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Abstract—Composite materials are widely used in aircraft
structures because of their superior mechanical properties. How-
ever, their complex failure modes require sophisticated inspection
methods to ensure structural integrity. Ultrasonic testing (UT) is
a common non-destructive inspection (NDI) technique for aircraft
composites that can detect internal and external defects with high
resolution and accuracy. Despite their effectiveness, traditional
UT methods rely on the manual interpretation of ultrasonic
signals, which is time-consuming, labor-intensive, and subjec-
tive. Furthermore, processing such large-scale data, particularly
across materials of varying thicknesses, significantly increases
the computational demands of deep learning model optimization.
To overcome these challenges, we propose an efficient sparse
mixture-of-experts (MoE) model with a multi-level loss function
and introduce four novel training objectives to improve compu-
tational efficiency and accuracy in identifying surface defects
in composite aircraft materials. We evaluated our approach
on material with multiple thicknesses or domains comprising
various defects. Our experimental results demonstrate higher
accuracy and F1-Score, with only 10% training epochs compared
to baseline MoE.

Index Terms—Mixture of experts, efficient machine learning,
non destructive inspection, composite materials, ultrasonic signals

I. INTRODUCTION

The introduction of NDI 4.0 into aircraft fuselage inspec-
tion, utilizing Al and cyber-physical systems [1], represents a
crucial advancement in non-destructive inspection. The CFRPs
have become leading materials in manufacturing due to their
superior fatigue tolerance, mechanical durability, lower carbon
footprint, and improving fuel efficiency of vehicles [19].
While CFRP offers numerous advantages, its complex nature
demands a thorough inspection from highly skilled individuals
to promptly identify and assess structural failures throughout
their lifecycle to ensure safety and minimize costs [3]. The
structural inspection needs of CFRP materials are met through
various sensor modalities [6], with ultrasonic testing (UT)
serving as the industry standard for NDI, specifically in aircraft
manufacturing. The first advantage of ultrasonic signals is their
ability to differentiate normal and defective regions through
attenuation of signals [9]. Second, its high-resolution imag-
ing capability enables fine-grained detection of internal and
external defects in composite materials with high precision.
However, conventional UT methods require manual interpre-
tation of the ultrasonic signals, which is time-consuming and
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labor-intensive [20]. Therefore, designing effective Al systems
is essential to alleviate the manual workload on inspectors and
steer progress towards zero-defect manufacturing [11].

While domain expertise in NDI allows inspectors to locate
defects effectively, the sheer volume of data generated - often
comprising millions of pixels places a considerable cognitive
burden on the inspectors [10]. To alleviate this burden and
tedious elements of manual inspection, the future of NDI
lies in reshaping the process with Al systems designed to
be human-in-the-loop [1]. By melding human expertise with
AlD’s analytical capabilities, a human-in-the-loop framework
can transform aircraft fuselage inspections during produc-
tion with precise detection of defects in complex materials
such as carbon fiber-reinforced polymer composites (CFRP).
Numerous studies have shown promising outcomes in such
Al-assisted UT both in general applications [21, 16] and
inspection of aircraft fuselages [22, 15]. Designing Al systems
for defect identification in NDI has several challenges: big-
data due to the immense volume of data generated by scans,
often comprising millions of pixels and handling data from
multiple domains (i.e., varying material thicknesses). These
challenges significantly increase the complexity and resource
requirements for training deep learning models. To address
these issues, we present a sparse mixture-of-experts (MoE)
architecture for defect classification in multi-domain data used
in the aerospace industry. Additionally, we formulate a novel
multi-level objective with four new custom loss functions.
Empirical results show our proposed method has improved
performance and efficiency over the baseline MoE model.

II. RELATED WORKS

Al-driven non-destructive inspection (NDI) has demon-
strated success in different testing modalities in the industry,
such as acoustic emission testing, ultrasonic testing (UT), eddy
current testing, and X-ray computed tomography [3, 6]. In
civil applications, Al systems have been used for structural
health monitoring of dam slopes using UT [16]. Within the
aerospace domain, Al systems evolved from a heuristic-based
approach to automated Al systems, marking a significant
development, as demonstrated by Kral et al. [9]. Kokurov et
al. [8] investigated ultrasonic methods for detecting defects in
laminated composite materials, concluding their effectiveness.
Bettayeb et al. [2] demonstrated the efficacy of discrete



)

Network

Level-1 Loss

(Select Tnp-k)(_@;\\ _1
o

&=

Level-2 Loss

@ Trainable parameters

&>

Freeze after training
n epochs

Classification output
Defect / No-defect

Level-3 Loss

J L

Y

Router-z , Load Lalancing, Diversity,
Gating, Expert Label Balance

Expert

M

Classification

Fig. 1. Sparse Mixture of Experts (MoE) architecture for ultrasonic waveform processing. The input waveform is routed to a specific expert (a feedforward
neural network) based on router probabilities, which are multiplied with the selected expert’s output, producing the final result.

wavelet transform in defect classification. Meng et al. [14]
developed a deep learning framework for classifying ultrasonic
signals from CFRP specimens using wavelet transform for
preprocessing. McKnight et al. [13] explored alternative Al
applications in synthetic data generation methods for domain
adaptation in ultrasonic signals. Al systems have also become
a cornerstone for the predictive maintenance of aircraft fuse-
lages. Studies such as Prakash et al. [15] and Ye et al. [21] have
utilized manual UT phased array data from Glass Reinforced
(GLARE) FML of A380 aircraft and conducted comprehensive
NDI on steel plates with different types of flaws. Kral [9]
proposed an ANN network for detecting defects in aluminum
sheets and aircraft fuselage. Prakash et al. [15] proposed a
defect detection framework using a histogram of oriented
gradients as preprocessing and support vector machines on
GLARE FML data from the A380. Yunker et al. [22] adopted
a 3D-UNet for identifying defects in a 3D scan data from
an industry-manufactured aircraft. These studies validate the
effectiveness of Al in defect identification. Therefore, we
address the question: how can we make Al models efficient
for NDI for multi-domain materials?

The MOoE architecture is a plausible solution for NDI to
address the computational needs and multi-domain data. Re-
search in the MoE paradigm has been active for nearly 30+
years, where recent works showcase their desirable prop-
erties in terms of better computation efficiency, improved
data sampling, and higher accuracy [4]. Moreover, works in
MoE have also achieved commendable results for domain
adaptation where the criteria are to generalize and adapt over
new unseen domains [12] and domain-aware models [7]. A
mixture of Encoder-Decoder models such as BLIP has also
successfully handled multi-modal data for automotive quality
inspection [18]. Despite these advancements, MoE remains
underexplored for NDI applications. We aim to address this
gap with our work and propose novel training objectives that
reduce computational overload and improve performance.

III. DATASET

Domain Information: While the surface of a manufac-
tured part initially goes through visual inspection, that is not
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adequate to detect subsurface defects. To identify subsurface
defects in composites, non-destructive inspection (NDI) meth-
ods are utilized. The primary inspection method is through
ultrasonic testing, which sends a beat/impulse strain wave
with a frequency in the ultrasonic range through a material.
This method is not limited by the material type, as the signal
travels in a non-linear fashion and reflects/disperses from every
different material boundary, geometry wall, or defect region.
Our goal in this study is to build scalable models that aid
in decreasing the evaluation effort through signal processing.
We use standard scans in our study that are test specimens
and not actual airplane parts. Standard scans are equivalent
references of the real aircraft fuselage, which are defined by
the owner of the final product. Figure 2 shows a visual example
of the standard scan with annotated defects across different
thickness levels categorized as domains 1-7.
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Fig. 2. Top: One standard scan of dimensions [128, 533] visualized in 2D on,
with thresholding scheme from software in red. The scan is split into seven
domains, labeled D1-7, based on material thickness. Middle: The ground
truth (i.e., annotated defects), where the white region is a defect. Bottom:
the predictions from our model.



Dataset Description and Preprocessing: Preprocessing the
ultrasonic signals is important to mitigate noise and ensure
consistency across the dataset. Therefore, we first apply a
Hilbert transform to eliminate high-frequency noise, followed
by min-max normalization to avoid bias towards either of the
peaks at +/ — 20000. To further standardize the signals, we
align the peaks caused by variations in the scanner apparatus.
Specifically, we identify the first peak in the signal and shift it
to a fixed point in the spectrum. Yet another common practice
is to incorporate discrete Fourier transform. However, this
would not be helpful as the Fourier transforms do not preserve
the signal structure, which makes it harder to interpret visually.
In Figure 3, we visualize the preprocessed signal of a random
defect point and a random non-defect point from Domain-1
(D — 1) from the scan shown in Figure 2.

Our dataset contained 31 scans, split into 11 for training, 11
for validation, and 9 for testing. Each scan has height, width,
and depth dimensions of 128, 533, and 512, respectively.
Therefore, each of our training and validation data is composed
of 128 X533 x 11 = 750464 ultrasonic signals and have dataset
dimensions of [750464,512] and test dataset of dimensions
[614016, 512]. During training, we balance the batches using
random weighted sampling across the domain and the defect/
non-defect classes.
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Fig. 3. Ultrasonic signals from a defect and a non-defect region from D-1.

IV. METHODS

We present our architecture in Figure 1, which consists
of a gating network, multiple feedforward networks acting
as experts, multiple training objectives, and a sparse routing
system. In this section, we detail each component.

A. Sparse Mixture-of-Experts

The Sparse MoE model follows an ensembling architecture
that combines the strengths of multiple expert models to
achieve better sample efficiency and improve overall perfor-
mance. In this model, each input is routed to a subset of experts
through the gating network, and the outputs from each selected
expert are combined to form the final output. The gating
network generates weights as softmax probabilities based on
gating logits of size N, where NN is the number of experts in
our network. The gating function G(x) for an input x is ex-
pressed as G(z) = Softmax(g;(x)). Here, g(z) is the gating
logits vector of size N, corresponding to the expert outputs.

1285

While the training objectives use g(x) to compute auxiliary
loss, the selection criteria for experts and the weighting factor
are based on G(x). The sparse MoE also uses a sparse routing
scheme [17] where only top-k experts are chosen. In the case
of top-1 routing, only one expert is chosen. Additionally, we
freeze the gating network while using our proposed training
objectives without any degradation in model performance.
This reduces the requirement of gradient adjustments to the
gating network, reducing the computation load. Our empirical
investigation shows that the gating network can be frozen after
10 epochs.

B. Training Objectives

Previous works in MoE have extensively explored various
auxiliary training objectives to optimize models for efficiency,
performance, or both. Shazeer et al. [17] proposed the idea of
load balancing for balanced expert usage. Following this Zoph
et al. [23] proposed a simple differentiable load balancing loss
function, which we adopt it in our approach as a baseline. Ad-
ditionally, some works also proposed domain-specific loss [7]
for building domain-aware models. Following these works,
we craft our training losses to optimize for classification with
domain awareness and stability.

We framed multi-level losses for our model to improve
the sample efficiency and performance after exploring several
training losses from the existing literature. We divide our
losses in levels 1, 2, and 3, as shown in Figure 1. At level-3,
we employ classification loss (L¢ ) which operates on the
final predictions. The L¢ jointly optimizes the collective
performance of all the experts and the gating function.
At level-2, we introduce an expert-specific loss, (Lg), that
operates at expert level. Finally, at level-1, we address
inefficient routing and mode collapse with Load Balancing
Loss (Lpg) and Router-z-loss (Lryz) for efficient routing.
Additionally, we propose new loss functions such as diversity
loss (Lp) and expert label balance loss (Lgrp), which we
describe below.

Classification Loss (Lc): The classification loss is a
binary cross-entropy (BCE) loss objective that computes the
error in classifying normal and defect signals. This can be
simply represented as Lc = BCE(y;, §;), where ;,y€ {0,1}
is the predicted probability and ground truth, respectively.
The binary cross-entropy loss encourages the entire model to
output probabilities close to the true labels.

Expert Loss (Lg): Unlike £ which works on a global
level, the expert loss focuses on optimizing each individual
expert. This loss assesses how well each expert performs
on the specific data routed to it, enabling more fine-grained,
targeted optimization. The expert loss is formulated similarly
to classification loss, as shown below.

N M
1 1 S G (i i (i
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i j



In this expression, ylg-i) denotes the true label of the
i-th sample processed by expert j, and gjj(-z) represents the
predicted probability output by expert j for the i-th sample.
The summation is performed over all experts ¢ € N within

their respective sample subsets M.

Load Balancing Loss (Lyg ): One challenge in training an
MOoE model is to ensure the balanced contribution of all ex-
perts. Without proper balance, some experts may dominate the
workload, leading to inefficiency. To mitigate this challenge,
we adopt the load balancing loss function similar to that used
in switch transformers [5].

k
Lig = szi@) - fi(x)

i=1
where f; is the fraction samples routed to expert 4, and P;
is the fraction of the router probability allocated for expert 7,

1
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where m; denotes a batch within M, such that m; € M,
and G;(z) is the gating probability for expert ¢ given input x.

Router-z Loss (Lrz): The gating layer is susceptible to
large logits which hinders convergence to optimal routing.
Therefore, we employ router z-loss, inspired by the work of
Zoph et al. [23]. We formulate router z-loss below as Lgz.
Here, N is the number of experts, M is the number of data
points entering the experts, and gj(-l) are the logits from the
gating layer.

Gating Loss (Lg): We design gating loss as a cross-
entropy (CE) loss similar to Jain et al. [7] where the true labels
are domain labels, d and prediction is the softmax output of
gating network G. Here, G(xl(-] >) is the softmax output of the
gating layer for input sample x;. Where j € M, are samples
going through individual expert ¢ and 7 € D is the number
of domains as shown in Figure 2. The gating loss works only
when the number of experts is equal to the domains. Hence,
we set N = D.

D

Lo=-)

i=1

1 M
)
rCER)

Diversity Loss (Lp): We define the diversity loss as
— Y Var(g;), which is the summation of the variance of all
gating logits for N experts in our model. The negative sign
indicates that higher diversity is rewarded. This loss function
encourages the experts to have diverse output distributions,
prompting better specialization.

1286

Expert Label Balance Loss (Lg5): We formulate expert
label balance loss as:

1 :
S sy

LerLs = N -
i=1

where IV is the number of experts and M is the number of
samples, R() = ZkRE M Yk 18 the sum of the defect signals
routed to the i-th expert, and S = Efe M Yk 1s the sum
of the non-defect signals routed for the i¢-th expert. The
mean of the squared difference between the sum of positive
samples, R;, and the sum of negative samples, .S;. This loss
encourages the gating network to route a balanced number of
defect and non-defect samples to each expert.

Total Loss (Liota1): Our proposed model utilizes all the
proposed loss functions in the form of a weighted sum.
Specifically, we define our total loss as:

Lial = ¢ - Lo+ ag- Lo+ arp - Lrp+

apz - Lrz+ap-Le+ap-Lp+agre-LeLB

where Lo, La, LB, Lrz, LE, LD, and L p represent
the classification loss, gating loss, load balancing loss, router
z-loss, expert loss, diversity loss, and expert label balance loss,
respectively. The « terms represent the weights assigned to
each loss term.

C. Model Hyper-parameters

We have fixed the number of experts as 7 to account for the
7 domains in our dataset. Next, we set the hidden layers in the
gating network and each expert as 2 and 4, respectively, after
doing a layer sweep from 1-10 layers. By fixing the model
architecture, we isolate and assess the impact of our proposed
loss functions. Furthermore, to maintain network homogeneity,
we use hidden-layer dimension of 1024. Finally, we tested
different values of «; through a randomized search between
le3 to 1 on a logarithmic scale. The value of «; controls the
contribution of each loss term in the total loss. We set ac,
ag, ag as 1, ap, agrp as le=2, QRz, LB as le L.

V. RESULTS
A. Metrics

To account for the class imbalance in our dataset, we
selected metrics that appropriately weigh both the defect and
non-defect classes. First, we use balanced accuracy BA that
averages the defect and non-defect class accuracies as BA =
(Ap + Anp)/2, where Ap and Ayp are accuracies of the
defect and non-defect classes, respectively. Next, we use F1-
Score (F1) with macro averaging, which, similar to balanced
accuracy, averages scores for defect and non-defect classes:
F1 = (Flp + Flyp)/2 where Flp and Flyp are F1-
Scores for defect and non-defect classes, respectively. The F1-
Score is computed as: F1 = (2«P%R)/(P + R). Where recall
is R = TP/(TP + FN), and precision is P = TP/(TP + FP).
Here TP, TN, FP,and F'N are true positives, true negatives,
false positives, and false negatives, respectively.



TABLE I
EVALUATION OF OUR PROPOSED MODEL WITH BASELINE. LOWER IS BETTER FOR CONVERGENCE AND HIGHER IS BETTER FOR PERFORMANCE METRICS.

Architecture Loss functions Convergence Performance Metrics{
Checkpoint-1  Checkpoint-2  F1-Score  Accuracy
Top-7 MoE Lo 91 322 0.846 89.6%
Top-1 MoE Lo 119 253 0.846 89.6%
(Baseline) Top-1 MoE  Standard losses 321 398 0.853 89.4%
(Ours) Top-1 MoE Proposed losses 43 288 0.869 91.3%
(Ours) Top-1 MoE Standard + proposed losses 33 205 0.859 90.8%

Standard losses: Lo + L1 + Lrz, Proposed losses: Lo + L + Lp + LprB
Interpretation: Lesser is better for convergence, and more is better for performance metrics
Checkpoint-1 (C-1): Epoch where validation F1-Score is 0.85 (early stopping)
Checkpoint-2 (C-2): Epoch where validation F1-Score is maximum in 400 epochs

B. Experimental Setup

Our architecture leverages the strengths of multiple experts,
each specializing in different aspects of defect classification.
In addition to the standard training objectives, we propose
new objectives that show improved performance and effective
utilization of training data and expert networks for faster
convergence. Our criteria for benchmarking are based on @
performance metrics and @ convergence, providing insights
into both effectiveness and efficiency, respectively. For eval-
uation, we use balanced accuracy and macro F1 to test our
models and report results in Table I. We also perform an
ablation for our proposed training objectives in Table II.

Performance Analysis. To assess @ performance by first
comparing top-7 MoE to top-1 MoE where they both achieve
similar performance; however, top-7 MoE has a larger com-
putation requirement. We discuss the importance of top-1
routing in more detail in Section V-C. Next, we compare
our proposed loss functions with two baselines: top-1 MoE
with only classification loss (i.e., Lo ) and top-1 MoE with
standard losses (i.e., Lo, Lpr, and Lzp). In both cases, we
do not see any improvement in performance, however, the
standard losses require more epochs to converge. Although
we do not see a major improvement in performance (i.e., F1-
Score and accuracy) compared to baseline models, there is a
significant improvement in convergence. Our method achieves
an F1-Score of 0.869 and an accuracy of 91.2%, whereas the
baseline model achieves an F1-Score and accuracy of 0.853
and 89.%, respectively. These results further underscore the
effectiveness of our approach in accurately classifying defects
in ultrasonic data.

Turning to assess the @ convergence of our models, we set
two checkpoints, checkpoints-1 and 2. The Checkpoint-1 is
the epoch where validation F1-Score is 0.85. Checkpoint-
2 (C-2): on the other hand is the epoch where validation
F1-Score is maximum among the 400 epochs. Our proposed
model reaches checkpoint-1 in 33 epochs compared to 321
epochs in the baseline model using standard loss functions,
marking a significant improvement. Furthermore, even without
standard loss functions and just adopting our loss functions,
the model reaches checkpoint-1 in 43 epochs. We also see an
improvement in the checkpoint-2 where our model requires
208 epochs compared to 398 for the baseline model. Finally,
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the average time taken to train per epoch for the top-7, top-1
MOoE with only £ was 12.2 and 6.2 seconds, respectively. For
top-1 MoE with only standard losses or only proposed losses,
the model takes 6.3 seconds. When combining both standard
and proposed losses, it increases to 6.5 seconds. These results
demonstrate the efficiency of our proposed training objectives
in accelerating convergence.

C. Ablation Study

To ensure a fair ablation study, we keep the parameters
across all models consistent and focus on checkpoint-1 - with
early stopping criteria on validation F1-Score of 0.85 instead
of checkpoint-2 which is the epoch where validation accuracy
is maximum.

Importance of Top-k Routing Mechanism. We investigate
the importance of the routing mechanism in the rows 1 —
2 of Table 1. Firstly, we implement an MoE model with a
soft routing mechanism with top-7 routing where all experts
are always active and contribute to the output with different
weights. A more efficient alternative is to use top-1 routing,
where only one expert is active. For instance, consider our
MoE architecture where the gating network has 2 hidden layers
(1.584M parameters for the gating layer) and each of 7 experts
has 4 hidden layers (i.e., 3.683M Parameters for each expert).
In top-7 gating approach, the model would utilize the entire
model’s parameters, which is 1.584 4 3.683 x 7 = 27.365M
parameters. However, using the top-1 routing, the model only
uses 1.584 + 3.683 = 1 = 5.267M - about 1/5th of the entire
model’s parameters.

Importance of Standard Loss Functions. Top-1 routing
reduces computational costs but also requires careful training
to ensure balanced load distribution among the experts. To
address this, we adopt load balancing (L1 p) and router-z
loss (Lgrz) from recent works and report the results in row-
3 of Table I. In addition to these, the model also requires
a classification loss (i.e., L¢) to optimize the model for
defect identification. Since recent works also follow this route,
we designate the MoE model using standard losses (i.e.,
Lc+L1,g+LRz) as the baseline.

Importance of Our Proposed Loss Functions. We conduct
an ablation study as shown in Table II to assess the importance
of our proposed loss functions. We adopt two criteria to



perform a holistic ablation; namely criteria-1 and criteria-
2. In criteria-1, we take a top-down approach by removing
one loss at a time from combined standard and proposed
losses, and measure the increase in the epochs required to
train our model. Next, in criteria-2, we take a bottom-up
approach, i.e., by adding one loss at a time to the standard loss
functions and report the reduction in the epochs after adding
the loss. Therefore, larger scores for both criterions signify
a larger impact as both acknowledge the importance of the
loss function under ablation. Our ablations show that £g and
L are most important among the four. Specifically, L has
a score of 170 and 117 across criteria-1 and 2, respectively.
Followed by L which has a score of 67 in criteria-1 and
219 in criteria-2. Finally, £p and Lg;p have a score of
2 in criteria-1 whereas criteria-2 has 3 and 5, respectively.
Although they don’t show a large improvement, they still have
a collaborative influence towards optimizing the model for
faster convergence as reflected from results in Table 1.

TABLE II
ABLATION STUDY ON OUR PROPOSED LOSS FUNCTIONS.

Loss Functions  Criteria-1 T  Criteria-2 1

Lg 170 117

Lg 67 219

Lp 2 3
Lers 2 5

Criteria-1: We remove one loss function at a time from proposed
+ standard losses and compute increase in epochs towards
convergence to checkpoint-1.

Criteria-2: We add one loss function at a time from top-1 MoE to
the standard loss functions and compute drop in epochs for
convergence to checkpoint-1.

Interpretation: More (1) the better for both criteria-1 and 2.

VI. CONCLUSION

Our work proposes tailored training objectives for sparse
mixture-of-expert (MoE) models to facilitate faster conver-
gence and improve expert utilization. We validated our ap-
proach by benchmarking against a strong baseline using cur-
rent standard training objectives. We show that our method
achieves 1.8% improvement in accuracy while using only 10%
of training epochs (or training time) compared to the baseline.
Furthermore, we support our results through a comprehensive
ablation study and report the importance of our proposed
approach. As evaluated on standards data, our proposed objec-
tives for sparse MoE models mark a significant step in building
scalable and efficient models for defect identification in non-
destructive inspection.
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