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Purpose
The National Nuclear Security Administration (NNSA) Labs emphasize trusted artificial intelligence
(Al) as a necessity for it to meet national security mission delivery.
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The NNSA Labs must strike a balance between
leveraging the advantages of ML while ensuring its
responsible use for national security purposes.




TRU‘S‘TED Af'SCOPE INFORMED BY MISSION NEEDS
®

Sandia’s mission needs set us apart
from industry and academia

High-consequence applications require well-characterized models and
predictions

Many national security applications have sparse, incomplete data
Solutions require extrapolation beyond the space of available data

Domain expertise plays a critical role in model construction

Deployed environments with size, weight, and power constraints . /
by

Decisions may need to be made under time pressure

- Infrastructure Resilie ;I{;B"
Need to account for potential adversarial issues “

Homeland Security

Two broad classes of mission drivers:
Scientific Modeling and Sensor-Driven Use Cases Research
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SANDIA 5-YEAR GOAL: TOWARDS A TRUSTED Al CERTIFICATION PROCESS\\
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Trusted Al capabilities at Sandia have identified the credibility and trustworthy criteria for establishing trust.




TRUSTED Al METHODS ARE GROUNDED IN TRUSTWORTHY EVIDENCE, \
ROOTED IN A CREDIBILITY TECHNICAL BASES

Trust: Defines the state of the decision maker.
* Decision maker integrates model inference and/or
predictions into their decision making process.

Trustworthy

Trustworthy: Defines the state of the model.
* Bias is known and accounted for.
* Interpretability and explainability can be established.

Credibility: Identifies the technical basis of the model.
* Verification, validation, uncertainty quantification
* Data and Geometric Representations.

Credibility leads to trustworthy models, and

trustworthy models may establish trust. Caution needs to be heeded with trusted models. Trust in a model does
not guarantee that credibility has been established.
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PCMM: PREDICTIVE CAPABILITY MATURITY MODEL, IS AN EVIDENCE \\
COLLECTION PROCEDURE TO EVALUATE CREDIBILITY \

The computational simulation (CompSim) credibility process assembles and documents evidence to ascertain and communicate the
believability of predictions that are produced from computational simulations.

\ Communication

° Plan Uncertainty |Representation > Peer Review
° Execute Quantification |and Geometric > Plausible Prediction Bounds

> Organize & Analyze lity

b

Evidence Basis

CompSim

Application Physics Prediction

Validation
Context Models

Model

Elements Application Context

o Partial Differential Equations (PDE)

/ > Computational Fluid Dynamics (CFD)

Our work builds upon the NNSA's 20+ years of experience in verification, validation, and uncertainty quantification (VV/UQ)
for complex problems with limited data.

) ) Solution
o Categories for collecting

evidence

> Dependent on model paradigm

"Predictive Capability Maturity Model for Computational Modeling and Simulation" by Oberkampf,W.L., Pilch, M., and Trucano, T.G., SAND2007-5948
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PCMM LEVELS: UNCERTAINTY QUANTIFICATION (UQ)

PCMM levels depend on the degree to which the decision is high-consequence and to what degree the
Model and Simulation (M&S) provides the information making the decision.

Level — 0 el Tevel - % el &

Low Consequence, Moderate Consequence, High-Consequence, High-Consequence,
Minimal M&S Impact, Some M&S Impact, High M&S Impact, Decision-Making Based on M&S,
e.g. Scoping Studies e.g. Design Support e.g. Qualification Support e.g. Certification

Overall
Description

* Judgement only * Aleatory and epistemic * A&E uncertainties * A&E uncertainties
*  Only deterministic (A&E) uncertainties segregated, propagated comprehensively treated and

analyses are propagated, but and identified in System properly interpreted
conducted without distinction Response Quantities * Comprehensive SA conducted
* Uncertainties * Informal sensitivity (SRQ) for parameters and models
sensitivities are not studies conducted * Quantitative SA *  Numerical propagation errors
uQ addressed * Many strong conducted for most are demonstrated to small
Element UQ)/Sensitivity Analysis parameters *  No significant UQ/SA
Description (SA) assumptions *  Numerical prc?pagation ' assumptions made .
made errors are estimated their ¢ Independent peer review

effect known conducted
* Some strong assumptions
made
Some peer review

The maturity level required for the application context determines the evidence needed across each element for assessing
the credible use of the model for its intended context of use.

Predictive Capability Maturity Model for Computational Modeling and Simulation" by Oberkampf, W.L., Pilch, M., and Trucano, T.G., SAND2007-5948



UQ IS ONLY ONE ELEMENT IN THE CREDIBILITY PROCESS

To determine the overall maturity level of model’s use in high-consequence decision-making environments
requires comprehensive assessment.

Integrated V&V/UQ)/Credibility Processes

Translate Develop &
Requirements Calibrate

to a CompSim CompSim Gather : -
Determine : Document Flan Verification Perform Deliver F||_'|aI
Strategy & Review Model . .. Results with

Application e Evidence & Prediction Credibilit
Requirements Translate Perform Perform Analysis : Y

9 Approach : Evidence
Requirements Experiments & Validation

to a Credibility Credibility

Strategy Activities

Representation |
and Geometric - i
v Physies | Rep/Geo
Fidelity Madels ] Fidelity

Physics
Models

UQ doesn’t address:
* Are we solving the right problem?
* Are the important physics phenomenon adequately represented?

Solution Verification/

* Are there bugs in the code? R verification [GodesOA A
* What are the numerical error?

UQ is supported by and tethered to the other elements.




ADAPTING PCMM ELEMENTS TO A CREDIBILITY PROCESS FOR Al/ML MODELS

Credibility process assembles and documents evidence to ascertain and communicate the believability of
predictions that are produced from computer models.

N

Credibility of any ML model is predicated N\
on the credibility of the data used to train it.

UQ and Validation are currently Uncertainty Data

the core areas of research that Quantification Representation . : -

. s ML is applied more broadly and it is not

exists for ML credibility that are onlv phvsical orinciples we want to

readily transferrable. y Py P P
preserve.

validati Domain
alidation Aware

ML community has prioritized K

explainability to develop trust in
ML. The maturity of these
methods need to also be evaluated.

Verification asks “are we solving the
equations correctly”, ML models do not
Code/Solution start with equations....yet, similar

Explainability :
Evaluation principles will still need to applied.

There is still a numerous amount of outstanding challenges in applying VV/UQ principles to ML.
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= EVALUATING THE CREDIBILITY FOR SCIENTIFIC MACHINE LEARNING
A N\
SciML: Scientific Machine Learning \

Machine learned models are used in lieu of, complementary to, or as surrogates for science and engineering
computational simulation models.

,

Operator Learning ML System ldentification Model-Form Error
Physics-Informed Neural Networks Neural Ordinary Differential Equations Corrections
(PINN) (NODE) Universal Differential Equations (UDE)
Data-driven solutions to Partial Simulating unknown dynamics for a full Model-form error:
Differential Equations (PDEs): system of ODEs:
us + Rlu] =0, d du
t “ d_” = NN(u(t)Ww, b) dar Flu(thNNu(ty:W, b))
u(x, t) = NN(t; W, b) t

Building on a 30 year history in evaluating credibility for computational simulation models for Al/ML is most naturally
translatable by focusing on SciML applications.
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UNIVERSAL DIFFERENTIAL EQUATIONS (UDE) MOTIVATION
« UDEs have been successfully deployed to infer interpretable, predictive N
dynamics from data. o
* UDEs embed ML models, e.g., neural networks (NNs) within existing %M
scientific models: % .
u' = F(u,t, GDDEJNN(urQNN)) % 0.1
m91n||d - u(9)|| 0.0
where 8 = {0,pr, Oyn} and d represents observation data. Neural ODEs
* Data-efficient because make sure of prior physical information. %u-vﬁ P
&
* Can be more predictive than Neural ODEs: 5"
u’ = NN(u,byy) E “
Iénln”d - u(GNN)” o Iu FL ;n ‘m a0
NN Days since 500 infections

UDEs provide a SciML structure that preserves subject matter expertise while learning data-driven model-form error corrections.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan, A. and Edelman, A., 2020. Universal differential equations for scientific machine
learning. arXiv preprint arXiv:2001.04385.




UDES FOR EPIDEMIOLOGY COMPARTMENTAL MODELS N\
as N\

= —A(t)S(t) \

dt
S - SUSCEPTIBLE / | - INFECTIOUS /R -R @ \
ECOVERED &l _ 3(1)S(t) - 11 (£) — q(I (1) g

20 jl“lf:l

g(t) = NN(IRQ; W, b

Yi dR

P yil (t) +yoQ(t)

2= g(DI(t) — 10Q(®)

Such that:
Alt) = =~

1) , where N is a fixed population size.

Déh_s;é_ljr Connected

Loss function:LNN(BNN,B,yl,yQ) = ||log(1(t)) — log(ldam(t))”z + ||log(R(t)) —log(Ryata (t))”
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UDEs provide a SciML structure that preserves subject matter expertise while learning data-driven model-form error corrections.

Dandekar, R., Rackauckas, C. and Barbastathis, G., 2020. A machine learning-aided global diagnostic and comparative tool to assess effect of quarantine control in COVID-19

spread. Patterns, 1(9).




SOURCES OF UNCERTAINTY THAT IMPACT PREDICTION UNCERTAINTY IN
DIFFERENTIAL EQUATION MODELS

Notional Ground Truth Model

dx R
i F(x(t),z(1))

4 \

ordinarv Differential E ) A Model i MD is the difference i
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Model Form Error: z(t) — Z(t) Model
— pl Prediction
L = time A Uncertainty
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Uncertainty quantification is an essential element of PCMM.

f = ftime

Neural networks define a generalizable approach to approximate model-form error corrections. Why should we trust it? g




KEY THEORETICAL FOUNDATIONAL OF S ciML

Input ! (X
5(t) ’
I(1) [_% e
fe(t)

Ot pauat
Q1)

Universal Approximation Theorem (UAT)

(one version) Fix a continuous function o: R — R (activation
function) and positive integers d, D. The function ¢ is not a
polynomial if and only if, for every continuous function f: R? —
R” (target function), every compact set K of R%, and every € > 0
there exists a continuous function f.: R? — R” (the layer
output) with representation

fe=Wye00° W,
where W,, W, are composable affine maps and o denotes
component-wise composition, such that the approximation is
bounded
sup [[f(x) = fe(0) || < ¢

XEK

Code/Solution Evaluation is one of the hardest elements to define the analysis required for PCMM
UAT is a necessary condition for NN to be function approximators, in practice this is not a sufficient condition.



EVALUATING CREDIBILITY FOR SciML: USE EPIDEMIOLOGY EXAMPLE
The original dynamical system is known to be under-representative of the
real-world phenomena it is intended to simulate.

Baseline ODE is NOT Credible.
* To build a Credible UDE, we need to identify our known-unknowns.

NN Universal Approximators as model-form error corrections.

Uncertainty Challenges:
*  What impact does using a UDE for model-form error have on model-form uncertainty?
e Aggregating:
e ODE parameter uncertainty
* NN parameter uncertainty
* NN architecture uncertainty
* NN numerical uncertainty
* Model-form uncertainty

Verification Challenges:
* Universal Approximation Theory: Does the application have a gap between theory and
practice!?
* Convergence of NN optimization can get stuck in local minima

RN Validation Challenges:
‘) * Training-Test-Validation comparison to Calibration-Validation

e Known-Unknowns 15




TO SUMMARIZE IN CLOSING...

The NNSA Labs must strike a balance between leveraging the
advantages of ML while ensuring its responsible use
for national security purposes.

Credibility of computational methods is deeply rooted in the technical bases for
VVUQ and evaluated through maturity model frameworks.

While ML holds great potential for mission critical applications, evaluating the
credibility of current techniques poses challenges that may hinder its widespread
acceptance and use.

Model-form error corrections can drive down model-form uncertainty, but using
NN-based methods can introduced more sources of uncertainty.

Credibility is at the core of trustworthy models, and essential for establishing
Trusted Al,

Credibility of Al is an important topic that will continue to be
addressed in the DOE Frontiers of Al for Science, Security, and
Technologies (FASST) program.
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