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Abstract—Fiber-reinforced composites are a common material
used in the design of aircraft structures due to their good
tensile strength and resistance to compression. During the man-
ufacturing process, these structures are thoroughly inspected
for flaws and defects to ensure structural integrity during
commercial use. Non-destructive testing (NDT) is a collection
of inspection methods that allow inspectors to evaluate material
without altering it. Due to the high safety standards in aerospace
manufacturing, the NDT process is done manually and can be a
significant bottleneck in the development workflow. In this paper,
we develop an AI-based assistance tool to drastically reduce
inspection time. Typical AI workflows require large amounts
of annotated data, but defects rarely occur resulting in strong
class imbalance. To overcome this, we formulate the problem
of defect identification as an anomaly detection task in which
our primary focus is learning non-defect characteristics. To do
this, we develop a multi-task self-supervised learning framework
that embeds problem specific domain knowledge into the deep
learning model. We verify our method using fuselage data
generated in a production environment. We show that our method
can effectively identify defects and requires minimal training and
inference time.

Index Terms—Non-destructive testing (NDT), ultrasonic testing
(UT), deep learning, composites, defects, anomaly detection

I. INTRODUCTION

State-of-the-art aircrafts are designed using fiber-reinforced
composites due to their light-weight material, good ten-
sile strength and resistance to compression [1]. Specifically,
carbon-fiber-reinforced plastic (CFRP) is applied to wing
planks, fuselages, and sandwich panel skins [2]. These ma-
terials are continuously improving in product efficiency, cost-
effectiveness, and are commonly used in applications to load-
bearing structures outside the aerospace domain including
wind turbines, transportation, medical equipment, and so on.
Manufacturing of composite materials is a multivariable task,
involving many procedures, where various types of defects
may occur within a composite product, giving rise to signif-
icant safety concerns in service. Defects resulting in a loss
of mechanical properties can occur in all composite structures
and tend to increase in frequency with structural complexity.
Robust and reliable non-destructive testing (NDT), such as
ultrasonic testing (UT), of composites is essential in the
production stage to catch and repair defects.

Advanced computer vision techniques, particularly those
based on machine learning algorithms, can provide new per-

spectives on the high-level visual understanding of universal
tasks. The power of these techniques suggests a new approach
to evaluating UT images, in which machine learning algo-
rithms rather than manual inspection is used for the general
detection and classification of manufacturing imperfections.
Applied to the field of NDI, an early work [3] built three
artificial neural networks (ANNs) for location, quantification,
and classification of structural damage using vibrational char-
acteristics in aluminum cantilever beams. N. Saeed, et al.
[4] implemented a convolutional neural network (CNN) to
detect artificially created sub-surface defects in a CFRP sample
as well as a deep feed-forward neural network to estimate
the defect depth using thermograms. Recently, methods have
been proposed that frame defect identification as an anomaly
detection task to overcome the limited amount of available
defect data. Researchers in [5] evaluate three deep learning
anomaly detection methods for the nondestructive evaluation
of steel blocks using ultrasonic images. In the field of X-
ray radiography, Presenti, et al develop an anomaly detection
workflow using autoencoders for the automatic detection of
defects in radiographs [6].

Researches in [7] proposed OC-DICAM that uses self-
supervised learning (SSL) to identify defects using only non-
defects during training. To learn general ultrasonic signal
characteristics, they train a model to classify modified signal
waveforms into the following classes: unaltered, flipped, re-
versed, flipped-reverse. They show this training scheme allows
the model to learn good temporal and spatial characteristics.
Our approach draws inspiration from theirs but makes two
critical changes. First, classifying all unaltered non-defects
into the same class makes the assumption that the signals
are homogeneous and share similar characteristics. Instead, we
break down the non-defect signals into sub-classes based on
different material characteristics. This includes the material
thickness, the front-wall voltage, and the back-wall voltage.
Doing this allows us to embed domain knowledge about the
material directly into the model. Therefore, our model consists
of a shared encoder followed by four classifier heads: material
thickness classifier, front-wall voltage classifier, back-wall
classifier, and synthetic defect classifier. Secondly, we change
how defects are scored. In [7], they measure the distance to the
center in the latent dimension and flag signals sufficiently far



away. However, this assumes that during training the data is
embedded into a tight hypersphere, yet they give no evidence
that this occurs in practice. Instead, we show that measuring
the entropy in the output of the synthetic defect classifier is a
more effective scoring metric as defects tend to follow a more
uniform distribution across the class outputs. We term our
workflow as Domain Aware One Class Defect Identification
in Composite Aerostructure Material (DOC-DICAM).

The remainder of this paper is organized as follows. Section
2 introduces the necessary materials and methods used. In Sec-
tion 3, the corresponding results are reported and discussed.
In Section 4, concluding remarks are made with possible
directions for future work given.

II. MATERIALS AND METHODS

A. NDI Data

Ultrasonic testing (UT) is an NDI technique that is suitable
for detecting and sizing flaws that are embedded within the
surface by generating signal waveforms used for inspection
[8]. Inspectors evaluate UT data visually using A-scans, B-
scans, and C-scans. C-scans are used by default as they
produce a view of the entire material with the pixel color
representing a particular amplitude value. Figure 3a shows an
example of a C-scan section of the fuselage. While Figure
3a shows the fuselage as a 2D image, the data is collected
as a 3D volume with shape: height, width, and depth. The
depth dimension corresponds to the recorded ultrasonic signal.
Therefore, each pixel in Figure 3a has an associated signal
waveform of 512 samples containing the measured voltage.
Figure 1 shows the ultrasonic A-scan response from both a
non-defect and porosity defect region from Figure 3a. The
spikes in the non-defect region at time 80 and 160 are
the recorded responses for the front and back wall echo,
respectively. The smaller spikes seen past the back wall is the
scanner picking up on the signal reflecting within the material
due to the long scanning time. The defect A-scan records a
response for the front wall but we can see it is significantly
distorted in shape as well as reduced voltage compared to the
non-defect. Furthermore, we can see the defect scatters the
signal as seen in the attenuated back wall response.

B. Automatic Labelling for Non-Defects

The proposed workflow requires having labelled infor-
mation regarding the material thickness, front-wall voltage,
and back-wall voltage. However, the data used here is only
labelled as non-defect. Therefore, we devise an automatic
labelling scheme necessary for the three tasks. The labels are
determined using the information from the front and back
wall calculated using the find_peaks method from the
SciPy library [9]. The find_peaks method finds all local
maxima and their time stamp. We assume that the two largest
maxima correspond to the front and back wall peaks. To
make identifying the peaks easier, we use the envelope of
the signal instead of the original waveform shown in Figure
2. The front wall is assigned the voltage for the peak with
the lower time stamp while the back wall is assigned the

(a) Non-Defect Signal

(b) Porosity Defect Signal

Fig. 1: A-scan Signal Waveform

remaining voltage making use of the time-series nature of the
data i.e., the front wall always occurs before the back wall.
To calculate the material thickness, we take the difference
between the back and front wall time stamps. An example
of this labelling scheme is shown in Figure 2. We can see
in Figure 2.a that the A-scan corresponds to a thicker region
with a reduced back wall voltage compared to Figure 2.b
showing the heterogeneity of the non-defect A-scans.

Finally, our approach is based on the classification of the
three material characteristics; however, the above methods re-
turn real valued numbers. Therefore, to convert the information
derived above into discrete labels for classification, we perform
a binning operation. The thickness bins are based on intervals
of 25 starting with [0-25] and ending with >400 giving 16
classes. Front wall voltage bins are based on intervals of 4000
starting at [0-4000] going up to >20000 giving 6 classes.
Finally, the back wall voltage bins are based on intervals
of 5000 starting at [0-5000] and ending at >30000 giving 7
classes. Figure 3 shows the output of applying this method to
all the A-scans from the C-scan in Figure 3a. For the thickness
label, regions in blue correspond to a thinner material than
those in red. Similarly, blue regions in the front and and back
wall label are those areas with a smaller voltage than the
areas in red. Furthermore, we can see that the porosity defects
significantly alter the generated labels for all three material
characteristics. This is inline with how we expect defects to
change the A-scans.



(a) Thick Material

(b) Thin Material

Fig. 2: Automatic Label Calculation for A-Scan Signal

C. DOC-DICAM

The overall framework is shown in Figure 4 which follows
a similar approach to the work in [7]. Like [7], we make use
of altered A-scans, referred to as synthetic defects throughout.
To generate synthetic defects, we follow the approach in [10]
that applies CutPaste, a data augmentation strategy that cuts
an image patch and pastes it at a random location within the
same image for image anomaly detection. Applied to NDT,
we randomly cut a sequence from the A-scan and paste it
back into the A-scan. Sequence lengths are randomly chosen
between [64-256]. We then flip the A-scan by multiplying it
by −1, further increasing the difference between non-defects
and synthetic defects. We note that real defects may not
always follow the above augmentation strategy. Therefore, we
primarily use synthetic defects to regularize the model. Thus,
in addition to classification, we incorporate the loss function
proposed in [11] that encourages the model to output a uniform
distribution for synthetic defects.

During training, we input both non-defects and synthetic
defects into the model. For non-defects, the model classifies
them based on the material thickness, back-wall voltage, front-
wall voltage, and signal class. Synthetic defects are only used
in the signal classifier. The flow for non-defects and synthetic
defects through the model can be seen in Figure 4 by the green
and red arrows, respectively. Our model consists of a shared
encoder and four linear classifier heads making it a multi-task
learning framework.

Overall, the model is required to learn four classification
tasks based on the characteristics of the scan as well as being

regularized to synthetic defects. We do this using the standard
cross entropy loss for all tasks. For regularization, we compare
the cross entropy from the output of the signal classifier to the
uniform distribution when inputting the synthetic defects. We
find that both predicting the synthetic defects as a separate
class as well as regularizing against them performs better than
only doing either one. Therefore, the total model loss is given
as

Ltotal = LTHK + LFWV + LBWV + LS + LR, (1)

where THK is the thickness classifier loss, FWV is the front
wall voltage classifier loss, BWV is the back wall voltage
classifier loss, S is the signal classifier loss, and R is the
regularization loss for synthetic defects. We give an equal
weight of 1 to each loss term during training.

During inference, we score test signals based on the class
entropy using the signal classifier shown in the bottom half of
Figure 4. Therefore, for a given test signal x ∈ X , we define
anomaly score s as

s(x) = −
∑
i

pilog(pi), (2)

where we sum over the number of classes and p is the class
probabilities. Since the model was trained to output a uniform
distribution for synthetic defects, we hypothesize that real
defects will have a higher entropy than non-defects. To flag
defects, we set a threshold on the distribution of scores for the
test scan.

A final remark is on the threshold selection. A common
approach is to set the threshold based on the False Positive
Rate (FPR)-N . The FPRN metric is the probability that a
non-defect signal raises a false alarm when N% of defects
are detected. However, this requires a dataset with defects.
To overcome this, we use our non-defect validation dataset to
create a distribution of entropy scores. We expect some noise
in the dataset so we set a threshold, τ , based on three standard
deviations above the mean entropy score. Thus, for model ϕ,
we define decision function G to flag defects based on:

G(x;ϕ, τ) =

{
0 if s(x) < τ

1 if s(x) ≥ τ
(3)

D. Model Architecture

The proposed workflow requires the classification of A-
scan signals based on the four learning tasks which can be
framed as a time series classification task. This problem has
been extensively studied with numerous model architectures
developed. Since our work seeks to address the shortcomings
of OC-DICAM [12], we reuse their model which was based
on the EISATC-Fusion model originally developed in [13] for
motor imagery decoding using electroencephalography (EEG)
signals. The researchers in [13] found that the EISATC-Fusion
model was capable of extracting time-domain, space-domain,
multi-scale, and long-time dependent features of EEG signals
for accurate end-to-end intra subject and inter subject motor



(a) Original Scan (b) Material Thickness Label

(c) Back Wall Voltage Label (d) Front Wall Voltage Label

Fig. 3: Automatic Labels for the Test Scan

imagery decoding. We briefly describe the model architecture
below. A full description can be found in [13].

The EISATC-Fusion model consists of four sequential
modules within the encoder: the EEGNet-Inception (EEGInc)
module, multi-head self-attention (MSA) module, temporal
convolutional network (TCN) module, and fusion module.
The core structure of the EEGInc module is composed of
three convolutional layers and two average pooling layers.
The first layer is a temporal convolutional, the second is a
channel convolutional using depth-wise convolution, and the
last layer is the inception block with three paths composed
of depth-wise convolution and a residual path. The MSA
module applies the standard self-attention mechanism based
on the query, key and value components calculated from the
input sequence. The TCN module uses casual convolution that
restricts the convolutional kernel to the current and past time
steps, ensuring the model cannot learn future information.
Dilated convolutional is used to increase the receptive field
of the model without increasing the number of convolutional
layers. The fusion module consists of two parts: feature fusion
and decision fusion. The feature fusion combines the output of

different levels in the model to extract the hidden information
of the input data and improve the representation ability of the
feature. The decision fusion combines the outputs of multiple
classifiers to reduce the uncertainty and errors of individual
classifiers, improving the information integration ability of
the model and allowing the model to obtain more reliable
decisions. The output of the encoder portion is shared among
the four classification tasks and used as input into four fully
connected linear modules.

E. Performance Evaluation Criteria

To evaluate the model performance, metrics commonly re-
ported are accuracy, F1-score, precision, and recall. For defect
detection, recall is usually preferred over the others reflecting
the increased importance in having a low false negative i.e.,
missed defects. However, the scan shown in Figure 3a only
has text labels indicating the general defect region. Inspectors
rarely provide pixel perfect annotations as doing so drastically
slows down the NDI process. Therefore, we are unable to
calculate metrics based on the pixel level. Furthermore, we
are primarily concerned with identifying defects as a cluster of



Fig. 4: DOC-DICAM Workflow

pixels and not individual pixels, so we can consider a success
as a majority of the pixels being identified qualitatively.

III. RESULTS AND DISCUSSION

A. Experimental Details
The EISATC-Fusion model was built using the PyTorch

1.12 deep learning framework with Python 3.7 and trained
using a single Nvidia Tesla V100-SXM2-32GB card [14].
The model was optimized using the Adam optimizer using
a learning rate of 0.001 with the final model saved based on
the smallest validation error. After training, we save the cutoff
threshold calculated using the validation dataset. Since we are
utilizing a time series based model we can flatten the first
and second dimension and add a dimension for the channel
information. Figure 3a has a 3D shape of (540, 774, 512)
which after reshaping gives (417960, 1, 512) where 1 repre-
sents the single channel consisting of the ultrasonic waveform.
The training and validation data consists of previously archived
fuselage data. Finally, we preprocess the data by scaling it
between [0-1].

B. Results
Figure 5 shows the OC-DICAM and DOC-DICAM pre-

diction for the test scan. Both workflows clearly highlight the

large areas of porosity on the left region of the scan as well as
the smaller regions in the center marked as ”ACC POROSITY”
giving a low false negative rate. However, the OC-DICAM
workflow predicts a large amount of false positives with most
of those areas corresponding to the stringers within the scan.
The method proposed here does produce some false positive
areas but upon further investigation we see that these areas
correspond to the fastener holes which are benign anomalies.
Finally, the DOC-DICAM prediction shows that it is able
to clearly identify the cluster centers but may not precisely
identify the boundary between the defect and non-defect area.
This may reflect the severity at which porosity distorts the
A-scan making certain regions easier to identify than others.

IV. CONCLUSION

In this work, we proposed the DOC-DICAM workflow.
This multi-task self-supervised learning workflow explicitly
embeds material specific domain knowledge into the deep
learning model. We do this by having the model classify the
material thickness, front wall voltage, and back wall voltage.
By incorporating relevant domain information about the scan
characteristics into our workflow, we are able to overcome the
limitations of OC-DICAM. When applied to real fuselage data,



(a) OC-DICAM Prediction

(b) DOC-DICAM Prediction

Fig. 5: Model Prediction for Porosity Scan

we are able to accurately identify large regions of porosity
with false positives attributed to benign anomalies. Finally, our
method is extremely efficient requiring only a few seconds to
perform the inference step.

Moving forward we seek to extensively verify the method
developed here. The scan considered here is only one of many
from the fuselage. Furthermore, there are other defect types
such as foreign object debris (FOD) and delamination. We
also note that while giving equal weight to each loss function
during training is simple, it is naive to think that this is the
optimal weighting strategy. Recent methods in the field of
multi-task learning have investigated dynamically changing
weights during training reflecting model uncertainty for a
particular task as well as how to best combine the gradients
such that tasks don’t conflict with one another during the
model update step. Finally, a more optimal method may exist
in setting the threshold to flag defects that adequately balances
the trade off between false positives and negatives.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. Department
of Energy Office of Energy Efficiency and Renewable Energy

(EERE), under contract DE-AC02- 06CH11357.

LICENSE

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan. http://energy.gov/downloads/doe-
public-access-plan.

REFERENCES

[1] Giurgiutiu, Victor. Introduction. Academic Press, London (2016): .
[2] Ibrahim, M.E. “Nondestructive evaluation of thick-section compos-

ites and sandwich structures: A review.” Composites Part A: Ap-
plied Science and Manufacturing Vol. 64 (2014): pp. 36–48. DOI
https://doi.org/10.1016/j.compositesa.2014.04.010.

[3] Carlos M. Ferregut, Roberto A. Osegueda and Ortiz, Jamie. “Artificial
Neural Networks for Structural Damage Detection and Classification.”
SPIE Proceedings (1995)DOI https://doi.org/10.1117/12.207718.

[4] Numan Saeed, Zafar Said, Nelson King and Omar, Mohammed A.
“Automatic defects detection in CFRP thermograms, using con-
volutional neural networks and transfer learning.” Infrared
Physics Technology Vol. 102 (2019): p. 103048. DOI
https://doi.org/10.1016/j.infrared.2019.103048.
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