto:james.boyle@utexas.edu


Upcoming Features

• Move from C to C++
• Base hardware classes provided
• PyBind11 interface with Python

• Support for neuromorphic ecosystem
• Fugu & Lava integration
• User plug-ins & custom neurons models

• Support new components
• Mixed-signal architectures & novel devices
• Dendritic computing
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SANA-FE
• Generic & extensible

• User-defined architecture & SNN
• Supports range of spiking architectures

• Fast & accurate
• Time-step based approach
• Detailed hardware activity for each time-step
• Accurately estimates performance & energy

• Future work
• Support other existing architectures & scale to larger designs
• Adapt other neuromorphic benchmark applications
• Model analog architectures & novel devices
• Integrate with other frameworks e.g., SST, Fugu & La va

Access at: https://github.com/SLAM-Lab/SANA-FE 
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https://github.com/SLAM-Lab/SANA-FE

