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3. Executive Summary:  

This project developed machine learning (ML) methods, lab data sets, and field data to advance 
geothermal exploration and geothermal energy production. The work had three focus areas.  One 
involved the development of ML methods to use microearthquakes (MEQs) for imaging 
geothermal reservoir properties and improving subsurface characterization – most importantly the 
evolution of permeability within the evolving reservoir.  This part of the work included 
development of ML approaches for automated MEQ location, focal mechanism determination and 
identification of earthquake precursors. The second area focused on using MEQ signals generated 
by geothermal exploration and production to predict the relationship between fluid injection and 
seismicity.  Here, we extended to reservoir scale our success in using ML to predict laboratory 
earthquakes and fault zone stress state. The third focus area was on lab experiments. Here, we 
developed new ML models for lab earthquake prediction and identification of precursors to failure 
to improve earthquake forecasting and early warning in geothermal settings.  

Major outcomes of our work include ML models that learn from MEQ signals during geothermal 
exploration and production to predict induced seismicity.  MEQs occur naturally in connection 
with drilling and energy production.  We developed ML methods to use the seismic waves from 
these events to characterize the elastic, hydraulic and poromechanical properties of reservoirs.  Our 
work illuminated fracture geometry and the evolution of fracture permeability by incorporating 
seismic coda wave analysis and ML methods to relate fluid injection and seismicity.  We 
significantly expanded laboratory earthquake prediction to include methods that use both passive 
measurements of microearthquakes within the lab fault zones and also active source acoustic  
measurements of fault zone elastic properties. These methods can now predict fault zone stress 
state, time to failure and the magnitude of lab earthquakes.  Our work showed that repetitive stick-
slip failure events during frictional sliding (the lab equivalent of earthquakes) are preceded by a 
cascade of micro-failure events that radiate energy in a manner that foretells unstable failure –
manifest as laboratory MEQs.  We documented a mapping between fracture properties and 
statistical attributes of elastic radiation. We extended existing works to geothermal reservoir scale 
and developed ML methods to determine reservoir permeability, fracture properties, and their 
evolution during geothermal energy production.  

An attractive feature of ML algorithms is their ability to handle big datasets and reveal patterns 
and correlations that may remain invisible to conventional analyses. Our work connected data from 
field, laboratory and intermediate scales to study permeability, stress, strength, fracture stiffness 
and geometry.  At the field scale we used data from the Newberry Volcano field site, UtahFORGE, 
EGS Collab, and also the Bedretto underground research lab in Switzerland. These data sets are 
bridging the gap between the lab scale, theory, and reservoir scale. 

Our work produced plain language summaries to improve public understanding of DOE 
research. We also developed openly distributed ML and seismicity datasets for use by all 
researchers and we published connections between induced seismicity in geothermal areas and 
reservoir properties including permeability, fracture properties, and stress state. Our models are 
designed for the large data sets of induced seismicity typically associated with geothermal sites. 
We produced labeled event catalogs and used them on geothermal data to assess how ML can 
facilitate geothermal production and exploration. All datasets are available on the GDR 

Productivity: The project produced 32 publications in peer reviewed journals (two are in review). 
It supported the work of 6 PhD students, 40 conference presentations, 6 keynote talks at national 
meetings, and mentoring and professional development for 4 postdoctoral fellows.  
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5. Background:  
Geothermal energy production requires the formation and control of connected flow paths via 

hydraulic stimulation of critically stressed fractures. Fracture formation and stimulation is 
typically associated with microearthquakes, which generate seismic waves that can impact the 
topology and connectivity of the geothermal reservoir, cause damage to surface structures, and/or 
result in project termination.  In our project we developed methods to: 1) forecast the 
spatiotemporal evolution of induced seismicity during geothermal energy production, 2) predict 
the magnitude and location of major seismic events induced during stimulation and production, 
with a view to mitigation, and 3) develop a better understanding of how fault zone elastic properties 
change during the seismic cycle so that such measurements in geothermal production settings can 
forecast and eventually predict impending earthquakes that could cause local damage or project 
termination.  

An attractive feature of ML algorithms is their ability to handle big datasets and reveal patterns 
and correlations in large datasets that may remain invisible to conventional analyses (e.g., Masotti 
et al., 2006; Li et al., 2017; Mudunuru et al., 2017; Holtzman et al., 2018; Marone, 2018; Srinivasan 
et al., 2018; Viswanathan et al., 2018). For this project work, we employed ML methods to link 
data from field, laboratory and intermediate scales to study permeability, stress, strength, fracture 
stiffness and geometry.  At field Scale we used ML to link the characteristics of historic MEQs 
from the Newberry Volcano field site (2014 stimulation - Fang et al., 2018) and others (Desert 
Peak, NV; Geysers, CA) where injection pressures and flow rates are jointly available to 
independently determine permeability evolution. We extended this work and further tested the 
models with additional studies at UtahFORGE (Yu et al., 2024a), EGS Collab (Yu et al., 2024b, 
2025a), and the Bedretto Underground research lab (Yu et al., 2025b).  Laboratory Scale: We used 
elastic waves of lab earthquakes conducted with the concurrent measurement of evolving 
permeability (Rivière et al., 2018; Shokouhi et al., 2018; Bolton et al., 2018; Borat et al., 2023, 
2024; Affinito et al., 2024) and ML to link the features of these waveforms to independently 
measured features of the experiments (labquakes, permeability, stress, fracture strength, stiffness 
and geometry).  Intermediate Scale: Here, we used the MEQ and permeability data from the EERE-
sponsored EGS Collab project that involves the controlled and very closely monitored stimulation 
of a “geothermal” reservoir in the Sanford Underground Lab (Lead, ND). We also used unique 
data from the Bedretto Underground research lab and developed ML approaches to bridge the gap 
between the lab and field scale.  A key objective was to develop labeled catalogs of seismicity (at 
the lab and field scale) for ML work.  These catalogs are available in the GDR. 
Imaging geothermal reservoirs using elastic waves from induced seismicity 
  Imaging geothermal reservoir properties for exploration and creating distributed permeability for 
production are key challenges in geothermal reservoirs. Fluid injection is a standard approach, 
however, it can induce seismicity and negatively impact reservoir management. To address these 
issues we developed ML techniques to: 1) locate induced seismicity and illuminate the geometry 
of permeable zones and 2) predict seismicity from fluid injection history. We began with seismic 
data from the 2014 EGS stimulation at the Newberry Volcano site and the 2011 EGS stimulation 
at the Geysers, California site (Jeanne et al., 2015) and extended the work to other areas.  We 
developed ML methods to: 1) locate the events and determine magnitudes, 2) construct fracture 
flow models that link seismicity and reservoir permeability (e.g., Fang et al., 2018).  Here, seismic 
source properties were determined with ML and time reversal imaging (Zhu et al., 2018b), which 
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provided rapid, high resolution source locations.  We explored several approaches based on 
fracture-based models that relate fracture aperture and permeability. We used those to connect to 
the spatiotemporal evolution of reservoir elastic properties using dynamic acousto-elastic theory 
(Rivière et al., 2016; Shokouhi et al., 2017; Jin et al., 2018; Wood et al., 2021).  

Our work has produced a transformational advance in our understanding of reservoir 
imaging, induced seismicity, and earthquake prediction.  Our methods have made it possible to 
image and track fluid plumes in underground reservoirs. Those observations have been used to 
illuminate the nonlinear relationship between fluid flow, seismic wave speed, and non-linear 
elasticity.  

 

6. Project Objectives 
Our goals were to develop ML methods to illuminate permeability structure and improve 

seismic safety of geothermal energy production. Our work applies to the full geothermal project 
lifecycle, starting with identifying and ranking drilling targets and including the installation and 
use of downhole sensors during technology validation.  

Several hypotheses were tested: 
i. ML inspired analysis of MEQs can be used to forecast (and ultimately predict) large 

induced seismic events and image the permeability structure of geothermal reservoirs to improve 
predictability of reservoir capacity and production. This hypothesis cannot be rejected based on 
our data. 

ii. Supervised ML algorithms can be trained to identify earthquake precursors such as changes 
in elastic wave speed, scattering and attenuation in laboratory data and in tectonic fault settings 
Our data collected for this project are consistent with this hypothesis; it cannot be rejected based 
on our data. 

iii. Unsupervised machine learning can be used to identify clusters of similar features in 
seismic and permeability data from active geothermal reservoirs. Our data collected for this project 
are consistent with this hypothesis; it cannot be rejected based on our data. We find that MEQ 
locations can be used to understand evolving fracture strength and permeability structure.  

iv. ML algorithms can be developed to rapidly and automatically locate MEQs using seismic 
data from geothermal sites. These locations can illuminate flow paths and reservoir permeability 
structure. Our data collected for this project are consistent with this hypothesis; it cannot be 
rejected based on our data. 

 
Our project work has integrated activities across disciplines and provided a high-level 

coordinated effort to bring ML into geothermal energy.  Our work on ML with big data has shown 
the utility and improvements in subsurface characterization of permeability and induced seismicity 
based on fluid injection data. Our project has helped DOE objectives for energy production and 
public safety related to drilling and fluid injection. 
 
Extending Lab Earthquake Prediction to Reservoir Scale    
Objective: To develop ML approaches for forecasting (and ultimately predicting) large seismic 
events associated with EGS stimulation and geothermal energy production.  
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Expected results: Test Hypotheses i and ii.  Expand the lab database for ML prediction of lab 
earthquakes. Apply unsupervised and supervised ML methods to seismic data from geothermal 
sites to test the hypotheses that: 1) large seismic events are proceeded by distinct changes in ML 
clusters and 2) supervised ML can be used to predict changes in seismic rate and/or large seismic 
events.  
 
Imaging Geothermal Reservoir Properties Using MEQs  
Objective: Develop ML methods to image geothermal reservoir properties using elastic waves 
from induced and natural seismicity (MEQs).  
End result: We tested Hypotheses i -iv and developed ML techniques to locate induced 
seismicity, determine focal mechanisms in some cases, and illuminate the geometry of permeable 
zones. The outcomes and results are described below in Section 7. 

 
 

7. Project Results and Discussion 
 
 
Our work was done in two phases (2021-2022 and 2023-2024) 
 
 
Phase 1 activities developed machine learning (ML) methods to advance geothermal exploration 
and geothermal energy production. We focused in two broad areas.  One using field data from 
EGS sites (Area 1) and one using lab data (Area 2) that served as a testing ground for ML method 
development and process-based understanding. These Phase 1 tasks are documented in the Gantt 
charts for Phase 1: 
Area 1  1. Machine Learning to Predict Injectivity From Microearthquakes 
  2. Microearthquake Location Via Deep Learning and Data Fusion 
Area 2  3. A Meta-learning Approach to Lab Earthquake Prediction 
  4. Transfer Learning for Labquakes (Active Source Seismic Monitoring) 

 
Phase 2 activities retained the breadth of interest and expanded the topics that merge field (Area 
1) to laboratory (Area 2) scales into three new focal areas applying ML/AI to key needs in deep 
geothermal reservoir engineering/science.  
 
In Phase 2 we focused on three areas:  
  5. ML for Seismicity-Permeability Linkage  
  6. ML and DL for MEQ Location  

7. ML for Earthquake Prediction & Monitoring of Stress  
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Phase 1, Budget Period 1 
 
Schedule of Milestones 
and Tasks 

 Year 1 Year 2 
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Task A1 ML methods to 
image geothermal 
reservoir properties using 
MEQ elastic waves 

1.1-
1.4 
MS1 

1.4-
1.8 
 

1.6-
1.12 
MS3 
G/NG1 

1.10-
1.11 

1.11
-
1.17 
MS5 

1.12-
1.18 

1.14-
1.17 
MS7 
G/NG3 

1.15-
1.22 

Task A2  ML methods to 
identify earthquake 
precursors and predict 
induced seismicity 

2.1-
2.4 
 

2.3-
2.4 
MS2 

2.4-2.9 2.8-2.10 
MS4 
G/NG2 

2.12 
-
2.14 

2.13-
2.15 
MS6 

2.15-
2.16 

2.16-
2.17 
MS8 
G/NG4 

Phase 2, Budget Period 2 

 
 
The project milestones and G/NG decision points are laid out in chronologic order.  
 
Milestones are described in the table below.  For ease of comparison between initial goals and 
final outcomes we list product references for each task item. 
 
 
Task list with Milestones and Go-No go decision points  
 
Area 1.  ML methods to image geothermal reservoir properties using MEQ elastic waves  
A1.1. Gather seismic data from geothermal operations and EGS stimulations (Leong & Zhu, 

2024a,b; Yu et al., 2025ab) 
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A1.2. Build a local velocity model for the geothermal site if it is not available (Leong & Zhu, 
2024a; Yu et al., 2023) 

A1.3. Locate MEQs with standard techniques and using double difference methods (Leong & 
Zhu 2024a, Yu et al., 2024b; Chiaraluce et al., 2024)  

 
MS1 will be delivery of MEQ event catalogs with preliminary locations and magnitudes based 
on traditional methods 
MS1 was accomplished in several steps. The outcome of that work is described in the paper of 
Leong & Zhu, JGR, 2024.  
The development of enhanced geothermal systems (EGS) hinges on accurately locating induced 
microearthquakes during the reservoir’s stimulation process. The scarcity of microearthquake 
data complicates the use of traditional deep learning for this purpose. To overcome this, we 
developed a practical workflow, by simulating numerous synthetic data sets for training. The 
trained model was then applied to real-world EGS microearthquake data. We created a realistic 
geological model of the Newberry EGS site and generated many artificial microearthquake data 
for deep learning training. During the application on field data from 2012 to 2014 stimulation, 
the computer model successfully identified the depth and location of microearthquakes. Our 
results match well with what we already know about the underground structure, such as the 
presence of natural fractures in the rock. We showed that our approach can effectively predict 
microearthquake locations even when presented with limited earthquake data for training, which 
is promising for monitoring and improving EGS operations in the future. 

 
A1.4. Gather lab experiment data on fracture flow, frictional strength, and elastic properties. 

(Affinito et al., 2024; An et al., 2024; Bolton et al., 2020, 2021, 2022, 2023; Cebry et al., 
2022; den Hartog et al., 2023; Noël et al., 2024; Pignalberi et al., 2024; Shreedharan et al., 
2021a,b, 2022; Wood et al., 2021, 2024) 

A1.5. Analyze lab data to determine elastic wave speed, attenuation, fracture flow and 
permeability (Affinito et al., 2024; Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et al., 
2021a,b, 2022; Wood et al., 2021, 2024) 

A1.6. Build event catalogs for lab earthquakes (Bolton et al., 2020, 2021, 2022, 2023; 
Shreedharan et al., 2021a,b, 2022)  

A1.7. Build feature list for lab acoustic data and set up for supervised ML to locate lab 
earthquakes (Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022; 
Jaspereson et al., 2021; Laurenti et al., 2022) 

A1.8. Develop/test/apply ML methods to locate lab earthquake (Shreedharan et al., 2021b; 
Bolton et al., 2022) 

A1.9. Automated methods to pick arrivals, catalog events, and build labeled lab and field data 
(Bolton et al., 2020; Yu et al., 2024b) 

A1.10. Build feature list for field seismic data and prepare to use ML methods to locate MEQs 
(Leong & Zhu, 2024; Leong et al., 2024) 

A1.11. Perform supervised ML for events location and focal mechanism solutions for MEQs 
(Leong & Zhu, 2024; Leong et al., 2024) 

A1.12. Set up HyM-TRI and CNN to locate MEQ and determine moment tensor solutions 
(Leong & Zhu, 2024; Leong et al., 2024) 
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(Note that MS2 is part of A2 below) 
MS3 will be delivery of ML methods for MEQ locations and moment tensor solutions along 
with a full event catalog 

Conventional earthquake location methods involve iteratively minimizing the difference 
between picked P- and/or S-wave first arrival times and predicted data at multiple seismic stations. 
While these methods have been widely employed in seismology, they have limitations. The 
accuracy of earthquake location estimates can be affected by convergence issues, particularly when 
the initial location guess is not sufficiently close to the true hypocenter, the solution may converge 
at a local minimum, leading to inaccurate location estimates. Additionally, conventional methods 
can be computationally intensive, particularly when applied to large data sets or in regions with 
complex geology (local heterogeneities). As such, most location algorithms rely on one-
dimensional (1D) velocity models, where the velocity changes only with depth. Furthermore, 
waveform-based methods that are based on time-reversal imaging principles utilize finite 
difference to compute time-reversed seismograms and the actual source location is determined by 
identifying the point of highest energy concentration. Wavefield simulation method is 
unsurprisingly computationally expensive, and the energy focusing can be ambiguous for noisy 
data and very heterogeneous models. Waldhauser and Ellsworth (2000) proposed hypoDD, a 
widely used location inversion method that iteratively minimizes the misfit between theoretical 
and observed differential travel-times for pairs of earthquakes (double-difference) at each station. 
Nonetheless, the system can get very large if all event pairs are used in double-difference methods 
and reducing the efficiency of location estimation. 

Deep learning (DL) techniques have been increasingly applied in earthquake seismology. For 
example, DL has seen significant developments in earthquake event phase detection, phase 
picking, phase association, and integrated earthquake monitoring workflow. For DL-based 
earthquake location inversion, a large majority of studies rely heavily on training with labeled field 
data. Perol et al. (2018) used convolutional neural network (CNN) that trained on ∼2,900 single 
station events near Guthrie, Oklahoma, in which the CNN accepts three-component waveforms 
and predicts earthquake location groups of six clusters. Later studies improved the earthquake 
location inversion method by employing more advanced DL algorithms and utilize multi-station 
three-component waveforms as input to predict three-dimensional (3D) locations.  

We developed a machine learning workflow using a probabilistic multilayer perceptron 
(PMLP) to accurately predict MEQ locations from waveform data. The workflow encompasses 
three parts. First, we use a high-resolution 3D velocity model to simulate numerous synthetic MEQ 
events using 3D acoustic finite-difference modeling. From the synthetic waveforms, we extract its 
first arrivals. In practice, since we do not have the MEQs event origin time, we compute the cross-
correlation of the first arrivals such that the first arrival of the master trace is at zero time lag. The 
time lags at other receivers contain the same moveout pattern as the first arrivals. Second, we train 
a PMLP that inputs cross-correlation time lags and outputs the locations (x, y, z) of MEQs. Lastly, 
we apply the trained PMLP onto the field data set to obtain field MEQ location predictions. We 
are essentially allowing the neural network to train on realistic or physics-informed synthetic data 
set, and then apply its knowledge learned onto field waveforms to predict the induced MEQ 
locations. Our method works well and all MEQ locations and moment tensor solutions are 
available in the GDR. 
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A1.13. Refine ML models for location and moment tensor solutions (Leong & Zhu, 2024; Leong 
et al., 2024) 

A1.14. Construct unsupervised ML methods for location/focal mechanism cluster analysis 
(Leong & Zhu, 2024; Leong et al., 2024) 

A1.15. Construct fracture flow models that link seismicity and reservoir permeability (Yu et al., 
2023; 2024a,b,c,2025a,b) 

A1.16. Gather flow and operations data from Newberry Volcano site and Geysers, California 
(Leong & Zhu, 2024) 

A1.17. Set up Safe Reinforcement Learning (SRL) approach to work with flow and operations 
data (we used another approach, as described for MS5 and thus this task was not completed 
with SRL) 

 
(Note that MS4 is part of A2 below) 
MS5 will be delivery of fracture flow models and SRL method to optimize geothermal field 
operation  
 

The distribution of permeabilities in the shallow crust are known to diminish as a power law 
with depth. This is driven by both the extreme sensitivity of fracture permeability to increasing 
stress and the rapidity with which damage occasioned by tectonic strains will heal and seal. Both 
stress and temperatures increase with depth. The attempt to create a fluid transmissive crust for the 
recovery of energy or fuels typically relies on reactivating existing fractures in shear or fracturing 
in tension – each mode of hydraulic-shearing or hydraulic-fracturing driven by artificially elevated 
fluid pressures. These modes of permeability creation result from frictional reactivation and/or 
brittle fracture of the crust and are typically accompanied by micro-earthquakes (MEQs).  

For the work related to MS5, we link changes in crustal permeability to informative features of 
MEQs using two field hydraulic stimulation experiments where both MEQs and permeability 
evolution are recorded simultaneously. The Bidirectional Long Short-Term Memory (Bi-LSTM) 
model effectively predicts permeability evolution and ultimate permeability increase. Our findings 
confirm the form of key features linking the MEQs to permeability, offering mechanistically 
consistent interpretations of this association. Transfer learning correctly predicts permeability 
evolution of one experiment from a model trained on an alternate dataset and locale, which further 
reinforces the innate interdependency of permeability-to-seismicity. Models representing 
permeability evolution on reactivated fractures in both shear and tension suggest scaling 
relationships in which changes in permeability (Δk) are linearly related to the seismic moment (M) 
of individual MEQs as Δk / M. This scaling relation rationalizes our observation of the 
permeability-to-seismicity linkage, contributes to its predictive robustness and accentuates its 
potential in characterizing crustal permeability evolution using MEQs 
 
A1.18. Develop/test Safe Reinforcement Learning methods to predict injection/flow/production. 

(we used another approach, as described for MS5 and thus this task was not completed with 
SRL) 

A1.19. Perform supervised ML to locate high permeability zones and image flow (Yu et al., 
2023; 2024a,b,c,2025a,b) 

A1.20. Refine ML models and explore other ML algorithms (Yu et al., 2023; 2024a,b,c,2025a,b) 
A1.21. Construct unsupervised ML methods for reservoir flow and permeability (Yu et al., 2023; 

2024a,b,c,2025a,b) 
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A1.22. Prepare for technology validation in Budget Period 2 (done as part of MS7) 
 
MS7 will be delivery of unsupervised ML methods for reservoir flow and permeability  
 
This work was done as part of several studies and is described in MS5 (Yu et al., 2023; 
2024a,b,c,2025a,b) 
 
Area 2. ML methods to identify earthquake precursors and predict induced seismicity 
A1.23. Build catalog of lab earthquakes (Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et 

al., 2021a,b, 2022)  
A2.1. Build feature list for supervised ML to predict time of lab earthquakes (Bolton et al., 

2020, 2021, 2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022) 
A2.2. Develop/test supervised ML to predict lab earthquakes; verify ML model performance 

(Bolton et al., 2020, 2021, 2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022; Borat et 
al., 2023, 2024) 

A2.3. Analyze lab acoustic data to identify precursors to lab earthquakes and build a labeled 
catalog for ML (Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022) 

 
MS2 will be delivery of results for lab earthquake prediction 

Machine learning (ML) represents a set of statistical techniques often used for predictive 
modeling of large data sets. We developed ML methods and applied them to a series of 
laboratory experiments where we generate slow and fast “earthquakes” in the lab. These 
laboratory experiments include systematic collection of mechanical (shear stress variations) and 
ultrasonic (transmitted and received high-frequency) pulses throughout multiple lab seismic 
cycles. By training on the ultrasonic data, we were able to predict the mechanically determined 
shear stress evolution, time remaining to the next labquake, and time elapsed since a previous 
labquake to a high-degree of accuracy. Moreover, the ML models predicting shear stress and 
time remaining until the next labquake improved in accuracy closer to failure. Since the 
ultrasonic data are thought to represent the evolution of elastic and plastic deformation at a 
microscopic asperity-scale, the ML process implicitly incorporates the physics of contact 
deformation, and provides a physical basis for the success of predictions. Our results show that 
these ML-based methods coupled with active seismic monitoring of faults in nature may be 
useful for inferring the state of stress and failure state of faults that may host earthquakes.  

A2.4. Build ML methods to identify precursors to lab earthquakes (Bolton et al., 2020, 2021, 
2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022; Borat et al., 2023, 2024) 

A2.5. Set up automated methods to identify precursors to earthquakes in geothermal sites. 
(existing data were not sufficient to complete this task) 

A2.6. Build feature list for ML to identify precursors for lab earthquakes. (Bolton et al., 2020, 
2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022) 

A2.7. Build feature list for ML to identify precursors and calculate features from seismic 
signals in geothermal sites.  (existing data were not sufficient to complete this task) 

A2.8. Test supervised ML methods to identify precursors to lab earthquakes Bolton et al., 2020, 
2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022) 



  DE-EE0008763, Marone, FTR; Page 13 of 42 
 

 

A2.9. Test supervised ML methods to identify precursors to MEQs in geothermal sites  (existing 
data were not sufficient to complete this task) 

 
MS4 will be delivery of ML based identification of precursors to lab earthquakes  
 
We developed ML methods based on lab data and active-source lab seismic data, which probe 
asperity-scale processes, with ML methods. We showed that elastic waves passing through the 
lab fault zone contain information that can predict the full spectrum of labquakes from slow slip 
instabilities to highly aperiodic events. The ML methods utilize systematic changes in P-wave 
amplitude and velocity to accurately predict the timing and shear stress during labquakes. The 
ML predictions improve in accuracy closer to fault failure, demonstrating that the predictive 
power of the ultrasonic signals improves as the fault approaches failure. Our results demonstrate 
that the relationship between the ultrasonic parameters and fault slip rate, and in turn, the 
systematically evolving real area of contact and asperity stiffness allow the gradient boosting 
algorithm to “learn” about the state of the fault and its proximity to failure. Broadly, our results 
demonstrate the utility of physics-informed ML in forecasting the imminence of fault slip at the 
laboratory scale, which may have important implications for earthquake mechanics in nature. 
 
A2.10. Refine ML model for precursors and explore RNN-GP models for reservoir scale data 

(existing data were not sufficient to complete this task) 
A2.11. Construct unsupervised ML methods for cluster analysis of earthquake precursors in 

geothermal sites (existing data were not sufficient to complete this task) 
A2.12. Set up for lab experiments under true triaxial load conditions with fluid injection, shear and 

seismic monitoring (Wood et al., 2021, 2024) 
A2.13. Experiments to monitor fracture permeability and elastic properties with shear (Wood et 

al., 2021, 2024) 
 
MS6 will be delivery of results related to ML based identification of precursors to MEQs from a 
geothermal site 
 
Part of this was done in these papers: Yu et al., 2023; 2024a,b,c,2025a,b and other aspects could 
not be completed because existing data were not sufficient to complete this task. 
 
A2.14. Refine ML model for earthquake prediction and explore other ML algorithms (Bolton et 

al., 2020, 2021, 2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022; Borat et al., 2023, 
2024) 

A2.15. Construct unsupervised ML methods for cluster analysis of the seismic cycle, earthquake 
precursors, and earthquake prediction. (existing data were not sufficient to complete this task) 

A2.16. Construct safe reinforcement learning (RL) algorithms to optimize the operation of 
geothermal energy production while ensuring seismic safety. (existing data were not 
sufficient to complete this task 
 

MS8 will be delivery of unsupervised ML techniques for A2.12 and A2.16 along with SRL 
results for A2.17 
Part of this was done in these papers: Yu et al., 2023; 2024a,b,c,2025a,b and other aspects could 
not be completed because existing data were not sufficient to complete this task. 
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Additional results for Phase 1 work and results for Phase 2 work are described in several 
highlights below 
 
Highlight 1:  ML and transfer learning models for permeability evolution during fluid injection. 

Using microearthquakes to forecast permeability evolution and seismic moment release of 
induced earthquakes. 

Highlight 2:  Development of Deep Learning Models to Recover Permeability Evolution from 
Fluid-Induced Microearthquakes for Hectometer-scale Stimulations  

Highlight 3: Scaling Relationships Between Seismic Moment and Permeability Changes During 
Shear Reactivation: Insights from Laboratory to Field-Scale Observations 

Highlight 4: ML models for predicting seismicity and magnitude rate from injection features 
Highlight 5: DASEventNet—A Deep Learning Model for MEQ Detection in DAS Data 
Highlight 6: DASEventLocNet—A Physics-Informed Transformer for MEQ Localization with 

DAS Data 
Highlight 7: Acoustic energy release during the laboratory seismic cycle: Insights on laboratory 

earthquake precursors and prediction. 
Highlight 8:  Predicting lab earthquakes using physics-informed neural networks and fault zone 

acoustic monitoring 
 
Task 5. ML for Seismicity-Permeability Linkage 
SubTask 5.1 – ML stimulation and (HF/HS) and examine length-scales. 

1. Develop ML models for HydroFracture and HydroShear stimulation modes. MS9 
2. Incorporate into DFNs and inverse models for EGS Collab.  
3. Introduce various learning strategies to identify structure in datasets across scales. MS12  

SubTask 5.2 – Use full waveform data. 
1. Develop ML methods to rapidly define Moment Tensor (MT) solutions from MEQs. 
2. Use full waveform and automatic feature extraction to extract key features. 
3. Compare hand-picked and full waveform signatures, perm-maps & transferability. MS15 
4. Use EGS-Collab and PoroTomo inversion-derived perm-maps and link waveform data.  

 
Our work and results for Task 5 are described in Highlights 1-4 below.  
 
 
Task 6. ML and DL or MEQ Location 
SubTask 6.1 – Improve CNNs by expanding data input 

1. Test regularized waveforms and use different station layouts and optimize loss function. 
MS10 

2. Determine how errors in training data/labels impact location estimates. MS 13  
SubTask 6.2 – Use addition data for Newberry and extend the approach  

1. Use Newberry data for the period 09/2014-12/2014. MS16 
2. Extend the approach to Collab & PoroTomo  

 
Our work and results for Task 6 are described in Highlights 5 and 6 below. 
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Task 7. ML for Earthquake Prediction and Monitoring of Stress 
SubTask 7.1 – Validate scalability of metalearning via experiments 

1. Apply meta-learning to LSTM models with lab data - verify versatility of model. 
2. Design new experiments to expand the range of fracture roughness, including natural 

fractures, and temperature. MS11 
3. Validate effectiveness of meta-learning on earthquake prediction and stress monitoring 

using EGS-Collab, PoroTomo and UtahFORGE datasets.  
SubTask 7.2 – Develop physics-informed DL models for accuracy and transferability 

1. Incorporate fundamental laws of physics and fault rheology into the architecture of neural 
networks to constrain model predictions. MS14 

 
Our work and results for Task 7 are described in Laurenti et al., 2024, Borat et al., 2023, 2024 
and Highlights 7 and 8 below.  In addition, the following are important results of our work.  
Predicting failure in solids has broad applications including earthquake prediction which remains 
an unattainable goal. However, recent machine learning work shows that laboratory earthquakes 
can be predicted using micro-failure events and temporal evolution of fault zone elastic properties. 
Remarkably, these results come from purely data-driven models trained with large datasets. Such 
data are equivalent to centuries of fault motion. In addition, the underlying physics of such 
predictions is poorly understood. In our work, reported in Borat et al. 2023) we addressed 
scalability using a novel Physics Informed Neural Network (PINN). Our model encodes fault 
physics in the deep learning loss function using time-lapse ultrasonic data. PINN models 
outperform data-driven models and significantly improve transfer learning for small training 
datasets and conditions outside those used in training. Our work suggests that PINN offers a 
promising path for machine learning-based failure prediction and, ultimately for improving our 
understanding of earthquake physics and prediction. 
 
Milestone Summary: Note that Milestone MS1 corresponds to the close of Q1, etc., and that the 
relevant tasks are also noted on the WBS. 

Task Task 
Title 

Description of Completion Timing 

Y1  PHASE 1 (MS1=Q1) 
 A1.3 Deliver MEQ event catalogs based on traditional methods MS1 
 A2.4 Delivery of results for lab earthquake prediction MS2 
 A1.12 Delivery of ML methods for MEQ locations and MT solutions 

\ 
MS3 
 

 A2.10 Delivery of ML based identification of precursors to lab earthquakes 
\ 

MS4 
 

Y2    
 A1.17 Delivery of fracture flow models and SRL method to optimize geothermal 

field operation 
MS5 

 A2.14 Delivery of results related to ML based identification of precursors to 
MEQs from a geothermal site 

MS6 

 A1.22 Delivery of unsupervised ML methods for reservoir flow and permeability 
\ 

MS7 
 

 A2.17 Delivery of unsupervised ML techniques and SRL results MS8 



  DE-EE0008763, Marone, FTR; Page 16 of 42 
 

 

Task Task 
Title 

Description of Completion Timing 

End of project goals and plans for Phase 2 G/NG1 
    
Y3  PHASE 2  
 5.1.1 Develop ML models for HF and HS stimulation modes. MS9 
 6.1.1 Test regularized waveforms and use different station layouts and optimize 

loss function. 
MS10 

 7.1.2 Design new experiments to replicate fracture roughness at temperatures. MS11 
 5.1.3 Introduce various learning strategies to identify structure in datasets across 

scales. 
MS12  

Y4    
 6.1.2 Determine how errors in the training data (labels) impact location 

estimates. 
MS13  

 7.2.1 Incorporate fundamental laws of physics and fault rheology into the 
architecture of neural networks to constrain model predictions. 

MS14 

 5.2.3 Compare hand-picked and full waveform signatures, perm-maps & 
transferability. 

MS15 

 6.2.1 Test data over the period 09/2014-12/2014. 
End of project goals and plans for Phase 3 

MS16 
G/NG2 

 
 

End of Project Goal: Deliver ML approaches for predicting induced seismicity and imaging 
geothermal reservoir properties along with results of testing the approaches at geothermal sites.  
The project-wide SMART (Specific, Measurable, Achievable, Relevant, and Timely) technical 
achievements were: 1) the specific ML algorithms (code and description) and the test/verification 
results showing how the ML approaches compare to standard methods to locate MEQs, solve for 
moment tensor solutions, and identify earthquake precursors, and 2) the specific ML algorithms 
(code and description) for Safe RL of geothermal site operations and identification of reservoir 
flow/permeability zones. 
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Highlight 1:  ML and transfer learning models for permeability evolution during fluid 
injection. Using microearthquakes to forecast permeability evolution and seismic moment 
release of induced earthquakes. 
 
We developed Bi-LSTM models to predict permeability changes for both the EGS Collab and Utah 
FORGE datasets by leveraging features derived from microearthquake (MEQ) data (i.e., seismicity 
rates and cumulative seismic moments). A sample-by-sample normalization scheme was 
employed to safeguard against any inadvertent information leakage from validation and testing 
datasets, thus ensuring robust model performance. Additionally, a physics-informed loss function 
was introduced to impose a monotonically increasing trend in predicted permeability, reflecting 
the underlying physical behavior observed in hydraulic stimulations. This work is described in the 
papers by Yu et al., 2024a, 2024b and 2024c, and by those of Leong and Zhu (2024) and Leong et 
al., 2024. 
Our trained Bi-LSTM model achieved high coefficients of determination (R²) for both the EGS 
Collab and Utah FORGE datasets. As illustrated in Figure 1, the model’s predictions closely 
mirrored the observed permeability evolution over time, demonstrating excellent predictive 
accuracy for the ultimate permeability. Although minor discrepancies occasionally arose in the 
intermediate time history, the overall fidelity of the predictions attests to the efficacy of the 
physically constrained loss function. 
To further evaluate the model’s generalizability, we implemented a transfer learning strategy. 
Specifically, the Utah FORGE Bi-LSTM model was applied to the EGS Collab dataset, and vice 
versa. In Figure 2A, the EGS Collab transfer learning model provided strong predictive 
performance for validation (Episode 4) and test (Episode 5) sets, with R² values of 0.91 and 0.80, 
respectively. A similar level of accuracy was observed when transferring the EGS Collab model 
to the Utah FORGE dataset (Figure 2B). Both transfer learning models accurately predicted the 
ultimate permeability, underscoring their capacity to capture the governing physics across different 
sites. 
Moreover, we developed theoretical models to describe permeability evolution on reactivated 
fractures undergoing either shear or tension, which revealed a linear scaling relationship between 
permeability changes (𝛥𝑘) and the seismic moment (𝑀). This scaling relation, 𝛥𝑘	 ∝ 	𝑀, supports 
our empirical observations of a direct link between seismicity and permeability, offering further 
validation for using MEQ data to characterize crustal permeability evolution. These findings 
demonstrate the promise of combining machine learning, transfer learning, and physics-based 
constraints to enhance permeability prediction and advance our understanding of seismic moment–
permeability mechanism. 
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Fig. 1. Comparison between raw permeability data and predictions from training, validation and test sets 
for EGS-Collab and Utah FORGE datasets, respectively. The top row shows the EGS Collab Bi-LSTM 
model compared with raw data using Ep3 for training (A1), Ep4 for validation (A2) and Ep5 for testing 
(A3). The second row shows the Utah FORGE Bi-LSTM model compared with raw data using Stage 1 for 
training (B1), Stage 2 for validation (B2) and Stage 3 for testing (B3).  (Yu et al., 2024a and 2024b) 
 

 
Fig. 2 Comparison between raw data and transfer learning prediction results for EGS-Collab and Utah 
FORGE datasets, respectively.  Top row shows the results of transfer learning applied to the EGS Collab 
dataset results using the Utah FORGE Bi-LSTM model. Second row shows the results of transfer learning 
applied to the Utah FORGE dataset results comparison using the EGS Collab Bi-LSTM model.  Note that 
the predictions are quite good for both cases of transfer learning. (Yu et al., 2024a and 2024b) 
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Highlight 2:  Development of Deep Learning Models to Recover Permeability Evolution 
from Fluid-Induced Microearthquakes for Hectometer-scale Stimulations  
 
In this work, we employed Bi-LSTM deep learning (DL) models to reconstruct the evolution of 
permeability during hectometer-scale hydraulic stimulations at the Bedretto Underground 
Laboratory. We investigated both low-volume (Phase 1) and high-volume (Phase 2) injection 
experiments, demonstrating that the proposed DL framework is broadly generalizable across a 
wide range of injection volumes. By integrating injection rate and pressure time histories with key 
features derived from the microearthquake (MEQ) record—namely, seismicity rates and the 
logarithm of cumulative seismic moment—our models successfully inferred permeability changes 
even for previously unseen datasets.  The work is described in Yu et al., 2025. 
Specifically, a Bi-LSTM model trained on low-volume stimulations in Phase 1 (Figure 3) with 
relatively sparse seismicity and limited permeability enhancement was able to accurately predict 
permeability evolution for subsequent variable-volume injections in Phase 2 (Figure 4), despite 
these injections having a higher seismicity rate and greater overall permeability change. Notably, 
the DL model also exhibited robust predictive capabilities when trained and tested directly on 
Phase 2 stimulations alone. In most cases, it effectively captured both the ultimate permeability 
magnitude at peak stimulation overpressures and the progression to that peak value. Minor 
discrepancies in the inferred time histories arose primarily when the pressure front expanded into 
heterogeneous structural domains, underscoring how geological complexity can challenge model 
fidelity. 
 

 
Fig. 3. Comparison between raw permeability data (ground truth) and Bi-LSTM model predictions for 
training, validation, and test sets using Phase 1 stimulation datasets for Intervals 8, 9, and 10, respectively. 
Each panel shows model output compared to raw data: (a) Interval 8 (training), (b) Interval 9 (validation), 
and (c) Interval 10 (testing). Note, the RMSE values for the training, validation, and testing predictions are 
0.011, 0.103, and 0.060 respectively. Yu et al., 2025. 
 



  DE-EE0008763, Marone, FTR; Page 20 of 42 
 

 

 
Fig. 4. Comparison between raw permeability data (ground truth) and Bi-LSTM model predictions for 
Phase 2 stimulations. Each panel compares model output to raw data: (a) Phase 2A Interval 8, (b) Phase 2A 
Interval 9+10, (c) Phase 2A Interval 11, and (d) Phase 2B Interval 11. Note, the RMSE values for the Phase 
2A Interval 8, Phase 2A Interval 9+10, Phase 2A Interval 11, and Phase 2B Interval 11 predictions are 
0.098, 0.036, 0.107, and 0.077 respectively. Yu et al., 2025. 
 
In addition to quantifying permeability enhancements during peak stimulation, we performed an 
analysis of stress-dependent permeability reduction as injection pressures returned to background 
levels. The observed retreat in permeability was proportional to the reduction in stimulation 
pressure and was notably consistent across diverse structural domains (Figure 5). This consistency 
highlights the potential to infer post-stimulation permeability from peak injection data, providing 
an avenue for enhancing long-term reservoir management. Variations in this scaling behavior are 
attributed to differences in the sampled structural domains and the increased likelihood of 
traversing multiple domains at larger injection volumes. 



  DE-EE0008763, Marone, FTR; Page 21 of 42 
 

 

Overall, these findings underscore the strong generalizability and robustness of Bi-LSTM–based 
DL models for capturing permeability evolution under variable injection volumes and geological 
complexities. The results are currently under review in Geophysical Research Letters. 
 

 
Figure 5. Pressure-dependent permeability evolution and comparison with final permeability estimated 
from post-stimulation hydrotest transmissivity measurements for all stimulation experiments in Phases 1 
and 2. (a) Comparison between peak permeability estimated during stimulation (open squares) and 
permeability recorded in hydrotests (filled squares). (b–h) Permeability evolution occurs during each 
stimulation step, where the dashed lines connect points sequentially in time. Yu et al., 2025. 
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Highlight 3: Scaling Relationships Between Seismic Moment and Permeability Changes 
During Shear Reactivation: Insights from Laboratory to Field-Scale Observations 
 
We established the physical basis for seismicity–permeability scaling relationships with carefully 
controlled laboratory experiments and integrating them with field-scale observations (Yu et al., 
2025b). Our laboratory tests were performed on preexisting faults in both Westerly granite and 
Utah FORGE granitoid samples. Under two boundary conditions (zero displacement or constant 
stress), faults were reactivated through stepwise increases in fluid pressure. At each pressure 
increment, we measured the induced permeability changes and recorded the cumulative seismic 
moment (M)	of acoustic emission (AE) events, capturing the entire cycle of fracture reactivation. 
A representative experiment (PL02, Fig. 6) conducted under the zero-displacement boundary 
condition illustrates the methods. In this test, the upstream pressure was incremented in fixed steps 
(e.g., by 0.5 MPa) while the downstream pressure was held constant at 0.5 MPa. Permeability was 
estimated at each step from the flow rate measured at steady-state conditions. Simultaneously, AE 
events were detected via a long-term average/short-term average (LTA/STA) algorithm. Most 
events occurred in tandem with each pressure increase and subsequent shear slip. We then 
computed incremental permeability changes, Δ𝑘! = 𝑘! − 𝑘!"#, and correlated them with binned 
AE-derived cumulative seismic moments for each pressure step.  

 
Figure 6: Observed permeability enhancement and cumulative amplitudes of Acoustic Emission (AE) 
events during each pressure step induced by fluid injection in experiment PL02 under zero-displacement 
conditions. (a) Prescribed histories of downstream and upstream pressure, and evolving upstream injection 
rate 𝑄 . (b) Induced AE event amplitudes, cumulative amplitude per step, and measured steady-state 
permeability per step. (c) Effective normal stress, shear stress, and shear displacement changes during the 
shear reactivation experiment. Yu et al., 2025b 
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Seismic moments and permeability changes each span an order of magnitude in individual 
experiments (Fig.7(b-e)) and are broadly linearly proportional (Fig.7(b-e)). Overall this ensemble 
linear proportionality spans ~3-4 orders of magnitude in seismic moment and permeability and is 
consistent with previous characterizations inferred from field data. Thus, linear scaling is indeed 
suggested with 𝑀 ∝ 𝛥𝑘 across the specific centimeter length scale of this laboratory fault. 
We attempt to define a direct quantitative link between change in permeability and seismic moment. 
Based on the physical relationship between seismic moment and permeability change proposed 
previously, Δ𝑘 = 𝑀$Δ𝜏%𝛼&/12𝑠𝐺&, we compare the permeability changes (Δ𝐾') calculated using 
this model with the experimentally measured permeability changes (Δ𝐾()*) in Fig. 8 using the 
parameters above – showing excellent correspondence. These results indicate an excellent fit of 
the model, with high 𝑅% values, validating the linearly proportional relationship of Δ𝑘 = 𝜔𝑀$ at 
centimeter-scale within the laboratory experiments. 
 

 
Figure 7: Cumulative seismic moment versus calculated permeability changes for five shear reactivation 
experiments. (a) Combined data for all five experiments, showing cumulative seismic moment versus 
permeability changes in each pressure step. (b), (c), (d), and (e). Individual plots for each experiment, 
depicting the relationship between cumulative seismic moment and permeability changes for each pressure 
step. Dashed lines represent best fit through laboratory data. Yu et al., 2025b 
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Figure 8: Comparison between permeability changes observed in experiments and those calculated based 
on the proposed model for all shear reactivation experiments. Δ𝐾!"# represent the permeability changes 
evaluated from the steady-state period of each pressure step, with Δ𝐾$ the permeability changes calculated 
from laboratory measured seismic moment and stress drop based on the proposed linear relationship. (Yu 
et al., 2025b) 
 
Extending these findings to the field, where larger-scale data incorporate multiple fault segments 
and heterogeneous stress conditions, we observe that Δ𝑘 aligns more comprehensively with Δ𝑘 ∝
𝑀$
%/&. This scaling function accommodates the influence of broader fracture networks and variable 

stress drops—factors that become increasingly significant over kilometer-scale domains. The 
refined relationship not only reconciles laboratory and field datasets but also highlights the 
potential for using microearthquake records to infer evolving permeability in crustal reservoirs. 
These insights build upon previous studies linking crustal permeability changes to cumulative 
seismic moment. By integrating well-constrained laboratory experiments, physically based 
modeling, and multi-scale field observations, we strengthen the mechanistic understanding of how 
shear-induced displacements modulate fracture apertures and thus permeability. Importantly, the 
evolving power law relationship provides a robust framework for predicting permeability 
evolution in low-permeability rocks subjected to hydraulic stimulations. The results of this 
research are currently under second-round review (Yu et al., 2025b). 
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Highlight 4: ML models for predicting seismicity and magnitude rate from injection features 
 

We developed a novel hybrid machine learning framework to predict seismicity rates and 
magnitude rates (expressed as the number of MEQ events or the average logarithmic seismic 
moment within a given time window) using injection parameters from the 2022 Utah FORGE 
geothermal hydraulic stimulations. Key input features include injection rate, temporal gradients in 
pressure (𝑑𝑝/𝑑𝑡), radial variations in pressure (𝑑𝑝/𝑑𝑟 ), and injection distance 𝑅. 
Our approach combines a Bayesian Long Short-Term Memory (LSTM) model with a Multi-Head 
Attention mechanism to capture temporal dependencies in sequential data and to quantify 
uncertainty. By employing variational inference, the Bayesian LSTM delivers probabilistic outputs 
with confidence intervals. The Bayesian LSTM’s predictions—mean and uncertainty bounds—
were then integrated with the original features and fed into an XGBoost regressor, leveraging the 
sequential modeling strengths of the Bayesian LSTM and the robust feature-handling capabilities 
of XGBoost. This two-stage model was trained and validated on three sequential stages of the 2022 
Utah FORGE hydraulic stimulation of Well 16A. Stage 1 served as the training dataset, Stage 2 as 
validation, and Stage 3 as the testing dataset. The hybrid framework effectively predicted both 
seismicity rates (Fig. 9) and magnitude rates (Fig. 10) in the validation and testing phases, offering 
accurate predictions along with credible intervals. Such predictive capability is vital for risk 
assessment and mitigation in geothermal operations, as it informs operators about the likelihood 
of induced seismic events. 
In parallel, we derived a physics-based relationship that links seismic moment (and thus 
magnitude) to key operational injection parameters. Among the variables analyzed, three dominant 
parameters emerged as primary controls on MEQ magnitude.  

 
Figure 9: model seismicity rate prediction results compared with groud truth by using FORGE 
stage 1 as train dataset (a), FORGE stage 2 as validation dataset (b) and FORGE stage 3 as test 
dataset (c). 

a

b

c
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Figure 10: model magnitude rate prediction results compared with groud truth by using FORGE 
stage 1 as train dataset (a), FORGE stage 2 as validation dataset (b) and FORGE stage 3 as test 
dataset (c). 

 
 
  

a

b

c
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Highlight 5: DASEventNet—A Deep Learning Model for MEQ Detection in DAS Data 

 

In this study, we developed a deep learning architecture, termed DASEventNet, to detect 
microearthquakes (MEQs) in continuous distributed acoustic sensing (DAS) data acquired during 
the April 2022 hydraulic stimulations at Utah FORGE Well 16A (78)-32. The training dataset, 
which comprised 1,292 cataloged MEQs and an equivalent number of noise samples from Well 
78B-32, enabled the model to achieve a perfect 100% accuracy on a test set of 260 samples. To 
gain insights into the model’s internal decision-making process, we visualized activation maps for 
both MEQ and noise segments. These maps revealed high activation values corresponding to MEQ 
signals and lower or negative activations in regions classified as noise (Fig. 11), underscoring that 
the learned features align with expert assessments. 

 
Figure 11: Comparative visualization of original event inputs and CAMs for the DASEventNet model. 
Panels (a-c) display three examples of input events processed by the model. Panels (d-f) correspond to their 
respective CAM, which illuminate the regions within the inputs that are most influential in guiding the 
model classification decisions. Yu et al., 2024b. 

 

Notably, DASEventNet demonstrated the capacity to detect weak MEQs initially labeled as noise 
(Fig. 12) and to accurately delineate the event signal within tube-wave noise (Fig. 13). Upon 
application to the entire DAS dataset throughout the stimulation period, DASEventNet identified 
7,058 MEQs—significantly exceeding the 1,309 events detected by the standard STA/LTA 
method. This fivefold increase includes newly detected events with magnitudes as low as 𝑀𝑤 −
𝑀* − 1.80	, whereas STA/LTA methods were limited to 𝑀* − 1.14 (Fig. 14). 
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Figure 12: Comparative visualization of original inputs and their CAMs for the DASEventNet 
model. Panels (a-c) display three examples of inputs where event signals are not visually apparent. 
Panels (c-d) correspond to their respective CAMs with highlighted weak event signal regions. The 
weak event signals are zoomed in and shown within the white frames for better visualization. Yu 
et al., 2024b 
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Figure 13: Data examples including both tube-wave noise and event signals (a-b), and their 
CAMs(c-d) for the DASEventNet model.  Yu et al., 2024b 

 

Enhanced by this expanded catalog, we observed that seismicity rates correlate strongly with 
injectivity evolution in Stage 3 of the stimulations, suggesting evolving permeability. Moreover, 
the spatial distribution of these MEQs indicates the successful creation of a stimulated reservoir 
volume via reactivated fracture networks. These results are particularly noteworthy given the 
partial limitations of fiber placement in Well 78B-32. Overall, the high sensitivity and reliability 
of DASEventNet afford unprecedented clarity on how fractures respond to stimulation, thereby 
improving seismic hazard assessment and reservoir characterization. Additionally, 
DASEventNet’s applicability extends to real-time or long-term surveillance, including monitoring 
production-induced seismicity caused by cold-water injections in Enhanced Geothermal System 
(EGS) operations. The details of this work have been published in JGR: Solid Earth (Yu et al., 
2024b). 
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Figure 14: Comparison of minimum magnitude between events detected by the DASEventNet 
model and the STA/LTA Method. Panel (a1) shows the original DAS records with a magnitude of 
-1.14, the minimum event magnitude detectable by the STA/LTA method. Panel (b1) shows the 
original DAS records with a magnitude of -1.80, detectable solely by the proposed DASEventNet 
model. Panels (a2, b2) present the corresponding CAM plots for (a1) and (b1), respectively. The 
weak event signals are zoomed in and shown within the white frames for better visualization. Yu 
et al., 2024b 

 
 
  

𝑴𝒘 = −𝟏.𝟏𝟒 𝑴𝒘 = −𝟏.𝟖𝟎
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Highlight 6: DASEventLocNet—A Physics-Informed Transformer for MEQ Localization 
with DAS Data 
In this work, we developed a physics-informed Transformer model, DASEventLocNet, to locate 
microseismic events (MEQs) induced by hydraulic stimulation at Utah FORGE Well 16A (78)-
32. Employing the Utah FORGE velocity model for forward waveform modeling, we generated 
synthetic Distributed Acoustic Sensing (DAS) data that included noise, coherent S-wave signals, 
and masked channels to emulate real-world DAS recordings. DASEventLocNet directly ingests 
DAS waveforms (spanning 2D windows of 300 channels by 1 second) and outputs the three-
dimensional (X, Y, Z) coordinates of MEQ hypocenters. Figs 15 and 16 illustrate the model’s 
robust performance on validation and test sets, with most events localized within 100–200 meters 
of their true locations. Despite simulated interference (e.g., masked channels, strong random noise, 
incoherent S-wave signals), 95% of predicted event locations deviated by under 100 meters from 
the ground-truth coordinates, underscoring the model’s resilience to data corruption. 
 

 
Figure 15: Comparison of predicted and actual event locations in the validation dataset including 1000 MEQs 

 
 

 

 
Figure 16: Comparison of predicted and actual event locations in the unseen test dataset including 1000 MEQs 

 
We analyzed the prediction errors by comparing the predicted locations with the true event 
locations. As illustrated in Figure 17, the model predicted the locations of 95% of MEQs with an 
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error smaller than 100 meters in both the validation and test datasets. Moreover, 97% of the 
predicted MEQ locations had errors smaller than 200 meters. Considering the substantial noise we 
introduced into the data, these results are considerably good. 
 

 
Figure 17: Model location error on validation(1000MEQs) and test dataset (1000 MEQs), the location error 

is calculated by 𝐷%!!&! = &'𝑥' − 𝑥(*
) + '𝑦' − 𝑦(*

) + '𝑧' − 𝑧(*
) , where 𝑥', 𝑦', 𝑧'  are the predicted 

coordinates of a MEQ by the model, 𝑥( , 𝑦( , 𝑧( are the true coordinates of a MEQ. 
 
We subsequently applied DASEventLocNet to a set of 1,200 MEQ signals recorded by DAS fiber 
in Utah FORGE Well 78B-32. Location errors in this real dataset averaged 120 meters (±36 meters, 
Fig. 18), a result only moderately larger than the ~70-meter average error observed in synthetic 
data. Crucially, the model preserved its localization accuracy even though the 78B fiber is situated 
at a shallower depth (1,500–1,800 m from the stimulation zone) compared to deeper geophone 
boreholes. When compared with two existing catalogs—(1) the Silixa DAS-based catalog (78A 
and 78B fibers) and (2) the deep geophone borehole catalog, the developed DASEventLocNet 
consistently generated MEQ clusters closely matching those from the more reliable deep borehole 
geophones (Fig.19). By contrast, the Silixa catalog’s MEQ locations appeared sparser and more 
scattered, signifying larger errors (Fig.19). This result indicates that DASEventLocNet 
significantly refines MEQ locations using only a single vertical DAS fiber, resolving potential 
challenges in horizontal (X and Y) resolution. 
Overall, DASEventLocNet offers a physics-grounded, Transformer-based framework for robust 
and accurate microseismic event localization, even under noise-ridden and limited-angle recording 
conditions. Its capabilities hold promise for real-time seismic monitoring and reservoir 
characterization in enhanced geothermal systems (EGS) and other subsurface applications. These 
findings will form the basis of an upcoming manuscript currently in preparation. 
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Figure 18: Prediction errors in MEQ locations of DASEventLocNet model for 1,200 real events, derived 
from 78B Distributed Acoustic Sensing (DAS) fiber recordings during the 2022 FORGE hydraulic 

stimulations. The location error is calculated by 𝐷%!!&! = &'𝑥' − 𝑥(*
) + '𝑦' − 𝑦(*

) + '𝑧' − 𝑧(*
), where 

𝑥', 𝑦', 𝑧' are the predicted coordinates of a MEQ by the model, 𝑥( , 𝑦( , 𝑧( are the true coordinates of a MEQ. 
 

 
Figure 19: Comparison of MEQ location predictions across three catalogs: the Silixa catalog (black), the 
deep borehole geophone catalog (green), and the DASEventLocNet catalog (red). 
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Highlight 7: Acoustic energy release during the laboratory seismic cycle: Insights on 
laboratory earthquake precursors and prediction. 
 
This work demonstrates that machine learning can predict the timing and magnitude of laboratory 
earthquakes using statistics of acoustic emissions. We showed that the evolution of acoustic energy 
is critical for lab earthquake prediction; however, the connections between acoustic energy and 
fault zone processes leading to failure remain poorly understood. Here, we documented in detail 
the temporal evolution of acoustic energy during the laboratory seismic cycle. We conducted 
friction experiments for a range of shearing velocities, normal stresses, and granular particle sizes. 
Acoustic emission data were recorded continuously throughout shear using broadband 
piezoceramic sensors. We found that the coseismic acoustic energy release scales directly with 
stress drop and is consistent with concepts of frictional contact mechanics and time‐dependent 
fault healing (Figure 20). Experiments conducted with larger grains show that the temporal 
evolution of acoustic energy scales directly with fault slip rate. In particular, the acoustic energy 
is low when the fault is locked and increases to a maximum during coseismic failure (Figure 21). 
Data from traditional slide-hold-slide friction tests confirm that acoustic energy release is closely 
linked to fault slip rate. Furthermore, variations in the true contact area of fault zone particles play 
a key role in the generation of acoustic energy. Our data show that acoustic radiation is related 
primarily to breaking/sliding of frictional contact junctions, which suggests that machine 
learning‐based laboratory earthquake prediction derives from frictional weakening processes that 
begin very early in the seismic cycle and well before macroscopic failure.  

 
Figure 20: (a) Shear stress, acoustic amplitude, and acoustic variance plotted as a function of time for one 
seismic cycle. The dashed rectangle shows our moving window (0.636 s) used to compute the acoustic 
variance. At this scale acoustic data look like noise; however, the signal is composed of individual AEs 
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(some identifiable as small spikes) that grow in size and number as failure approaches (see b). The 
acoustic variance first decays following a failure event, reaches a minimum during the interseismic 
period, and finally begins to increase prior to failure. (b) Zoom of an AE that nucleated during the 
interseismic period. (c) Zoom of the acoustic signal during coseismic failure. Note the broad, 
low amplitude nature of the envelope with superimposed high‐frequency AEs.  (Bolton et al., 2020). 
 

 
Figure 21: Shear stress and stress drop as a function of shear strain for experiments conducted with 
different median grain sizes. Note that stress drop increases during the initial part of each experiment and 
reaches a steady state for which larger grains produce bigger events.  (Bolton et al., 2020). 
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Highlight 8:  Predicting lab earthquakes using physics-informed neural networks and fault 
zone acoustic monitoring  
 
This work demonstrates powerful new techniques for  predicting failure in solids (Borat et al., 
2023). We build on recent machine learning work showing that laboratory earthquakes can be 
predicted using micro-failure events and temporal evolution of fault zone elastic properties. 
Remarkably, these results come from purely data-driven models trained with large datasets. Such 
data are equivalent to centuries of fault motion rendering application to tectonic faulting unclear. 
In addition, the underlying physics of such predictions is poorly understood. Here, we address 
scalability using a novel Physics- Informed Neural Network (PINN). Our model encodes fault 
physics in the deep learning loss function using time-lapse ultrasonic data. PINN models 
outperform data-driven models and significantly improve transfer learning for small training 
datasets and conditions outside those used in training.  
We developed new techniques for feature extraction process (Figure 22). Physics-based features, 
namely wave speed (vi) and spectral amplitude (Ai) at time ti, are extracted from each ultrasonic 
signal waveform. To calculate the evolution of wave speed during frictional sliding, we first extract 
the time delay Δt by cross-correlating each waveform Si with a reference waveform S0. The 
reference waveform is chosen past the peak friction just before the fault starts its transition from 
stable sliding to unstable seismic cycles (thin vertical dashed line at time = 2065 s in Fig. 1a). The 
shape of the recorded waveforms Si changes little throughout the experiment. Our work suggests 
that PINN offers a promising path for machine learning-based failure prediction and, ultimately 
for improving our understanding of earthquake physics and prediction.  

 
Figure 22: Details of the feature extraction procedure. (a) Shows the reference waveform (S0) and a typical 
waveform during shearing (Si). The inset emphasizes the time delay between the two signals Δti calculated 
by cross-correlating the two signals. The box marks the extent of the cross-correlation window from ti + 
w1 to ti + w2 with w1 = 20.76 μs and w2 = 25.16 μs. The bottom plot shows a sample of wave speed and 
time shift evolution for several lab seismic cycles over a period of 30 s. (Borat et al., 2023). 
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Figure 23: Performance of the Reference data-driven, PINN #1, and PINN #2 models for experiment 
p5270. a–c Shear stress (τ) prediction R2 scores in training, validation, and testing as a function of varying 
training set sizes. d–f Slip rate (V) prediction R2 scores in training, validation, and testing datasets as a 
function of varying training set sizes are plotted. For both shear stress and slip rate, the PINN models 
outperform the reference data-driven models in testing and the improvement increases inversely with 
training data size. The minimum and maximum of the error bar represent the one standard error from the 
mean. (Borat et al., 2023). 
 
 
8 Significant Accomplishments and Conclusions 
 

Our work has produced a transformational advance in our understanding of reservoir imaging, 
induced seismicity, and earthquake prediction.  Our methods have made it possible to image and 
track fluid plumes in underground reservoirs. Those observations have been used to illuminate the 
nonlinear relationship between fluid flow, seismic wave speed, and non-linear elasticity.  

The project has many products and many significant accomplishments and conclusions. Section 
7 contains an executive summary of seven products and Section 10 contains the full references for 
each of the 32 products that came from this work. In addition to the 32 publications the project 
supported the work of 6 PhD students, 40 conference presentations, 6 keynote talks at national 
meetings, and mentoring and professional development for 4 postdoctoral fellows 

 
 
9. Path Forward 

 
Given the progress that was made by this project in a short time frame of just a few years there 

are many directions for future work. Chief among these are further efforts to apply lab-based ML 
methods to identify precursors to failure and monitor fault zone stress state during the seismic 
cycle to field settings and reservoir conditions. If DOE Geothermal decides to support further work 
in these areas we will be happy to help with those goals. 
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fellow and led many aspects of the ML work during Phase 2.  The project goals aligned well 
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