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ABSTRACT
Aircraft structures are required to have a high level of quality

to satisfy their need for light weight, efficient flight, and with-
standing high loads over their lifespan. These aerostructures are
typically made from composite material due to their good tensile
strength and resistance to compression. To ensure their structural
integrity, the composite material requires inspection for common
flaws such as porosity, delaminations, voids, foreign object de-
bris, and other defects. Ultrasonic testing (UT) is a popular
non-destructive inspection (NDI) technique used for effectively
evaluating composite material. Current inspection methods rely
heavily on human experience and are extremely time consuming.
Therefore, there is a need for the development of techniques to
reduce the manual inspection time. This work compares the per-
formance of different deep learning-based methods in the identi-
fication and classification of defects. Deep learning has shown
great promise in numerous fields, and we show its effectiveness in
the evaluation of composite aerostructure material. The methods
developed here are both highly reliable with a top recall value of
98.63% as well as extremely efficient requiring an average of 4
seconds during the inferencing stage to evaluate new composites.
Keywords: Non-destructive insepction (NDI), ultrasonic
testing (UT), deep learning, composites, defects

1. INTRODUCTION
State-of-the-art aircraft are designed using fiber-reinforced

composites due to their good tensile strength and resistance to
compression [1]. Specifically, carbon-fiber-reinforced plastic
(CFRP) is applied to wing planks, fuselages, and sandwich panel
skins [2]. These materials are continuously improving in product
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efficiency, cost-effectiveness, and are commonly used in appli-
cations to load-bearing structures outside the aerospace domain
including wind turbines, transportation, medical equipment, and
so on. Manufacturing of composite materials is a multivariable
task, involving many procedures, where various types of defects
may occur within a composite product, giving rise to significant
safety concerns in service. Therefore, it is critical to evaluate the
structural health of the composite material ensuring the safety of
the manufactured piece [3]. Defects resulting in a loss of mechan-
ical properties can occur in all composite structures and tend to
increase in frequency with structural complexity. These defects
include voids, porosity, inclusions, and delamination. Defects
can arise both at production and during service [3]. Robust and
reliable non-destructive testing (NDT) of composites is essential
in the production stage to catch and repair defects. There are
numerous NDT techniques built upon different principles. Ultra-
sonic (UT) testing is one such technique. UT testing is suitable
for detecting and sizing flaws that are embedded within the sur-
face by generating signal waveforms used for inspection. Other
advantages include its ability to propagate through thick solid
parts, detection of various flaws, and various testing standards
are in place, ensuring its trusted use for critical parts [4].

The evaluation of these ultrasonics is typically done through
trained inspectors which can be both time consuming and prone
to human error. After a fuselage section is scanned, evaluation is
done visually through software developed to convert the ultrason-
ics data into meaningful visualizations. Generally, there are three
ways in which to view the scanned section: A-scans, B-scans,
and C-scans. A-scans are plots of amplitude versus time and can
be collected to generate B-scans and C-scans. B-scans are 2D
images where the color scale represents amplitude, and two axes
represent two dimensions – typically horizontal distance moved
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along the component and vertical distance (depth) into the part. A
C-scan is also a 2D image, but it represents a 3D volume with the
two axes representing two horizontal dimensions while the color
scale represents a particular amplitude value [4]. The C-scan
is the default in evaluating scanned sections. In the evaluation
process, fuselage regions are verified with the use of composite
standards, controlled representative structures with known defect
placements.

Advanced computer vision techniques, particularly those
based on machine learning algorithms, can provide new perspec-
tives on the high-level visual understanding of universal tasks.
The power of these techniques suggests a new approach to eval-
uating UT images, in which machine learning algorithms rather
than manual inspection is used for the general detection and clas-
sification of manufacturing imperfections. An advantage of using
machine learning systems is their ability to take highly dynamic
and non-linear data spread across numerous features and find the
relationship between inputs (waveform of ultrasound response)
and desired output (classification of defects). Deep learning, a
subfield of machine learning devoted to the study of neural net-
work algorithms, has shown near human level performance on
numerous classification tasks [5, 6]. Applied to the field of NDT,
an early work [7] built three artificial neural networks (ANNs) for
location, quantification, and classification of structural damage
using vibrational characteristics in aluminum cantilever beams.
More recent work [8] has provided a comparison of various com-
puter vision techniques, showing the superior performance of
deep learning models compared to conventional methods when
applied to stainless steel plates for defect identification. N. Saeed,
et al. [9] implemented a convolutional neural network (CNN) to
detect artificially created sub-surface defects in a CFRP sample as
well as a deep feed-forward neural network to estimate the defect
depth using thermograms. The work in [10] develop a CNN to
detect flaws from phased-array ultrasonic data while also making
extensive use of data augmentation to enhance the limited data
by utilizing virtual flaws. Finally, Y. Duan, et al. [11] apply a
long short-term memory recurrent neural network (LSTM-RNN)
to classify defects occurring in honeycomb materials using a
thermography-based NDT technique.

Artificial intelligence (AI) has seen widespread use in nu-
merous fields and industries and continues to be used in new
ways. Previous work described above shows that non-destructive
evaluation of composite material appears to be one such field that
can be improved with the integration of AI methods. This work
provides a comparative study on the use of different deep learning
architectures to classify defects in composite standard structures
modelled after state-of-the-art aircrafts. The remainder of this
study is organized as follows. Section 2 introduces the necessary
materials and methods used. In Section 3, the corresponding re-
sults are reported, and methods are compared and discussed. In
Section 4, concluding remarks are made with possible directions
for future work given.

2. MATERIALS AND METHODS
2.1 Ultrasonics

Non-destructive testing (NDT) covers a wide range of ana-
lytical techniques to inspect, test or evaluate chemical/physical

properties of a material, component or system without causing
damage. Early established NDT techniques include ultrasonic, X-
ray radiography, liquid penetrant testing (LPT), magnetic particle
testing and eddycurrent testing, which were initially developed for
steel industry. Among these, ultrasonic and radiographic detec-
tion are also effective inspection techniques for composite struc-
tures [3]. It is difficult to select appropriate NDT techniques for
a specific purpose; however, ASTM E25335 serves as a practical
guide in using NDT methods on composite materials/structures
for aerospace applications [12].

To date, there have been numerous NDT methods based on
different principles. They can be categorised into five groups:
(1) VI (i.e. those visible to the human eye); (2) acoustic
wave–based techniques, such as AE, nonlinear acoustics and
ultrasonic waves; (3) optical techniques, which include IRT,
THz testing, shearography, DIC; (4) imaging-based techniques,
for example, X-ray/neutron radiography/tomography and micro-
tomography; (5) electromagnetic field–based techniques, such
as eddy-current testing, remote field testing, magnetic particle
inspection and magnetic flux leakage testing [3].

Here, our focus is on ultrasonic testing (UT). UT is an acous-
tic inspection technique that operates through surface wave test-
ing, bulk wave testing and guided wave propagation with guided
wave analysis being superior for anisotropic material. When
used for NDT inspection of composite material, UT uses normal
incidence longitudinal waves and is particularly sensitive to in-
plane defects. It operates in three detection modes, reflection,
backscattering, and transmission of pulsed elastic waves in a ma-
terial system. It introduces guided high-frequency sound waves,
ranging from 1 kHz to 30 MHz to effectively detect flaw size,
crack location, delamination location, fiber waviness, meso-scale
ply fiber orientation and layup stacking sequence. A typical UT
system consists of a transmitter and receiver circuit and transducer
tool and display device, see Fig 1. Ultrasonic arrays are widely
used in place of single element transducers in many NDE appli-
cations in which single element transducers are combined. The
advantage being both speed and the ability to generate B-scans
[3].

FIGURE 1: GENERAL ULTRASONIC TESTING OF A COMPOSITE
MATERIAL
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2.2 NDT Data
As mentioned above, inspectors evaluate ultrasonics data vi-

sually using A-scans, B-scans, and C-scans. C-scans are used
by default as they produce a view of the entire material with
the pixel color representing a particular amplitude value. The
software used for converting ultrasonics data into C-scans auto-
matically generates different C-scan views of the same material
based on thresholding and gating different amplitude values. This
allows inspectors to quickly evaluate the material by considering
different views of the same region. For example, a given thresh-
old scheme can be used to concentrate on defects that may occur
at the top of the surface while others can be used to examine the
inner portion of the composite.

To generate these automatic views, controlled representative
structures known as standards are used, similar to phantoms used
in the medical domain. These standards are artificially created
composite pieces with hand-placed defects at a variety of loca-
tions and depths with the goal of enveloping any real defect in the
actual structural part. Figure 2 shows the C-scan results for the
same standard but with two different threshold schemes applied.
The standard seen in Fig. 2 has seven regions of different ply
counts with similar damage placement, rectangular and square
regions, containing three different materials to represent damage
categories. The colors assigned are based on an adjustable data
range representing signal changes recorded by the sensor. Here,
the colors increase in gray scale based on increased signal changes
within the given data range. Signal changes above the data range
are assigned red. By adjusting the range, different regions of the
standard are highlighted as possible regions of interest, explain-
ing the difference in color assignments of the same standard in
Fig. 2.

FIGURE 2: C-SCAN OF STANDARD WITH MULTIPLE THRESHOLD
SCHEMES

Each scanning point, equivalent to a pixel, of the C-scan has
an associated waveform of 512 samples that contains the mea-
sured amplitude of ultrasonic response stored as a 16-bit value.
The standards have 128x648 scanning points and are saved as a
3D volume with dimensions 128x648x512. While the original
signal can be used as input into a model, we also consider the
performance of the deep learning models under different data
pre-processing techniques. We consider the original raw signal,
the analytical signal generated using the Hilbert transformation,
and finally the transformation of the signal into the frequency
domain using the discrete Fourier Transform (DFT) as well as the
combination of the previous two. The analytical signal produces

a signal with less variation which may increase model perfor-
mance. By converting the time series signal into its frequency
components, we are able to model the response in a different
domain. Figure 3 shows an example of an input signal into the
model. Figure 3a represents the original unaltered signal while
the Fig. 3b represents the analytical signal and Fig. 3c represent-
ing the transformation of the signal into the frequency domain
using the DFT.

(a) Raw Signal

(b) Analytical Signal

(c) Discrete Fourier Transform

FIGURE 3: MODEL INPUT

2.3 Deep Learning Architectures Under Evaluation
Due to their artificial nature, each generated standard has a

corresponding ground truth label that allows for easy training,
evaluation, and comparison of different deep learning architec-
tures. When viewed as a C-scan, we can formulate the problem
as a semantic segmentation task in which the goal is to assign
a label to each pixel, with each sample (512) of the waveform
considered as a separate channel of an image (natural images use
three channels for red, green, and blue). A common deep learning
architecture used for semantic segmentation is the U-Net, built
on 2D convolutional layers, which is used in this study. Since
each pixel contains sufficient information to classify defects, we
can reformulate the problem as a time series classification prob-
lem in which each A-scan is treated as an independent sample.
The deep learning architectures considered in this reformulation
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include the long short-term memory recurrent neural network
(LSTM-RNN), convolutional neural network based on 1D con-
volutional layers, temporal convolutional network (TCN), and the
recent transformer network. Finally, each A-scan can be trans-
formed from the time series domain into the frequency domain
using the discrete Fourier Transform where each frequency com-
ponent is an independent feature. Here, we consider a simple
multi-layer perceptron (MLP) network. By passing the models’
final output through a SoftMax layer, we are able to obtain a vec-
tor of class probabilities with the highest being assigned as the
class prediction. Each deep learning architecture considered is
briefly discussed below.

2.3.1 U-Net. Originally developed for biomedical image
segmentation, the U-Net architecture consists of a down-sampling
network followed by an up-sampling network [13]. The down-
sampling network is comprised of 2D convolution layers followed
by an activation function, typically ReLU or LeakyReLU, ending
with a pooling layer. The up-sampling network follows the same
structure but switches convolution layers for transposed convolu-
tion layers. These convolutional layers work by sliding a kernel
across an image that learns to extract a type of feature from its
input. Finally, high-resolution features from the down-sampling
path are concatenated to the up-sampled output [13]. The exact
architecture used consists of three down-sampling/up-sampling
layers with zero padding allowing the image sizes to be the same.
The first down-sampling layer contains 32 channels while the last
contains 128 with the network using the LeakyReLU activation
function.

2.3.2 Long Short-Term Memeory Recurrent Neural
Network. Specifically developed to model sequential input,
recurrent networks (RNNs) can use their feedback connections to
store representations of recent input events making them effective
at modelling time series data. However, a major drawback of the
RNN architecture is its inability to learn long-term relationships
[6]. Long short-term memory RNNs (LSTM-RNN) networks
were developed to overcome this. The LSTM-RNN architecture
includes both a short-term and long-term state. The long-term
state is controlled through the forget gate, input gate, and output
gate that controls which parts should be erased, which parts
should be added, and which parts should be read, respectively
[6]. The architecture considered in this study consists of 3 LSTM
layers with 25 neurons in each layer using the hyperbolic tangent
activation function with the features being passed to a MLP with
a single hidden layer.

2.3.3 1D Convolutional Neural Network. Like the U-Net,
this architecture is built using convolutional layers. However,
since the input is a 1D timeseries, 1D convolutional layers are used
instead of 2D. Again, kernels are slid across the sequence learning
to extract features from its input with a stride of two, effectively
halving the sequence through each layer. A down-sampling path
is used here as well but only consists of convolutional layers and
activation functions, with no pooling layers. After the features
are extracted, they are flattened and passed to a simple MLP.
The specific architecture used here consists of four convolutional
layers with the first containing 8 channels and the last having

32. Each layer uses the ReLU activation function which is finally
flattened and passed to a MLP consisting of a single hidden layer.

2.3.4 Temporal Convolutional Neural Network. The tem-
poral convolutional network (TCN) extends the convolutional
neural network above by increasing its ability to model longer
sequences, similar to LSTM extending RNN. This is done using
dilated convolutions. Simple convolutions are only able to look
back at a sequence with size linear in the depth of the network.
To overcome this, TCNs employ dilated convolutions that enable
exponentially large receptive fields allowing the network to model
much longer sequences [14]. The TCN used here consists of 5
hidden layers with 25 channels each which is then flattened and
passed into a MLP with one hidden layer.

2.3.5 Transformer. Introduced in the context of natural lan-
guage processing, transformers no longer make use of recurrent
or convolutional layers and are instead composed solely of self-
attention mechanisms. These self-attention mechanisms allow
relating different positions of a single sequence to compute a rep-
resentation of the sequence. Using more than one self-attention
mechanism gives a multi-head attention. Finally, a positional
encoding is introduced to inject information about the relative
position of the tokens in the sequence [15]. The specific archi-
tecture used includes 5 multi-attention heads compressing the
original sequence before passing it into a MLP with a single
hidden layer.

2.3.6 Multi-Layer Perceptron. The last architecture under
consideration is the multi-layer perceptron (MLP). The MLP con-
sists of simple fully connected linear layers that map the input into
hidden layers before finally giving an output [16]. In between
these linear layers are activation functions and dropout layers that
allow the model to learn non-linear relationships while not overfit-
ting the data. The linear layers assume no relationship among the
input unlike recurrent and convolutional layers modeled specif-
ically for time series and images, respectively. However, the
input for this architecture will be the frequency components after
applying the discrete Fourier Transform making this approach
appropriate. The MLP considered consists of 10 hidden layers
with ReLU activation and a dropout value of 0.3.

2.4 Performance Evaulation Criteria
In order to compare the different deep learning architectures,

we use commonly reported classification metrics. By comparing
the predicted results with ground truth labels, we can define four
major statistics:

• True Positive (TP): number of defect signals correctly de-
tected.

• True Negative (TN): number of normal signals classified as
non-defect.

• False Positive (FP): number of normal signals incorrectly
classified as defect.

• False Negative (FN): number of defect signals incorrectly
classified as normal.
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From these statistics, we can define four metrics, Accuracy (Acc),
Precision (Pr), Recall (Re), and F1-score (F1):

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 = 2 · 𝑃𝑟 · 𝑅𝑒
𝑃𝑟 + 𝑅𝑒

(4)

Accuracy measures the overall correctness of the model. Preci-
sion measures the ratio of actual defects to the number of predicted
defects while recall measures the ratio of correctly identified de-
fects. The F1-score is the harmonic mean of the precision and
recall. In the context of defect detection, recall is typically the
most important as most applications cannot risk any defects being
missed ensuring a reliable system. Therefore, final models will
be ranked by their recall value. Lastly, the wall-time required for
training and inferencing each model will be reported.

3. RESULTS AND DISCUSSION
To generate the results, we used 11 standards for training and

validation and 9 standards for testing. The goal with this setup is
to simulate a possible future direction of training, validating, and
testing on three separate aircrafts. The input shape for the vision-
based U-Net is (11, 512, 128, 648) representing the number of
standards, input channels, height, and width respectively. Since
the time series-based methods treat each signal independently, we
can flatten the first, third, and fourth dimension above giving an
input shape of (912384, 512) representing the number of signals
and number of samples within each signal. When transforming
into the frequency domain, the input shape becomes (912384,
257) representing the number of samples and the number of fre-
quency components within each sample. The training of each
model was done using a single NVIDIA A100 GPU card with the
number of epochs set to 1000 and a learning rate of 0.0005. The
batch size for the U-Net was set at 2 so that at each update step 2
standards were used during training. For the time series models,
the batch size was set at 2048. It was found that a smaller batch
size led to poor convergence due to the class imbalance in which
non-defect signals made up a majority of the dataset. Finally,
all models were developed using the PyTorch framework, trained
with the Adam optimizer and finally saved based on the lowest
validation error [17, 18].

Table 1 shows the full results considered in this study grouped
by the data pre-processing method (model input) ranked in de-
scending order by recall. The results are averaged over the 9
standards used for testing. Overall, the results show that all deep
learning models considered can identify defects with accuracies
ranging from 90% - 100%. However, there is a higher degree
of variation in the recall metric ranging from 44%-99%. Fur-
thermore, the difference in recall between the top two different
models is 11%. Finally, 4a and 4b show the model results when
using the raw and analytical signal, respectively.

We can also examine model performance by examining the
model’s output compared to the corresponding ground truth label

(a) Raw Signal

(b) Analytical Signal

FIGURE 4: RECALL BY MODEL

at the C-scan level. Figure 5 shows each model’s prediction at
the C-Scan level. Here, we see that each model is capable of
identifying the general defect area but differe in the number of
false positives as well as the boundary between the defect and
non-defect region.

Table 2 shows both the wall-time for training and inference
ranked in descending order by recall for each deep learning model
considered with the inference time averaged over the 9 standards
used for testing. While training time can be critical for applica-
tions requiring frequent retraining, we assume here that training
time is negligible as models can be trained offline or in the back-
ground. Here, we are concerned with inference time, as models
used in a production setting are expected to be both accurate and
fast. Slow inference times make even the most accurate models
impractical and counterproductive. We measure inference time in
an end-to-end fashion starting from loading the data in to saving
final model outputs. In Table 2, we see that most models report an
average inference time of 3-6 seconds showing that each approach
could be used in a production setting. Furthermore, the best per-
forming model also has one of the fastest training times, which
may be useful for certain applications. Other notable remarks
based on the results include:

• Using the discrete Fourier Transform gives better results
than both the raw and analytical signal,

• Vision-based approaches outperform time series-based ap-
proaches,

• Within the time series approach, the raw signal is preferred
over the analytical signal,

• The LSTM, based on recurrent layers, is the slowest model
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TABLE 1: TEST METRICS GROUPED BY DATA PRE-PROCESSING RANKED IN DESCENDING ORDER BY RECALL

Model Input Model Accuracy Precision Recall F1-Score
Raw Signal

DFT U-Net 99.63% 98.92% 98.63% 98.77%
DFT MLP 97.15% 91.41% 87.75% 89.53%

Raw Signal
U-Net 99.31% 98.18% 97.03% 97.59%
Transformer 94.16% 81.13% 76.50% 78.61%
TCN 95.50% 90.68% 76.03% 82.66%
LSTM 94.07% 86.54% 69.67% 77.04%
CNN 91.26% 71.91% 62.76% 66.84%

Analytical Signal
DFT U-Net 99.23% 97.99% 96.62% 97.29%
DFT MLP 96.66% 89.97% 85.66% 87.76%

Analytical Signal
U-Net 99.28% 97.98% 96.80% 97.39%
LSTM 93.42% 84.36% 66.16% 73.98%
TCN 93.19% 91.05% 57.11% 69.35%
Transformer 91.11% 85.82% 44.75% 58.47%
CNN 89.99% 75.56% 43.81% 54.96%

to train and,

• The U-Net model has the lowest variation in recall as seen
in Fig. 4.

TABLE 2: TRAINING AND INFERENCE TIME GROUPED BY DATA
PRE-PROCESSING RANKED IN DESCENDING ORDER BY RECALL

Model Input Model Training1 Inference2

Raw Signal
DFT U-Net 22 4.79
DFT MLP 77 3.65

Raw Signal
U-Net 30 4.16
Transformer 155 3.27
TCN 506 5.22
LSTM 594 4.81
CNN 89 4.69

Analytical Signal
DFT U-Net 26 5.98
DFT MLP 78 4.74

Analytical Signal
U-Net 31 5.39
LSTM 589 6.17
TCN 506 6.30
Transformer 148 4.43
CNN 88 5.79

1 Minutes, 2 Seconds

Overall, we’ve seen the effective use of different deep-
learning based approaches in detecting defects in composite ma-
terial. However, there appears to be a substantial benefit in for-
mulating this problem using a vision based approach. The vision
approach allows for taking advantage of the spatial correlation
that exists between defects i.e., defects occur in clusters of pixels.
The time series based approaches treat pixels independently and

make predictions based on the signal alone. Therefore, they fail
to include the information in the surrounding area. Finally, it is
worthwhile to note that the defects used here are simple polygon
regions (squares and rectangles) and are easy for a vision based
approach to detect whereas actual defects may be of any shape.

4. CONCLUSION
The purpose of this study was to evaluate and compare

the performance of different deep learning models in identify-
ing and classifying defects in composite material modeled after
state-of-the-art aircrafts. The models considered include the:
Multi-Layer Perceptron, Transformer, 1D Convolutional Neural
Network, Temporal Convolutional Neural Network, Long Short-
Term Memory Recurrent Neural Network, and U-Net. We also
compared the performance of these models using different data
pre-processing techniques including the analytical signal based
on the Hilbert transformation as well as the discrete Fourier Trans-
form. Our work shows both the effectiveness of different deep
learning methods in defect identification and classification as well
as the efficiency of each approach, requiring only a few seconds
during the inferencing stage. Conventional NDI methods rely
heavily on human experience; thus, they are subjective, do not
scale, and are extremely time consuming. Therefore, there is a
strong need for the integration of computer-based methods with
deep learning being one such method. Future work seeks to ex-
tend the methods considered here to actual aircraft structures in
production.
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(a) Ground Truth

(b) U-Net Prediction

(c) MLP Prediction

(d) Transformer Prediction

(e) TCN Prediction

(f) LSTM Prediction

(g) CNN Prediction

FIGURE 5: C-SCAN PREDICTIONS USING RAW SIGNAL
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