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3. Executive Summary:

This project developed machine learning (ML) methods, lab data sets, and field data to advance
geothermal exploration and geothermal energy production. The work had three focus areas. One
involved the development of ML methods to use microearthquakes (MEQs) for imaging
geothermal reservoir properties and improving subsurface characterization — most importantly the
evolution of permeability within the evolving reservoir. This part of the work included
development of ML approaches for automated MEQ location, focal mechanism determination and
identification of earthquake precursors. The second area focused on using MEQ signals generated
by geothermal exploration and production to predict the relationship between fluid injection and
seismicity. Here, we extended to reservoir scale our success in using ML to predict laboratory
earthquakes and fault zone stress state. The third focus area was on lab experiments. Here, we
developed new ML models for lab earthquake prediction and identification of precursors to failure
to improve earthquake forecasting and early warning in geothermal settings.

Major outcomes of our work include ML models that learn from MEQ signals during geothermal
exploration and production to predict induced seismicity. MEQs occur naturally in connection
with drilling and energy production. We developed ML methods to use the seismic waves from
these events to characterize the elastic, hydraulic and poromechanical properties of reservoirs. Our
work illuminated fracture geometry and the evolution of fracture permeability by incorporating
seismic coda wave analysis and ML methods to relate fluid injection and seismicity. We
significantly expanded laboratory earthquake prediction to include methods that use both passive
measurements of microearthquakes within the lab fault zones and also active source acoustic
measurements of fault zone elastic properties. These methods can now predict fault zone stress
state, time to failure and the magnitude of lab earthquakes. Our work showed that repetitive stick-
slip failure events during frictional sliding (the lab equivalent of earthquakes) are preceded by a
cascade of micro-failure events that radiate energy in a manner that foretells unstable failure —
manifest as laboratory MEQs. We documented a mapping between fracture properties and
statistical attributes of elastic radiation. We extended existing works to geothermal reservoir scale
and developed ML methods to determine reservoir permeability, fracture properties, and their
evolution during geothermal energy production.

An attractive feature of ML algorithms is their ability to handle big datasets and reveal patterns
and correlations that may remain invisible to conventional analyses. Our work connected data from
field, laboratory and intermediate scales to study permeability, stress, strength, fracture stiffness
and geometry. At the field scale we used data from the Newberry Volcano field site, UtahFORGE,
EGS Collab, and also the Bedretto underground research lab in Switzerland. These data sets are
bridging the gap between the lab scale, theory, and reservoir scale.

Our work produced plain language summaries to improve public understanding of DOE
research. We also developed openly distributed ML and seismicity datasets for use by all
researchers and we published connections between induced seismicity in geothermal areas and
reservoir properties including permeability, fracture properties, and stress state. Our models are
designed for the large data sets of induced seismicity typically associated with geothermal sites.
We produced labeled event catalogs and used them on geothermal data to assess how ML can
facilitate geothermal production and exploration. All datasets are available on the GDR

Productivity: The project produced 32 publications in peer reviewed journals (two are in review).
It supported the work of 6 PhD students, 40 conference presentations, 6 keynote talks at national
meetings, and mentoring and professional development for 4 postdoctoral fellows.
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5. Background:

Geothermal energy production requires the formation and control of connected flow paths via
hydraulic stimulation of critically stressed fractures. Fracture formation and stimulation is
typically associated with microearthquakes, which generate seismic waves that can impact the
topology and connectivity of the geothermal reservoir, cause damage to surface structures, and/or
result in project termination. In our project we developed methods to: 1) forecast the
spatiotemporal evolution of induced seismicity during geothermal energy production, 2) predict
the magnitude and location of major seismic events induced during stimulation and production,
with a view to mitigation, and 3) develop a better understanding of how fault zone elastic properties
change during the seismic cycle so that such measurements in geothermal production settings can
forecast and eventually predict impending earthquakes that could cause local damage or project
termination.

An attractive feature of ML algorithms is their ability to handle big datasets and reveal patterns
and correlations in large datasets that may remain invisible to conventional analyses (e.g., Masotti
etal.,2006; Lietal., 2017; Mudunuru et al., 2017; Holtzman et al., 2018; Marone, 2018; Srinivasan
et al., 2018; Viswanathan et al., 2018). For this project work, we employed ML methods to link
data from field, laboratory and intermediate scales to study permeability, stress, strength, fracture
stiffness and geometry. At field Scale we used ML to link the characteristics of historic MEQs
from the Newberry Volcano field site (2014 stimulation - Fang et al., 2018) and others (Desert
Peak, NV; Geysers, CA) where injection pressures and flow rates are jointly available to
independently determine permeability evolution. We extended this work and further tested the
models with additional studies at UtahFORGE (Yu et al., 2024a), EGS Collab (Yu et al., 2024b,
2025a), and the Bedretto Underground research lab (Yu et al., 2025b). Laboratory Scale: We used
elastic waves of lab earthquakes conducted with the concurrent measurement of evolving
permeability (Riviere et al., 2018; Shokouhi et al., 2018; Bolton et al., 2018; Borat et al., 2023,
2024; Affinito et al., 2024) and ML to link the features of these waveforms to independently
measured features of the experiments (labquakes, permeability, stress, fracture strength, stiffness
and geometry). Intermediate Scale: Here, we used the MEQ and permeability data from the EERE-
sponsored EGS Collab project that involves the controlled and very closely monitored stimulation
of a “geothermal” reservoir in the Sanford Underground Lab (Lead, ND). We also used unique
data from the Bedretto Underground research lab and developed ML approaches to bridge the gap
between the lab and field scale. A key objective was to develop labeled catalogs of seismicity (at
the lab and field scale) for ML work. These catalogs are available in the GDR.

Imaging geothermal reservoirs using elastic waves from induced seismicity

Imaging geothermal reservoir properties for exploration and creating distributed permeability for
production are key challenges in geothermal reservoirs. Fluid injection is a standard approach,
however, it can induce seismicity and negatively impact reservoir management. To address these
issues we developed ML techniques to: 1) locate induced seismicity and illuminate the geometry
of permeable zones and 2) predict seismicity from fluid injection history. We began with seismic
data from the 2014 EGS stimulation at the Newberry Volcano site and the 2011 EGS stimulation
at the Geysers, California site (Jeanne et al., 2015) and extended the work to other areas. We
developed ML methods to: 1) locate the events and determine magnitudes, 2) construct fracture
flow models that link seismicity and reservoir permeability (e.g., Fang et al., 2018). Here, seismic
source properties were determined with ML and time reversal imaging (Zhu et al., 2018b), which
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provided rapid, high resolution source locations. We explored several approaches based on
fracture-based models that relate fracture aperture and permeability. We used those to connect to
the spatiotemporal evolution of reservoir elastic properties using dynamic acousto-elastic theory
(Riviere et al., 2016; Shokouhi et al., 2017; Jin et al., 2018; Wood et al., 2021).

Our work has produced a transformational advance in our understanding of reservoir
imaging, induced seismicity, and earthquake prediction. Our methods have made it possible to
image and track fluid plumes in underground reservoirs. Those observations have been used to
illuminate the nonlinear relationship between fluid flow, seismic wave speed, and non-linear
elasticity.

6. Project Objectives

Our goals were to develop ML methods to illuminate permeability structure and improve
seismic safety of geothermal energy production. Our work applies to the full geothermal project
lifecycle, starting with identifying and ranking drilling targets and including the installation and
use of downhole sensors during technology validation.

Several hypotheses were tested:

i. ML inspired analysis of MEQs can be used to forecast (and ultimately predict) large
induced seismic events and image the permeability structure of geothermal reservoirs to improve
predictability of reservoir capacity and production. This hypothesis cannot be rejected based on
our data.

ii. Supervised ML algorithms can be trained to identify earthquake precursors such as changes
in elastic wave speed, scattering and attenuation in laboratory data and in tectonic fault settings
Our data collected for this project are consistent with this hypothesis; it cannot be rejected based
on our data.

iii. Unsupervised machine learning can be used to identify clusters of similar features in
seismic and permeability data from active geothermal reservoirs. Our data collected for this project
are consistent with this hypothesis; it cannot be rejected based on our data. We find that MEQ
locations can be used to understand evolving fracture strength and permeability structure.

iv. ML algorithms can be developed to rapidly and automatically locate MEQs using seismic
data from geothermal sites. These locations can illuminate flow paths and reservoir permeability
structure. Our data collected for this project are consistent with this hypothesis; it cannot be
rejected based on our data.

Our project work has integrated activities across disciplines and provided a high-level
coordinated effort to bring ML into geothermal energy. Our work on ML with big data has shown
the utility and improvements in subsurface characterization of permeability and induced seismicity
based on fluid injection data. Our project has helped DOE objectives for energy production and
public safety related to drilling and fluid injection.

Extending Lab Earthquake Prediction to Reservoir Scale !

Objective: To develop ML approaches for forecasting (and ultimately predicting) large seismic
events associated with EGS stimulation and geothermal energy production.
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Expected results: Test Hypotheses i and ii. Expand the lab database for ML prediction of lab
earthquakes. Apply unsupervised and supervised ML methods to seismic data from geothermal
sites to test the hypotheses that: 1) large seismic events are proceeded by distinct changes in ML
clusters and 2) supervised ML can be used to predict changes in seismic rate and/or large seismic
events.

Imaging Geothermal Reservoir Properties Using MEQs

Objective: Develop ML methods to image geothermal reservoir properties using elastic waves
from induced and natural seismicity (MEQs).

End result: We tested Hypotheses i -iv and developed ML techniques to locate induced
seismicity, determine focal mechanisms in some cases, and illuminate the geometry of permeable
zones. The outcomes and results are described below in Section 7.

7. Project Results and Discussion

Our work was done in two phases (2021-2022 and 2023-2024)

Phase 1 activities developed machine learning (ML) methods to advance geothermal exploration
and geothermal energy production. We focused in two broad areas. One using field data from
EGS sites (Area 1) and one using lab data (Area 2) that served as a testing ground for ML method
development and process-based understanding. These Phase 1 tasks are documented in the Gantt
charts for Phase 1:

Area 1 1. Machine Learning to Predict Injectivity From Microearthquakes
2. Microearthquake Location Via Deep Learning and Data Fusion
Area 2 3. A Meta-learning Approach to Lab Earthquake Prediction

4. Transfer Learning for Labquakes (Active Source Seismic Monitoring)

Phase 2 activities retained the breadth of interest and expanded the topics that merge field (Area
1) to laboratory (Area 2) scales into three new focal areas applying ML/AI to key needs in deep
geothermal reservoir engineering/science.

In Phase 2 we focused on three areas:
5. ML for Seismicity-Permeability Linkage
6. ML and DL for MEQ Location
7. ML for Earthquake Prediction & Monitoring of Stress
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Phase 1, Budget Period 1

Year 1 Year 2
Schedule of Milestones | Q1 Q2 Q3 Q4 Q5 | Q6 Q7 Q8
and Tasks
Task A1 ML methods to | 1.1- 1.4- 1.6- 1.10- 1.11 | 1.12- 1.14- 1.15-
image geothermal 1.4 1.8 1.12 1.11 - 1.18 1.17 1.22
reservoir properties using | MS1 MS3 1.17 MS7
MEQ elastic waves G/NG1 MSS G/NG3
Task A2 ML methods to | 2.1- 2.3- 24-29 | 28210 | 2.12 | 2.13- 2.15- 2.16-
identify earthquake | 2.4 24 MS4 - 2.15 2.16 2.17
precursors and predict MS2 G/NG2 2.14 | MS6 MS8
induced seismicity G/NG4
Phase 2, Budget Period 2
Budget Period 2
Year 3 Year 4
Phase 2: Schedule of Tasks and Milestones Leads Q9 ‘Qlo‘an‘ou Qi3 ’014 ‘le‘ms
*Milestones M1 at end of Quarter Q1, etc
Task 5 - ML for Seismicity-Permeability Linkage DE/PS
1 ML for stimulation (HF/HS) and length scales DE/PS Ms9 Ms12
2 Use full waveform data DE/PS Ms15
3 Develop PINN models to coplement physics-based models DE/PS
_j G/NG5
Task 6 - ML and DL for MEQ Location TZ/)Y
1 Improve CNNs by expanding data input TZ/)Y G/NGS
2 Extend dataset for Newberry TZ/)Y 1
Task 7 - ML for Earthquake Prediction and Monitoring of Stress CM/PS/IY
1 Validate scalability of metalearning via experiments CM/PS/IY Ms11 /NG5S
2 Develop physics-informed DL models for accuracy and transferability  CM/PS/JY Ms14
Reports Y3 Y4

The project milestones and G/NG decision points are laid out in chronologic order.

Milestones are described in the table below. For ease of comparison between initial goals and
final outcomes we list product references for each task item.

Task list with Milestones and Go-No go decision points

Area 1. ML methods to image geothermal reservoir properties using MEQ elastic waves
Al.1. Gather seismic data from geothermal operations and EGS stimulations (Leong & Zhu,
2024a,b; Yu et al., 2025ab)
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Al.2. Build a local velocity model for the geothermal site if it is not available (Leong & Zhu,
2024a; Yu et al., 2023)
A1.3. Locate MEQs with standard techniques and using double difference methods (Leong &
Zhu 2024a, Yu et al., 2024b; Chiaraluce et al., 2024)

MS1 will be delivery of MEQ event catalogs with preliminary locations and magnitudes based
on traditional methods

MS1 was accomplished in several steps. The outcome of that work is described in the paper of
Leong & Zhu, JGR, 2024.

The development of enhanced geothermal systems (EGS) hinges on accurately locating induced
microearthquakes during the reservoir’s stimulation process. The scarcity of microearthquake
data complicates the use of traditional deep learning for this purpose. To overcome this, we
developed a practical workflow, by simulating numerous synthetic data sets for training. The
trained model was then applied to real-world EGS microearthquake data. We created a realistic
geological model of the Newberry EGS site and generated many artificial microearthquake data
for deep learning training. During the application on field data from 2012 to 2014 stimulation,
the computer model successfully identified the depth and location of microearthquakes. Our
results match well with what we already know about the underground structure, such as the
presence of natural fractures in the rock. We showed that our approach can effectively predict
microearthquake locations even when presented with limited earthquake data for training, which
is promising for monitoring and improving EGS operations in the future.

Al.4. Gather lab experiment data on fracture flow, frictional strength, and elastic properties.
(Affinito et al., 2024; An et al., 2024; Bolton et al., 2020, 2021, 2022, 2023; Cebry et al.,
2022; den Hartog et al., 2023; Noél et al., 2024; Pignalberi et al., 2024; Shreedharan et al.,
2021a,b, 2022; Wood et al., 2021, 2024)

Al.5. Analyze lab data to determine elastic wave speed, attenuation, fracture flow and
permeability (Affinito et al., 2024; Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et al.,
2021a,b, 2022; Wood et al., 2021, 2024)

A1.6. Build event catalogs for lab earthquakes (Bolton et al., 2020, 2021, 2022, 2023;
Shreedharan et al., 2021a,b, 2022)

A1.7. Build feature list for lab acoustic data and set up for supervised ML to locate lab
earthquakes (Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022;
Jaspereson et al., 2021; Laurenti et al., 2022)

Al.8. Develop/test/apply ML methods to locate lab earthquake (Shreedharan et al., 2021b;
Bolton et al., 2022)

A1.9. Automated methods to pick arrivals, catalog events, and build labeled lab and field data
(Bolton et al., 2020; Yu et al., 2024b)

A1.10. Build feature list for field seismic data and prepare to use ML methods to locate MEQs
(Leong & Zhu, 2024; Leong et al., 2024)

Al.11. Perform supervised ML for events location and focal mechanism solutions for MEQs
(Leong & Zhu, 2024; Leong et al., 2024)

A1.12. Set up HyM-TRI and CNN to locate MEQ and determine moment tensor solutions

(Leong & Zhu, 2024; Leong et al., 2024)
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(Note that MS2 is part of A2 below)
MS3 will be delivery of ML methods for MEQ locations and moment tensor solutions along
with a full event catalog

Conventional earthquake location methods involve iteratively minimizing the difference
between picked P- and/or S-wave first arrival times and predicted data at multiple seismic stations.
While these methods have been widely employed in seismology, they have limitations. The
accuracy of earthquake location estimates can be affected by convergence issues, particularly when
the initial location guess is not sufficiently close to the true hypocenter, the solution may converge
at a local minimum, leading to inaccurate location estimates. Additionally, conventional methods
can be computationally intensive, particularly when applied to large data sets or in regions with
complex geology (local heterogeneities). As such, most location algorithms rely on one-
dimensional (1D) velocity models, where the velocity changes only with depth. Furthermore,
waveform-based methods that are based on time-reversal imaging principles utilize finite
difference to compute time-reversed seismograms and the actual source location is determined by
identifying the point of highest energy concentration. Wavefield simulation method is
unsurprisingly computationally expensive, and the energy focusing can be ambiguous for noisy
data and very heterogeneous models. Waldhauser and Ellsworth (2000) proposed hypoDD, a
widely used location inversion method that iteratively minimizes the misfit between theoretical
and observed differential travel-times for pairs of earthquakes (double-difference) at each station.
Nonetheless, the system can get very large if all event pairs are used in double-difference methods
and reducing the efficiency of location estimation.

Deep learning (DL) techniques have been increasingly applied in earthquake seismology. For
example, DL has seen significant developments in earthquake event phase detection, phase
picking, phase association, and integrated earthquake monitoring workflow. For DL-based
earthquake location inversion, a large majority of studies rely heavily on training with labeled field
data. Perol et al. (2018) used convolutional neural network (CNN) that trained on ~2,900 single
station events near Guthrie, Oklahoma, in which the CNN accepts three-component waveforms
and predicts earthquake location groups of six clusters. Later studies improved the earthquake
location inversion method by employing more advanced DL algorithms and utilize multi-station
three-component waveforms as input to predict three-dimensional (3D) locations.

We developed a machine learning workflow using a probabilistic multilayer perceptron
(PMLP) to accurately predict MEQ locations from waveform data. The workflow encompasses
three parts. First, we use a high-resolution 3D velocity model to simulate numerous synthetic MEQ
events using 3D acoustic finite-difference modeling. From the synthetic waveforms, we extract its
first arrivals. In practice, since we do not have the MEQs event origin time, we compute the cross-
correlation of the first arrivals such that the first arrival of the master trace is at zero time lag. The
time lags at other receivers contain the same moveout pattern as the first arrivals. Second, we train
a PMLP that inputs cross-correlation time lags and outputs the locations (X, y, z) of MEQs. Lastly,
we apply the trained PMLP onto the field data set to obtain field MEQ location predictions. We
are essentially allowing the neural network to train on realistic or physics-informed synthetic data
set, and then apply its knowledge learned onto field waveforms to predict the induced MEQ
locations. Our method works well and all MEQ locations and moment tensor solutions are
available in the GDR.
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A1.13. Refine ML models for location and moment tensor solutions (Leong & Zhu, 2024; Leong
et al., 2024)

Al1.14. Construct unsupervised ML methods for location/focal mechanism cluster analysis
(Leong & Zhu, 2024; Leong et al., 2024)

A1.15. Construct fracture flow models that link seismicity and reservoir permeability (Yu et al.,
2023; 2024a,b,c,2025a,b)

A1.16. Gather flow and operations data from Newberry Volcano site and Geysers, California
(Leong & Zhu, 2024)

A1.17. Set up Safe Reinforcement Learning (SRL) approach to work with flow and operations
data (we used another approach, as described for MS5 and thus this task was not completed
with SRL)

(Note that MS4 is part of A2 below)
MSS5 will be delivery of fracture flow models and SRL method to optimize geothermal field

operation

The distribution of permeabilities in the shallow crust are known to diminish as a power law
with depth. This is driven by both the extreme sensitivity of fracture permeability to increasing
stress and the rapidity with which damage occasioned by tectonic strains will heal and seal. Both
stress and temperatures increase with depth. The attempt to create a fluid transmissive crust for the
recovery of energy or fuels typically relies on reactivating existing fractures in shear or fracturing
in tension — each mode of hydraulic-shearing or hydraulic-fracturing driven by artificially elevated
fluid pressures. These modes of permeability creation result from frictional reactivation and/or
brittle fracture of the crust and are typically accompanied by micro-earthquakes (MEQs).

For the work related to MS5, we link changes in crustal permeability to informative features of
MEQs using two field hydraulic stimulation experiments where both MEQs and permeability
evolution are recorded simultaneously. The Bidirectional Long Short-Term Memory (Bi-LSTM)
model effectively predicts permeability evolution and ultimate permeability increase. Our findings
confirm the form of key features linking the MEQs to permeability, offering mechanistically
consistent interpretations of this association. Transfer learning correctly predicts permeability
evolution of one experiment from a model trained on an alternate dataset and locale, which further
reinforces the innate interdependency of permeability-to-seismicity. Models representing
permeability evolution on reactivated fractures in both shear and tension suggest scaling
relationships in which changes in permeability (Ak) are linearly related to the seismic moment (M)
of individual MEQs as Ak / M. This scaling relation rationalizes our observation of the
permeability-to-seismicity linkage, contributes to its predictive robustness and accentuates its
potential in characterizing crustal permeability evolution using MEQs

A1.18. Develop/test Safe Reinforcement Learning methods to predict injection/flow/production.
(we used another approach, as described for MS5 and thus this task was not completed with
SRL)

A1.19. Perform supervised ML to locate high permeability zones and image flow (Yu et al.,
2023; 2024a,b,c,2025a,b)

A1.20. Refine ML models and explore other ML algorithms (Yu et al., 2023; 2024a,b,c,2025a,b)

A1.21. Construct unsupervised ML methods for reservoir flow and permeability (Yu et al., 2023;
2024a,b,c,2025a,b)
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A1.22. Prepare for technology validation in Budget Period 2 (done as part of MS7)

MS7 will be delivery of unsupervised ML methods for reservoir flow and permeability

This work was done as part of several studies and is described in MS5 (Yu et al., 2023;
2024a,b,c,2025a,b)

Area 2. ML methods to identify earthquake precursors and predict induced seismicity

A1.23. Build catalog of lab earthquakes (Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et
al., 2021a,b, 2022)

A2.1. Build feature list for supervised ML to predict time of lab earthquakes (Bolton et al.,
2020, 2021, 2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022)

A2.2. Develop/test supervised ML to predict lab earthquakes; verify ML model performance
(Bolton et al., 2020, 2021, 2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022; Borat et
al., 2023, 2024)

A2.3. Analyze lab acoustic data to identify precursors to lab earthquakes and build a labeled
catalog for ML (Bolton et al., 2020, 2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022)

MS2 will be delivery of results for lab earthquake prediction

Machine learning (ML) represents a set of statistical techniques often used for predictive
modeling of large data sets. We developed ML methods and applied them to a series of
laboratory experiments where we generate slow and fast “earthquakes” in the lab. These
laboratory experiments include systematic collection of mechanical (shear stress variations) and
ultrasonic (transmitted and received high-frequency) pulses throughout multiple lab seismic
cycles. By training on the ultrasonic data, we were able to predict the mechanically determined
shear stress evolution, time remaining to the next labquake, and time elapsed since a previous
labquake to a high-degree of accuracy. Moreover, the ML models predicting shear stress and
time remaining until the next labquake improved in accuracy closer to failure. Since the
ultrasonic data are thought to represent the evolution of elastic and plastic deformation at a
microscopic asperity-scale, the ML process implicitly incorporates the physics of contact
deformation, and provides a physical basis for the success of predictions. Our results show that
these ML-based methods coupled with active seismic monitoring of faults in nature may be
useful for inferring the state of stress and failure state of faults that may host earthquakes.

A2.4. Build ML methods to identify precursors to lab earthquakes (Bolton et al., 2020, 2021,
2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022; Borat et al., 2023, 2024)

A2.5. Set up automated methods to identify precursors to earthquakes in geothermal sites.
(existing data were not sufficient to complete this task)

A2.6. Build feature list for ML to identify precursors for lab earthquakes. (Bolton et al., 2020,
2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022)

A2.7. Build feature list for ML to identify precursors and calculate features from seismic
signals in geothermal sites. (existing data were not sufficient to complete this task)

A2.8. Test supervised ML methods to identify precursors to lab earthquakes Bolton et al., 2020,
2021, 2022, 2023; Shreedharan et al., 2021a,b, 2022)
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A2.9. Test supervised ML methods to identify precursors to MEQs in geothermal sites (existing
data were not sufficient to complete this task)

MS4 will be delivery of ML based identification of precursors to lab earthquakes

We developed ML methods based on lab data and active-source lab seismic data, which probe
asperity-scale processes, with ML methods. We showed that elastic waves passing through the
lab fault zone contain information that can predict the full spectrum of labquakes from slow slip
instabilities to highly aperiodic events. The ML methods utilize systematic changes in P-wave
amplitude and velocity to accurately predict the timing and shear stress during labquakes. The
ML predictions improve in accuracy closer to fault failure, demonstrating that the predictive
power of the ultrasonic signals improves as the fault approaches failure. Our results demonstrate
that the relationship between the ultrasonic parameters and fault slip rate, and in turn, the
systematically evolving real area of contact and asperity stiffness allow the gradient boosting
algorithm to “learn” about the state of the fault and its proximity to failure. Broadly, our results
demonstrate the utility of physics-informed ML in forecasting the imminence of fault slip at the
laboratory scale, which may have important implications for earthquake mechanics in nature.

A2.10. Refine ML model for precursors and explore RNN-GP models for reservoir scale data
(existing data were not sufficient to complete this task)

A2.11. Construct unsupervised ML methods for cluster analysis of earthquake precursors in
geothermal sites (existing data were not sufficient to complete this task)

A2.12. Setup for lab experiments under true triaxial load conditions with fluid injection, shear and

seismic monitoring (Wood et al., 2021, 2024)

A2.13. Experiments to monitor fracture permeability and elastic properties with shear (Wood et

al., 2021, 2024)

MS6 will be delivery of results related to ML based identification of precursors to MEQs from a
geothermal site

Part of this was done in these papers: Yu et al., 2023; 2024a,b,c,2025a,b and other aspects could
not be completed because existing data were not sufficient to complete this task.

A2.14. Refine ML model for earthquake prediction and explore other ML algorithms (Bolton et
al., 2020, 2021, 2022, 2023; Jaspereson et al., 2021; Laurenti et al., 2022; Borat et al., 2023,
2024)

A2.15. Construct unsupervised ML methods for cluster analysis of the seismic cycle, earthquake
precursors, and earthquake prediction. (existing data were not sufficient to complete this task)

A2.16. Construct safe reinforcement learning (RL) algorithms to optimize the operation of
geothermal energy production while ensuring seismic safety. (existing data were not
sufficient to complete this task

MS8 will be delivery of unsupervised ML techniques for A2.12 and A2.16 along with SRL
results for A2.17

Part of this was done in these papers: Yu et al., 2023; 2024a,b,c,2025a,b and other aspects could
not be completed because existing data were not sufficient to complete this task.
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Additional results for Phase 1 work and results for Phase 2 work are described in several
highlights below

Highlight 1: ML and transfer learning models for permeability evolution during fluid injection.
Using microearthquakes to forecast permeability evolution and seismic moment release of
induced earthquakes.

Highlight 2: Development of Deep Learning Models to Recover Permeability Evolution from
Fluid-Induced Microearthquakes for Hectometer-scale Stimulations

Highlight 3: Scaling Relationships Between Seismic Moment and Permeability Changes During
Shear Reactivation: Insights from Laboratory to Field-Scale Observations

Highlight 4: ML models for predicting seismicity and magnitude rate from injection features

Highlight 5: DASEventNet—A Deep Learning Model for MEQ Detection in DAS Data

Highlight 6: DASEventLocNet—A Physics-Informed Transformer for MEQ Localization with
DAS Data

Highlight 7: Acoustic energy release during the laboratory seismic cycle: Insights on laboratory
earthquake precursors and prediction.

Highlight 8: Predicting lab earthquakes using physics-informed neural networks and fault zone
acoustic monitoring

Task 5. ML for Seismicity-Permeability Linkage
SubTask 5.1 — ML stimulation and (HF/HS) and examine length-scales.

1. Develop ML models for HydroFracture and HydroShear stimulation modes. MS9

2. Incorporate into DFNs and inverse models for EGS Collab.

3. Introduce various learning strategies to identify structure in datasets across scales. MS12
SubTask 5.2 — Use full waveform data.

1. Develop ML methods to rapidly define Moment Tensor (MT) solutions from MEQs.

2. Use full waveform and automatic feature extraction to extract key features.

3. Compare hand-picked and full waveform signatures, perm-maps & transferability. MS15

4. Use EGS-Collab and PoroTomo inversion-derived perm-maps and link waveform data.

Our work and results for Task 5 are described in Highlights 1-4 below.

Task 6. ML and DL. or MEQ L.ocation
SubTask 6.1 — Improve CNNs by expanding data input

1. Test regularized waveforms and use different station layouts and optimize loss function.
MS10
2. Determine how errors in training data/labels impact location estimates. MS 13
SubTask 6.2 — Use addition data for Newberry and extend the approach
1. Use Newberry data for the period 09/2014-12/2014. MS16
2. Extend the approach to Collab & PoroTomo

Our work and results for Task 6 are described in Highlights 5 and 6 below.
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Task 7. ML for Earthquake Prediction and Monitoring of Stress
SubTask 7.1 — Validate scalability of metalearning via experiments

1. Apply meta-learning to LSTM models with lab data - verify versatility of model.
2. Design new experiments to expand the range of fracture roughness, including natural
fractures, and temperature. MS11
3. Validate effectiveness of meta-learning on earthquake prediction and stress monitoring
using EGS-Collab, PoroTomo and UtahFORGE datasets.
SubTask 7.2 — Develop physics-informed DL models for accuracy and transferability

1. Incorporate fundamental laws of physics and fault rheology into the architecture of neural
networks to constrain model predictions. MS14

Our work and results for Task 7 are described in Laurenti et al., 2024, Borat et al., 2023, 2024
and Highlights 7 and 8 below. In addition, the following are important results of our work.

Predicting failure in solids has broad applications including earthquake prediction which remains
an unattainable goal. However, recent machine learning work shows that laboratory earthquakes
can be predicted using micro-failure events and temporal evolution of fault zone elastic properties.
Remarkably, these results come from purely data-driven models trained with large datasets. Such
data are equivalent to centuries of fault motion. In addition, the underlying physics of such
predictions is poorly understood. In our work, reported in Borat et al. 2023) we addressed
scalability using a novel Physics Informed Neural Network (PINN). Our model encodes fault
physics in the deep learning loss function using time-lapse ultrasonic data. PINN models
outperform data-driven models and significantly improve transfer learning for small training
datasets and conditions outside those used in training. Our work suggests that PINN offers a
promising path for machine learning-based failure prediction and, ultimately for improving our
understanding of earthquake physics and prediction.

Milestone Summary: Note that Milestone MS1 corresponds to the close of Q1, etc., and that the
relevant tasks are also noted on the WBS.

Task Task Description of Completion Timing
Title
Y1 PHASE 1 (MS1=01)
Al3 Deliver MEQ event catalogs based on traditional methods MS1
A2.4 Delivery of results for lab earthquake prediction MS2
Al.12 Delivery of ML methods for MEQ locations and MT solutions MS3
\
A2.10 Delivery of ML based identification of precursors to lab earthquakes MS4
\
Y2
Al.17 Delivery of fracture flow models and SRL method to optimize geothermal MSS
field operation
A2.14 Delivery of results related to ML based identification of precursors to MS6
MEQs from a geothermal site
Al1.22 Delivery of unsupervised ML methods for reservoir flow and permeability | MS7
\
A2.17 Delivery of unsupervised ML techniques and SRL results MSS8
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Task Task Description of Completion Timing
Title
End of project goals and plans for Phase 2 G/NG1
Y3 PHASE 2
5.1.1 Develop ML models for HF and HS stimulation modes. MS9
6.1.1 Test regularized waveforms and use different station layouts and optimize MS10
loss function.
7.1.2 Design new experiments to replicate fracture roughness at temperatures. MS11
5.13 Introduce various learning strategies to identify structure in datasets across | MS12
scales.
Y4
6.1.2 Determine how errors in the training data (labels) impact location MS13
estimates.
7.2.1 Incorporate fundamental laws of physics and fault rheology into the MS14
architecture of neural networks to constrain model predictions.
523 Compare hand-picked and full waveform signatures, perm-maps & MS15
transferability.
6.2.1 Test data over the period 09/2014-12/2014. MS16
End of project goals and plans for Phase 3 G/NG2

End of Project Goal: Deliver ML approaches for predicting induced seismicity and imaging
geothermal reservoir properties along with results of testing the approaches at geothermal sites.
The project-wide SMART (Specific, Measurable, Achievable, Relevant, and Timely) technical
achievements were: 1) the specific ML algorithms (code and description) and the test/verification
results showing how the ML approaches compare to standard methods to locate MEQs, solve for
moment tensor solutions, and identify earthquake precursors, and 2) the specific ML algorithms
(code and description) for Safe RL of geothermal site operations and identification of reservoir
flow/permeability zones.
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Highlight 1: ML and transfer learning models for permeability evolution during fluid
injection. Using microearthquakes to forecast permeability evolution and seismic moment
release of induced earthquakes.

We developed Bi-LSTM models to predict permeability changes for both the EGS Collab and Utah
FORGE datasets by leveraging features derived from microearthquake (MEQ) data (i.e., seismicity
rates and cumulative seismic moments). A sample-by-sample normalization scheme was
employed to safeguard against any inadvertent information leakage from validation and testing
datasets, thus ensuring robust model performance. Additionally, a physics-informed loss function
was introduced to impose a monotonically increasing trend in predicted permeability, reflecting
the underlying physical behavior observed in hydraulic stimulations. This work is described in the
papers by Yu et al., 2024a, 2024b and 2024c, and by those of Leong and Zhu (2024) and Leong et
al., 2024.

Our trained Bi-LSTM model achieved high coefficients of determination (R?) for both the EGS
Collab and Utah FORGE datasets. As illustrated in Figure 1, the model’s predictions closely
mirrored the observed permeability evolution over time, demonstrating excellent predictive
accuracy for the ultimate permeability. Although minor discrepancies occasionally arose in the
intermediate time history, the overall fidelity of the predictions attests to the efficacy of the
physically constrained loss function.

To further evaluate the model’s generalizability, we implemented a transfer learning strategy.
Specifically, the Utah FORGE Bi-LSTM model was applied to the EGS Collab dataset, and vice
versa. In Figure 2A, the EGS Collab transfer learning model provided strong predictive
performance for validation (Episode 4) and test (Episode 5) sets, with R? values of 0.91 and 0.80,
respectively. A similar level of accuracy was observed when transferring the EGS Collab model
to the Utah FORGE dataset (Figure 2B). Both transfer learning models accurately predicted the
ultimate permeability, underscoring their capacity to capture the governing physics across different
sites.

Moreover, we developed theoretical models to describe permeability evolution on reactivated
fractures undergoing either shear or tension, which revealed a linear scaling relationship between
permeability changes (4k) and the seismic moment (M). This scaling relation, Ak o< M, supports
our empirical observations of a direct link between seismicity and permeability, offering further
validation for using MEQ data to characterize crustal permeability evolution. These findings
demonstrate the promise of combining machine learning, transfer learning, and physics-based
constraints to enhance permeability prediction and advance our understanding of seismic moment—
permeability mechanism.
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Fig. 1. Comparison between raw permeability data and predictions from training, validation and test sets
for EGS-Collab and Utah FORGE datasets, respectively. The top row shows the EGS Collab Bi-LSTM
model compared with raw data using Ep3 for training (A1), Ep4 for validation (A2) and Ep5 for testing
(A3). The second row shows the Utah FORGE Bi-LSTM model compared with raw data using Stage 1 for
training (B1), Stage 2 for validation (B2) and Stage 3 for testing (B3). (Yu et al., 2024a and 2024b)
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Fig. 2 Comparison between raw data and transfer learning prediction results for EGS-Collab and Utah
FORGE datasets, respectively. Top row shows the results of transfer learning applied to the EGS Collab
dataset results using the Utah FORGE Bi-LSTM model. Second row shows the results of transfer learning
applied to the Utah FORGE dataset results comparison using the EGS Collab Bi-LSTM model. Note that
the predictions are quite good for both cases of transfer learning. (Yu et al., 2024a and 2024b)
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Highlight 2: Development of Deep Learning Models to Recover Permeability Evolution
from Fluid-Induced Microearthquakes for Hectometer-scale Stimulations

In this work, we employed Bi-LSTM deep learning (DL) models to reconstruct the evolution of
permeability during hectometer-scale hydraulic stimulations at the Bedretto Underground
Laboratory. We investigated both low-volume (Phase 1) and high-volume (Phase 2) injection
experiments, demonstrating that the proposed DL framework is broadly generalizable across a
wide range of injection volumes. By integrating injection rate and pressure time histories with key
features derived from the microearthquake (MEQ) record—namely, seismicity rates and the
logarithm of cumulative seismic moment—our models successfully inferred permeability changes
even for previously unseen datasets. The work is described in Yu et al., 2025.

Specifically, a Bi-LSTM model trained on low-volume stimulations in Phase 1 (Figure 3) with
relatively sparse seismicity and limited permeability enhancement was able to accurately predict
permeability evolution for subsequent variable-volume injections in Phase 2 (Figure 4), despite
these injections having a higher seismicity rate and greater overall permeability change. Notably,
the DL model also exhibited robust predictive capabilities when trained and tested directly on
Phase 2 stimulations alone. In most cases, it effectively captured both the ultimate permeability
magnitude at peak stimulation overpressures and the progression to that peak value. Minor
discrepancies in the inferred time histories arose primarily when the pressure front expanded into
heterogeneous structural domains, underscoring how geological complexity can challenge model
fidelity.
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Fig. 3. Comparison between raw permeability data (ground truth) and Bi-LSTM model predictions for
training, validation, and test sets using Phase 1 stimulation datasets for Intervals 8, 9, and 10, respectively.
Each panel shows model output compared to raw data: (a) Interval 8 (training), (b) Interval 9 (validation),
and (c) Interval 10 (testing). Note, the RMSE values for the training, validation, and testing predictions are
0.011, 0.103, and 0.060 respectively. Yu et al., 2025.
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Fig. 4. Comparison between raw permeability data (ground truth) and Bi-LSTM model predictions for
Phase 2 stimulations. Each panel compares model output to raw data: (a) Phase 2A Interval 8, (b) Phase 2A
Interval 9+10, (c) Phase 2A Interval 11, and (d) Phase 2B Interval 11. Note, the RMSE values for the Phase
2A Interval 8, Phase 2A Interval 9+10, Phase 2A Interval 11, and Phase 2B Interval 11 predictions are
0.098, 0.036, 0.107, and 0.077 respectively. Yu et al., 2025.

In addition to quantifying permeability enhancements during peak stimulation, we performed an
analysis of stress-dependent permeability reduction as injection pressures returned to background
levels. The observed retreat in permeability was proportional to the reduction in stimulation
pressure and was notably consistent across diverse structural domains (Figure 5). This consistency
highlights the potential to infer post-stimulation permeability from peak injection data, providing
an avenue for enhancing long-term reservoir management. Variations in this scaling behavior are
attributed to differences in the sampled structural domains and the increased likelihood of
traversing multiple domains at larger injection volumes.
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Overall, these findings underscore the strong generalizability and robustness of Bi-LSTM-based
DL models for capturing permeability evolution under variable injection volumes and geological
complexities. The results are currently under review in Geophysical Research Letters.

q T 3x10715 <
1a NE NE 6 X 10—15 C /,?
1 — =15 | — 4
2x10 ’ !
4 > > ’ :P
= £ 4x10716 s ;
1 -8 a o) ‘
- 8 10_15—_ g 3x 10716 ,’, u'J
& 1 e TpL NS £ o] £ o :
£ goo-- | B 6x 10716 & 2x107104 7 H
> 10-15 22222777 1
= 10 7 P2A \n}=;";’:~ P?-B \\’\tl A"XDE)*XOO 10! Avtxoz),_—\'g“ 101
o) 1 =2727\0
© ] g 0% .a Pressure [MPa] Pressure [MPa]
o 4 A\ -7
” P . - — _16 — q
E P -7 ?,1’ Pprae \n@/ﬂ NE 4x10 d //g‘ NE 1 e
S.J | w _ /’, : 3x10-16 W : : |
e L2770 s S £
4 -7 ,’9\_\“ = _16 e 1 =
i . o 2x10 ’ 1 o
g © // ] © 10_15_
- g S t GEJ E
10164 =" 5 s 5
1 a 1016w a ]
4x10° 6x10° A1 2x 10! © © 1 & A 101
10 ar 3% 10 10 px3Q <30 10
Pressure [MPa] Pressure [MPa] Pressure [MPa]
— & o 7
“‘E b - S € //#,
- - — — ’
= 10775 -t 2 z 10714 S
1 - = = b -~ !
= I~ : e o 1 7 !
2 ] ! 3 5 1.7 |
O 10-16 ! £ € 6x107 10" !
£ E I 5 5 h I
@ 1f é‘ a a th
= TS P ] 107100 a0 10,107 100 | 40
p 30 420 10 A% 2t A To% 2%
Pressure [MPa] Pressure [MPa] Pressure [MPa]
m Plintst =-B- PlInto_r P2A Int8_t -B- P2AInt9+10_r = P2BIntll_t
-B- P1Int8_r = Plintl0_t P2A Int8_r = P2AIntll_t -E- P2BIntll_r
m Plint9 t =8- PliIntlO_r m  P2AInt9+10_t =-8B- P2AIntll_r

Figure 5. Pressure-dependent permeability evolution and comparison with final permeability estimated
from post-stimulation hydrotest transmissivity measurements for all stimulation experiments in Phases 1
and 2. (a) Comparison between peak permeability estimated during stimulation (open squares) and
permeability recorded in hydrotests (filled squares). (b—h) Permeability evolution occurs during each
stimulation step, where the dashed lines connect points sequentially in time. Yu et al., 2025.
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Highlight 3: Scaling Relationships Between Seismic Moment and Permeability Changes
During Shear Reactivation: Insights from Laboratory to Field-Scale Observations

We established the physical basis for seismicity—permeability scaling relationships with carefully
controlled laboratory experiments and integrating them with field-scale observations (Yu et al.,
2025b). Our laboratory tests were performed on preexisting faults in both Westerly granite and
Utah FORGE granitoid samples. Under two boundary conditions (zero displacement or constant
stress), faults were reactivated through stepwise increases in fluid pressure. At each pressure
increment, we measured the induced permeability changes and recorded the cumulative seismic
moment (M) of acoustic emission (AE) events, capturing the entire cycle of fracture reactivation.
A representative experiment (PL02, Fig. 6) conducted under the zero-displacement boundary
condition illustrates the methods. In this test, the upstream pressure was incremented in fixed steps
(e.g., by 0.5 MPa) while the downstream pressure was held constant at 0.5 MPa. Permeability was
estimated at each step from the flow rate measured at steady-state conditions. Simultaneously, AE
events were detected via a long-term average/short-term average (LTA/STA) algorithm. Most
events occurred in tandem with each pressure increase and subsequent shear slip. We then
computed incremental permeability changes, Ak; = k; — k;_;, and correlated them with binned
AE-derived cumulative seismic moments for each pressure step.
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Figure 6: Observed permeability enhancement and cumulative amplitudes of Acoustic Emission (AE)
events during each pressure step induced by fluid injection in experiment PLLO2 under zero-displacement
conditions. (a) Prescribed histories of downstream and upstream pressure, and evolving upstream injection
rate Q. (b) Induced AE event amplitudes, cumulative amplitude per step, and measured steady-state
permeability per step. (c) Effective normal stress, shear stress, and shear displacement changes during the
shear reactivation experiment. Yu et al., 2025b
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Seismic moments and permeability changes each span an order of magnitude in individual
experiments (Fig.7(b-e)) and are broadly linearly proportional (Fig.7(b-e)). Overall this ensemble
linear proportionality spans ~3-4 orders of magnitude in seismic moment and permeability and is
consistent with previous characterizations inferred from field data. Thus, linear scaling is indeed
suggested with M o« Ak across the specific centimeter length scale of this laboratory fault.

We attempt to define a direct quantitative link between change in permeability and seismic moment.
Based on the physical relationship between seismic moment and permeability change proposed
previously, Ak = MyAt?a3/12sG3, we compare the permeability changes (AK,) calculated using
this model with the experimentally measured permeability changes (AK,,,,) in Fig. 8 using the
parameters above — showing excellent correspondence. These results indicate an excellent fit of
the model, with high R? values, validating the linearly proportional relationship of Ak = wM, at
centimeter-scale within the laboratory experiments.
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Figure 7: Cumulative seismic moment versus calculated permeability changes for five shear reactivation
experiments. (a) Combined data for all five experiments, showing cumulative seismic moment versus
permeability changes in each pressure step. (b), (c), (d), and (e). Individual plots for each experiment,
depicting the relationship between cumulative seismic moment and permeability changes for each pressure
step. Dashed lines represent best fit through laboratory data. Yu et al., 2025b
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Figure 8: Comparison between permeability changes observed in experiments and those calculated based
on the proposed model for all shear reactivation experiments. AK,,,, represent the permeability changes
evaluated from the steady-state period of each pressure step, with AK,; the permeability changes calculated
from laboratory measured seismic moment and stress drop based on the proposed linear relationship. (Yu
et al., 2025b)

Extending these findings to the field, where larger-scale data incorporate multiple fault segments
and heterogeneous stress conditions, we observe that Ak aligns more comprehensively with Ak o

Mg /3. This scaling function accommodates the influence of broader fracture networks and variable
stress drops—factors that become increasingly significant over kilometer-scale domains. The
refined relationship not only reconciles laboratory and field datasets but also highlights the
potential for using microearthquake records to infer evolving permeability in crustal reservoirs.
These insights build upon previous studies linking crustal permeability changes to cumulative
seismic moment. By integrating well-constrained laboratory experiments, physically based
modeling, and multi-scale field observations, we strengthen the mechanistic understanding of how
shear-induced displacements modulate fracture apertures and thus permeability. Importantly, the
evolving power law relationship provides a robust framework for predicting permeability
evolution in low-permeability rocks subjected to hydraulic stimulations. The results of this
research are currently under second-round review (Yu et al., 2025b).
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Highlight 4: ML models for predicting seismicity and magnitude rate from injection features

We developed a novel hybrid machine learning framework to predict seismicity rates and
magnitude rates (expressed as the number of MEQ events or the average logarithmic seismic
moment within a given time window) using injection parameters from the 2022 Utah FORGE
geothermal hydraulic stimulations. Key input features include injection rate, temporal gradients in
pressure (dp/dt), radial variations in pressure (dp/dr ), and injection distance R.

Our approach combines a Bayesian Long Short-Term Memory (LSTM) model with a Multi-Head
Attention mechanism to capture temporal dependencies in sequential data and to quantify
uncertainty. By employing variational inference, the Bayesian LSTM delivers probabilistic outputs
with confidence intervals. The Bayesian LSTM’s predictions—mean and uncertainty bounds—
were then integrated with the original features and fed into an XGBoost regressor, leveraging the
sequential modeling strengths of the Bayesian LSTM and the robust feature-handling capabilities
of XGBoost. This two-stage model was trained and validated on three sequential stages of the 2022
Utah FORGE hydraulic stimulation of Well 16A. Stage 1 served as the training dataset, Stage 2 as
validation, and Stage 3 as the testing dataset. The hybrid framework effectively predicted both
seismicity rates (Fig. 9) and magnitude rates (Fig. 10) in the validation and testing phases, offering
accurate predictions along with credible intervals. Such predictive capability is vital for risk
assessment and mitigation in geothermal operations, as it informs operators about the likelihood
of induced seismic events.

In parallel, we derived a physics-based relationship that links seismic moment (and thus
magnitude) to key operational injection parameters. Among the variables analyzed, three dominant
parameters emerged as primary controls on MEQ magnitude.
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Figure 9: model seismicity rate prediction results compared with groud truth by using FORGE
stage 1 as train dataset (a), FORGE stage 2 as validation dataset (b) and FORGE stage 3 as test
dataset (c).
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True vs Predicted MEQ mag rate on Training Set
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Figure 10: model magnitude rate prediction results compared with groud truth by using FORGE
stage 1 as train dataset (a), FORGE stage 2 as validation dataset (b) and FORGE stage 3 as test
dataset (c).
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Highlight 5S: DASEventNet—A Deep Learning Model for MEQ Detection in DAS Data

In this study, we developed a deep learning architecture, termed DASEventNet, to detect
microearthquakes (MEQs) in continuous distributed acoustic sensing (DAS) data acquired during
the April 2022 hydraulic stimulations at Utah FORGE Well 16A (78)-32. The training dataset,
which comprised 1,292 cataloged MEQs and an equivalent number of noise samples from Well
78B-32, enabled the model to achieve a perfect 100% accuracy on a test set of 260 samples. To
gain insights into the model’s internal decision-making process, we visualized activation maps for
both MEQ and noise segments. These maps revealed high activation values corresponding to MEQ
signals and lower or negative activations in regions classified as noise (Fig. 11), underscoring that
the learned features align with expert assessments.
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Figure 11: Comparative visualization of original event inputs and CAMs for the DASEventNet model.
Panels (a-c) display three examples of input events processed by the model. Panels (d-f) correspond to their
respective CAM, which illuminate the regions within the inputs that are most influential in guiding the
model classification decisions. Yu et al., 2024b.

Notably, DASEventNet demonstrated the capacity to detect weak MEQs initially labeled as noise
(Fig. 12) and to accurately delineate the event signal within tube-wave noise (Fig. 13). Upon
application to the entire DAS dataset throughout the stimulation period, DASEventNet identified
7,058 MEQs—significantly exceeding the 1,309 events detected by the standard STA/LTA
method. This fivefold increase includes newly detected events with magnitudes as low as Mw —
M,, — 1.80 , whereas STA/LTA methods were limited to M,, — 1.14 (Fig. 14).
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Figure 12: Comparative visualization of original inputs and their CAMs for the DASEventNet
model. Panels (a-c) display three examples of inputs where event signals are not visually apparent.
Panels (c-d) correspond to their respective CAMs with highlighted weak event signal regions. The
weak event signals are zoomed in and shown within the white frames for better visualization. Yu
et al., 2024b
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Figure 13: Data examples including both tube-wave noise and event signals (a-b), and their
CAMs(c-d) for the DASEventNet model. Yu et al., 2024b

Enhanced by this expanded catalog, we observed that seismicity rates correlate strongly with
injectivity evolution in Stage 3 of the stimulations, suggesting evolving permeability. Moreover,
the spatial distribution of these MEQs indicates the successful creation of a stimulated reservoir
volume via reactivated fracture networks. These results are particularly noteworthy given the
partial limitations of fiber placement in Well 78B-32. Overall, the high sensitivity and reliability
of DASEventNet afford unprecedented clarity on how fractures respond to stimulation, thereby
improving seismic hazard assessment and reservoir characterization. Additionally,
DASEventNet’s applicability extends to real-time or long-term surveillance, including monitoring
production-induced seismicity caused by cold-water injections in Enhanced Geothermal System
(EGS) operations. The details of this work have been published in JGR: Solid Earth (Yu et al.,
2024b).
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Highlight 6: DASEventLocNet—A Physics-Informed Transformer for MEQ Localization
with DAS Data
In this work, we developed a physics-informed Transformer model, DASEventLocNet, to locate
microseismic events (MEQs) induced by hydraulic stimulation at Utah FORGE Well 16A (78)-
32. Employing the Utah FORGE velocity model for forward waveform modeling, we generated
synthetic Distributed Acoustic Sensing (DAS) data that included noise, coherent S-wave signals,
and masked channels to emulate real-world DAS recordings. DASEventLocNet directly ingests
DAS waveforms (spanning 2D windows of 300 channels by 1 second) and outputs the three-
dimensional (X, Y, Z) coordinates of MEQ hypocenters. Figs 15 and 16 illustrate the model’s
robust performance on validation and test sets, with most events localized within 100-200 meters
of their true locations. Despite simulated interference (e.g., masked channels, strong random noise,
incoherent S-wave signals), 95% of predicted event locations deviated by under 100 meters from
the ground-truth coordinates, underscoring the model’s resilience to data corruption.
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15: Comparison of predicted and actual event locations in the validation dataset including 1000 MEQs

3300

X Coordinates

3000 A

2700 1

2900

Y Coordinates

2600 1

Predicted Y

23001

2400

2700 3000
Actual X

Predicted Z

000
3300 2000

2300 2600
Actual Y

2900

-1900

Z Coordinates

—2300

—2700 A

-3100

—2300
Actual Z

—-2700

—1900

Figure 16: Comparison of predicted and actual event locations in the unseen test dataset including 1000 MEQs

We analyzed the prediction errors by comparing the predicted locations with the true event
locations. As illustrated in Figure 17, the model predicted the locations of 95% of MEQs with an
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error smaller than 100 meters in both the validation and test datasets. Moreover, 97% of the
predicted MEQ locations had errors smaller than 200 meters. Considering the substantial noise we
introduced into the data, these results are considerably good.
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Figure 17: Model location error on validation(1000MEQs) and test dataset (1000 MEQs), the location error

is calculated by Dgypror = J (xp - xt)2 + (yp - yt)2 + (Zp - Zt)2 , where x,,y,,z, are the predicted
coordinates of a MEQ by the model, x;, y;, z; are the true coordinates of a MEQ.

We subsequently applied DASEventLocNet to a set of 1,200 MEQ signals recorded by DAS fiber
in Utah FORGE Well 78B-32. Location errors in this real dataset averaged 120 meters (+36 meters,
Fig. 18), a result only moderately larger than the ~70-meter average error observed in synthetic
data. Crucially, the model preserved its localization accuracy even though the 78B fiber is situated
at a shallower depth (1,500-1,800 m from the stimulation zone) compared to deeper geophone
boreholes. When compared with two existing catalogs—(1) the Silixa DAS-based catalog (78A
and 78B fibers) and (2) the deep geophone borehole catalog, the developed DASEventLocNet
consistently generated MEQ clusters closely matching those from the more reliable deep borehole
geophones (Fig.19). By contrast, the Silixa catalog’s MEQ locations appeared sparser and more
scattered, signifying larger errors (Fig.19). This result indicates that DASEventLocNet
significantly refines MEQ locations using only a single vertical DAS fiber, resolving potential
challenges in horizontal (X and Y) resolution.

Overall, DASEventLocNet offers a physics-grounded, Transformer-based framework for robust
and accurate microseismic event localization, even under noise-ridden and limited-angle recording
conditions. Its capabilities hold promise for real-time seismic monitoring and reservoir
characterization in enhanced geothermal systems (EGS) and other subsurface applications. These
findings will form the basis of an upcoming manuscript currently in preparation.
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from 78B Distributed Acoustic Sensing (DAS) fiber recordings during the 2022 FORGE hydraulic
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Highlight 7: Acoustic energy release during the laboratory seismic cycle: Insights on
laboratory earthquake precursors and prediction.

This work demonstrates that machine learning can predict the timing and magnitude of laboratory
earthquakes using statistics of acoustic emissions. We showed that the evolution of acoustic energy
is critical for lab earthquake prediction; however, the connections between acoustic energy and
fault zone processes leading to failure remain poorly understood. Here, we documented in detail
the temporal evolution of acoustic energy during the laboratory seismic cycle. We conducted
friction experiments for a range of shearing velocities, normal stresses, and granular particle sizes.
Acoustic emission data were recorded continuously throughout shear using broadband
piezoceramic sensors. We found that the coseismic acoustic energy release scales directly with
stress drop and is consistent with concepts of frictional contact mechanics and time - dependent
fault healing (Figure 20). Experiments conducted with larger grains show that the temporal
evolution of acoustic energy scales directly with fault slip rate. In particular, the acoustic energy
is low when the fault is locked and increases to a maximum during coseismic failure (Figure 21).
Data from traditional slide-hold-slide friction tests confirm that acoustic energy release is closely
linked to fault slip rate. Furthermore, variations in the true contact area of fault zone particles play
a key role in the generation of acoustic energy. Our data show that acoustic radiation is related
primarily to breaking/sliding of frictional contact junctions, which suggests that machine
learning - based laboratory earthquake prediction derives from frictional weakening processes that
begin very early in the seismic cycle and well before macroscopic failure.
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Figure 20: (a) Shear stress, acoustic amplitude, and acoustic variance plotted as a function of time for one
seismic cycle. The dashed rectangle shows our moving window (0.636 s) used to compute the acoustic
variance. At this scale acoustic data look like noise; however, the signal is composed of individual AEs
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(some identifiable as small spikes) that grow in size and number as failure approaches (see b). The
acoustic variance first decays following a failure event, reaches a minimum during the interseismic
period, and finally begins to increase prior to failure. (b) Zoom of an AE that nucleated during the
interseismic period. (¢) Zoom of the acoustic signal during coseismic failure. Note the broad,

low amplitude nature of the envelope with superimposed high - frequency AEs. (Bolton et al., 2020).
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Figure 21: Shear stress and stress drop as a function of shear strain for experiments conducted with
different median grain sizes. Note that stress drop increases during the initial part of each experiment and
reaches a steady state for which larger grains produce bigger events. (Bolton et al., 2020).
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Highlight 8: Predicting lab earthquakes using physics-informed neural networks and fault
zone acoustic monitoring

This work demonstrates powerful new techniques for predicting failure in solids (Borat et al.,
2023). We build on recent machine learning work showing that laboratory earthquakes can be
predicted using micro-failure events and temporal evolution of fault zone elastic properties.
Remarkably, these results come from purely data-driven models trained with large datasets. Such
data are equivalent to centuries of fault motion rendering application to tectonic faulting unclear.
In addition, the underlying physics of such predictions is poorly understood. Here, we address
scalability using a novel Physics- Informed Neural Network (PINN). Our model encodes fault
physics in the deep learning loss function using time-lapse ultrasonic data. PINN models
outperform data-driven models and significantly improve transfer learning for small training
datasets and conditions outside those used in training.

We developed new techniques for feature extraction process (Figure 22). Physics-based features,
namely wave speed (vi) and spectral amplitude (Ai) at time ti, are extracted from each ultrasonic
signal waveform. To calculate the evolution of wave speed during frictional sliding, we first extract
the time delay At by cross-correlating each waveform Si with a reference waveform SO. The
reference waveform is chosen past the peak friction just before the fault starts its transition from
stable sliding to unstable seismic cycles (thin vertical dashed line at time = 2065 s in Fig. 1a). The
shape of the recorded waveforms Si changes little throughout the experiment. Our work suggests
that PINN offers a promising path for machine learning-based failure prediction and, ultimately
for improving our understanding of earthquake physics and prediction.
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Figure 22: Details of the feature extraction procedure. (a) Shows the reference waveform (S0) and a typical
waveform during shearing (Si). The inset emphasizes the time delay between the two signals Ati calculated
by cross-correlating the two signals. The box marks the extent of the cross-correlation window from ti +
w1 to ti + w2 with w1l =20.76 us and w2 = 25.16 ps. The bottom plot shows a sample of wave speed and
time shift evolution for several lab seismic cycles over a period of 30 s. (Borat et al., 2023).
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Figure 23: Performance of the Reference data-driven, PINN #1, and PINN #2 models for experiment
p5270. a—c Shear stress (1) prediction R2 scores in training, validation, and testing as a function of varying
training set sizes. d—f Slip rate (V) prediction R2 scores in training, validation, and testing datasets as a
function of varying training set sizes are plotted. For both shear stress and slip rate, the PINN models
outperform the reference data-driven models in testing and the improvement increases inversely with
training data size. The minimum and maximum of the error bar represent the one standard error from the
mean. (Borat et al., 2023).

8 Significant Accomplishments and Conclusions

Our work has produced a transformational advance in our understanding of reservoir imaging,
induced seismicity, and earthquake prediction. Our methods have made it possible to image and
track fluid plumes in underground reservoirs. Those observations have been used to illuminate the
nonlinear relationship between fluid flow, seismic wave speed, and non-linear elasticity.

The project has many products and many significant accomplishments and conclusions. Section
7 contains an executive summary of seven products and Section 10 contains the full references for
each of the 32 products that came from this work. In addition to the 32 publications the project
supported the work of 6 PhD students, 40 conference presentations, 6 keynote talks at national
meetings, and mentoring and professional development for 4 postdoctoral fellows

9. Path Forward

Given the progress that was made by this project in a short time frame of just a few years there
are many directions for future work. Chief among these are further efforts to apply lab-based ML
methods to identify precursors to failure and monitor fault zone stress state during the seismic
cycle to field settings and reservoir conditions. If DOE Geothermal decides to support further work
in these areas we will be happy to help with those goals.
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