

Antimony Chloride Treatments of CdTe-Based Solar Cells

Kevin D. Dobson, Abigail L. Sicher, Bin Du, Pradipta Roy Dip, Brian E. McCandless, and William N. Shafarman

Institute of Energy Conversion, University of Delaware, Newark, DE, 19716, USA

Abstract — Development of a new SbCl_3 -based solution treatment for chloride activation of CdTe-based solar cells is described. Activation was confirmed with CdSeTe:Sb devices exhibiting $V_{\text{OC}} > 550$ mV and $J_{\text{SC}} > 25$ mAcm $^{-2}$. Treatment optimization showed strong effects of annealing time and temperature on cell properties. Material characterization indicated surface conversion of CdSeTe to CdCl_2 and Sb_2Te_3 with SbCl_3 treatment. However, no reaction products were formed with treatment under inert conditions, which was coupled with poor device performance. Drying the SbCl_3 films at controlled humidity conditions confirmed that exposure to high relative humidity is critical for CdSeTe activation, through hydrolysis of SbCl_3 . Mechanistic details of SbCl_3 speciation during hydrolysis and annealing to activate CdSeTe are discussed.

I. INTRODUCTION

Chloride-based treatments are ubiquitous for the processing of thin film CdTe solar cells and are critical to achieve high device performance [1]. Treatment with CdCl_2 can result in grain recrystallization and growth, promotion of layer interdiffusion, modification of defects, and passivation of grain boundaries. However, Cl^- treatments of alloyed-CdTe species can be limiting. For example, it has been shown that CdCl_2 treatments of CdZnTe result in stripping of Zn from the material lattice [2]. This was overcome by using ZnCl_2 , which successfully maintained alloy composition, though handling ZnCl_2 is complicated by its highly hygroscopic nature. There is a need to identify alternate and manufacturable halide activation chemistries with the flexibility for application to CdTe and its alloys.

SbCl_3 has been highlighted as a possible alternate chloride flux for CdTe alloys [3], with the potential to maintain both alloy composition, as well as Sb doping that has been developed in our laboratories [4]. Its less hygroscopic nature also allows for easier material handling. Li et al. [5] demonstrated post-deposition chloride solution treatments as an approach for ex-situ Sb-doping of CdTe, demonstrating device performance improvements compared to Cu-doped cells. Ciris [3] considered the use of SbCl_3 solutions as an alternate chloride treatment for CdTe, with treated films showing significant grain growth, coarser grain morphology, and Sb inclusion into the lattice.

In this paper, SbCl_3 -based solution treatments for Sb-doped CdSeTe (CdSeTe:Sb) are described which activate CdSeTe photovoltaic performance, particularly through improvement of device J_{SC} . Optimization of treatment chemistry, however, showed the critical involvement of water vapor in CdSeTe:Sb activation. The chemical effects of humidity on SbCl_3

speciation and its potential role for CdSeTe film activation are discussed.

II. MATERIALS AND METHODS

SbCl_3 treatments were carried out on vapor transport (VT) CdTe:Sb deposited on a front stack of thermal-evaporated 500 nm $\text{CdSe}_{x}\text{Te}_{1-x}$ ($x \sim 0.25$) and 250 nm CdTe bilayer on a TEC-12D glass substrate, with the absorber designated as CdSeTe:Sb . Sb-doping is carried out during CdTe VT deposition, controlling in-situ Sb vapor concentration in the presence of a Cd vapor excess to assist Sb incorporation [6]. Processing details are provided elsewhere [4].

SbCl_3 solution-based treatments of CdSeTe:Sb were carried out, unless otherwise noted, using 0.1 M solutions of SbCl_3 ($\geq 99.0\%$, Sigma Aldrich) with either air-exposed methanol (Electronic Grade, Fisher) or anhydrous methanol (99.9%, Thermo Scientific). Dry solutions were prepared in a N_2 -glovebox using the anhydrous solvent. SbCl_3 films were prepared by drop-casting 200 μL aliquots of SbCl_3 solution onto 1" x 1" CdSeTe:Sb substrates and dried at $\sim 60^\circ\text{C}$ on a hotplate in the glovebox (dry treatment) or drop-cast in room ambient and dried at $\sim 65^\circ\text{C}$ in an air-filled oven (air treatment). For controlled relative humidity (RH) experiments, SbCl_3 films were dried in air in an oven at $\sim 65^\circ\text{C}$ over saturated solutions [7] in a closed petri dish. Saturated aqueous solutions of LiCl (99%, Sigma-Aldrich), NaBr (ACS Grade, Fisher) and KCl (99.0-100.5%, Sigma-Aldrich) were used to control RH at $\sim 10\%$, $\sim 50\%$, $\sim 80\%$, respectively, while use of pure H_2O is designated as 100% RH in this report. The solutions were pre-warmed at 65°C for ~ 30 mins in a smaller petri-dish in the covered larger vessel, after which drop-cast SbCl_3 solution-coated CdSeTe samples were placed in the larger vessel, quickly replacing the cover, and allowed to dry. The SbCl_3 films generally dried within 15 min.

Dried $\text{SbCl}_3/\text{CdSeTe}$ samples were stored and transported in an Ar-filled box. Anneal treatments were carried out by covering samples with a glass slide and heating in a tube oven at 460°C for 30 min under flowing Ar, unless otherwise stated. Following treatment, samples were rinsed in methanol and then contacted for cells by 10 min dips in 10^{-2} M aqueous CuCl_2 ($> 98\%$, Alfa Aesar) before briefly rinsing with water and annealing at 260°C for 30 min in Ar. On cooling, cells were immediately contacted with graphite paste with area = 0.36 cm^2 .

Current-voltage (JV) measurements were obtained using an Oriel Xenon solar simulator at AM1.5 and 25°C. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were obtained using an Amray 1810T Digital Scanning Electron Microscope. Symmetric x-ray diffraction (XRD) and glancing incidence XRD (GIXRD) were measured using a Rigaku D/Max 2500 system with para-focusing optical configuration and Cu K α radiation at 40 kV.

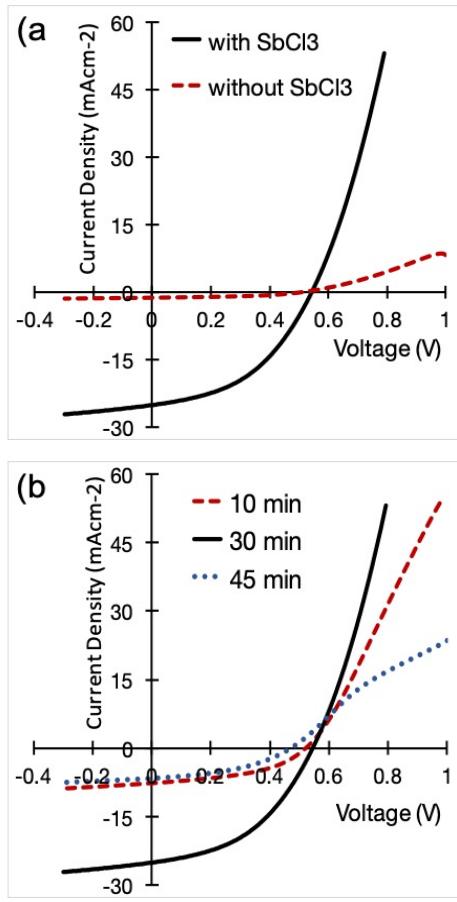


Fig. 1. Light JV curves of CdSeTe:Sb solar cells (a) no Cl⁻ treatment and with 0.1 M SbCl₃ air treatment at 460°C for 30 min, and (b) with 0.1M SbCl₃ air treatment at 460°C for 10, 30, and 45 min.

III. RESULTS AND DISCUSSION

A. Development of SbCl₃ treatments

Fig. 1a shows the JV curves of an untreated CdSeTe:Sb cell, and a device processed with SbCl₃ air treatment, using air-exposed methanol solution and SbCl₃ film dried in air prior to annealing, with the treated device exhibiting $V_{OC}=544$ mV and $J_{SC}=25.2$ mAcm⁻². For comparison, the non-treated cell has $J_{SC}<10$ mAcm⁻²; the low J_{SC} is due to poor carrier transport and

the significant J_{SC} improvement indicates electronic activation of CdSeTe. While performance of the SbCl₃-treated cell is below our current best CdCl₂-treated cells, which have $V_{OC}>830$ mV, $J_{SC}>25$ mAcm⁻² (not shown), a similar J_{SC} has been obtained with the new SbCl₃ treatment. Preliminary optimization of air treatment conditions was carried out. Resultant cells showed anneal time and temperature had a significant effect on JV performance, with J_{SC} improving from 10 min to 30 min treatments at 460°C (Fig. 1b), however treatments of >30 min or >460°C significantly decrease both V_{OC} and J_{SC} . Varying [SbCl₃], from 0.01 M – 1 M, showed little effect on cell performance.

SEM characterization of CdSeTe:Sb films with and without SbCl₃ air treatment is shown in Fig. 2. A roughening of grain morphology is seen, indicating SbCl₃ interaction or reaction with the CdSeTe:Sb surface. EDS analysis at 20 kV of the treated sample following a methanol rinse confirmed a near-surface uptake of 3-4 at% Sb.

XRD analysis of CdSeTe:Sb following SbCl₃ air treatment is shown in Fig 3. Aside from primary CdTe-related reflections, peaks are observed that are assigned to newly formed phases, confirmed from GIXRD to be on the CdSeTe surface, of Sb₂Te₃ and CdCl₂ along with smaller levels of Cd- and Te-oxychloride-based phases. A methanol rinse of the sample resulted in a decrease in intensity of peaks assigned to soluble CdCl₂. These observations confirm that SbCl₃ is reactive at the CdSeTe surface, producing the reaction products via Eq. (1), and with further optimization, is a potential agent for chloride treatments of CdTe.

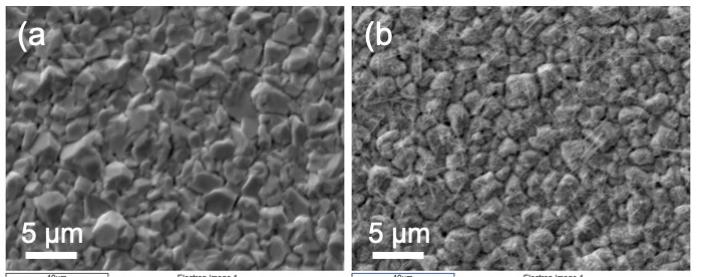
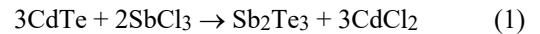



Fig. 2. SEM images of CdSeTe:Sb films (a) without treatment, and (b) following 0.1 M SbCl₃ air treatment at 460°C for 10 min.

The presence of oxychloride phases following air treatment of CdSeTe:Sb suggests a role of O₂ or H₂O vapor in the SbCl₃ chemistry. To confirm this, different approaches for SbCl₃ film preparation were compared. Fig. 4. shows the light JV curves of a CdSeTe:Sb cell following dry SbCl₃ treatment, using a dry methanol solution and SbCl₃ film prepared in the N₂ glovebox, and a second cell prepared using the same dry SbCl₃ methanol solution but with the SbCl₃ film dried in air. Both cells were

annealed at 460°C for 30 mins in Ar. The JV data of the dry processed cell shows low activation ($J_{SC} \approx 5 \text{ mAcm}^{-2}$), while the device treated with the air-dried film showed improved JV performance ($J_{SC} \approx 17 \text{ mAcm}^{-2}$). XRD of a dry SbCl₃-treated CdSeTe:Sb film (Fig. 5) showed only CdTe-related reflections, compared to a CdSeTe:Sb film treated with an air-dried SbCl₃ film, indicating that no surface chemistry occurred during treatment, consistent with the observed poor JV performance.

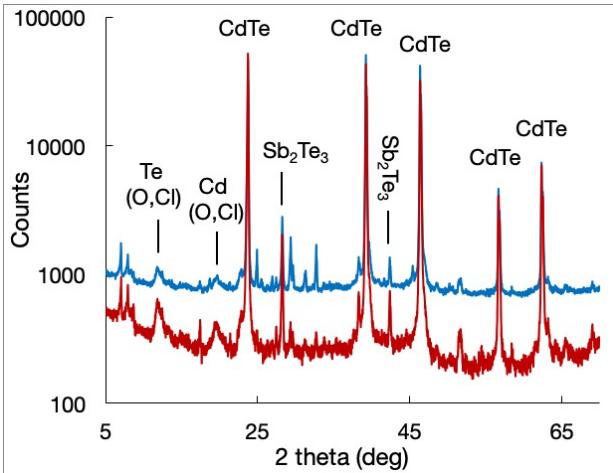


Fig. 3. XRD patterns of CdSeTe:Sb film (blue) directly following SbCl₃ air treatment, and (red) following methanol rinse. Plots are offset for clarity.

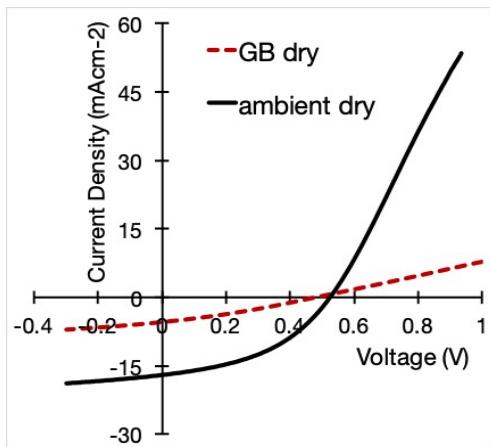


Fig. 4. Light JV curves of SbCl₃-treated CdSeTe:Sb cells with SbCl₃ films prepared from dry methanol solution and dried either in the glovebox or in air prior to annealing at 460°C for 30 min in Ar.

Other approaches to introduce ambient exposure of SbCl₃ films were tested. Annealing of a glovebox-dried SbCl₃ film in ambient air gave JV curves with strong blocking behavior likely due to oxidation of the CdSeTe surface, while exposing samples with glovebox-dried SbCl₃ films to humidity during annealing

by bubbling the Ar purge gas through H₂O, resulted in no cell activation. Controlled addition of liquid H₂O to a SbCl₃ / dry methanol solution ([H₂O] up to 0.55 M) was also tested, however, after drying films in the N₂ glovebox followed by annealing, no CdSeTe activation was observed.

A further approach was to dry the SbCl₃ films in air at controlled RH. SbCl₃ films were prepared on CdSeTe substrates by drying aliquots of SbCl₃/dry methanol solution over various saturated solutions [7] at ~65°C in a closed petri dish to vary RH from ~10% to 100% RH. Treatment anneals were then carried out at 460°C for 30 mins. Fig. 6 shows V_{OC} and J_{SC} from the resultant devices with SbCl₃ films dried for 15 mins at varying RH. V_{OC} shows a steady increase of ~100 mV with increasing RH, while cells exhibit almost no J_{SC} at RH<50%, indicating no chloride activation. However, at RH>50%, a rapid J_{SC} increase is observed, indicating that exposure to high humidity is critical for SbCl₃ activation of CdSeTe. Optimization of drying conditions indicated that longer film drying times of 45 min generally produced improved cell performance. Drying films at high humidity was incorporated as part of the baseline process for SbCl₃ treatments.

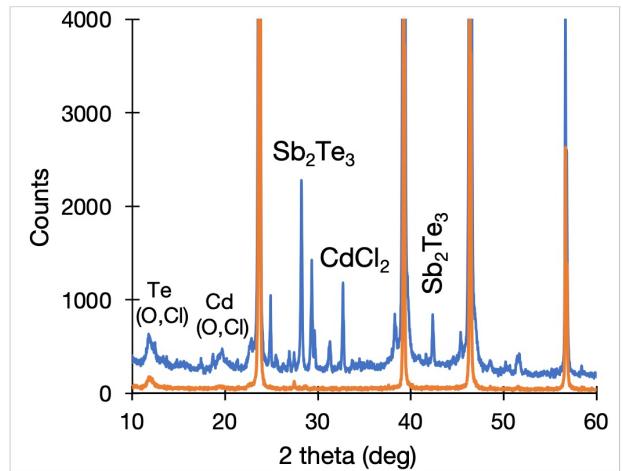


Fig. 5. XRD patterns of SbCl₃-treated CdSeTe:Sb films with SbCl₃ films prepared from dry methanol solution and dried either in the glovebox (orange) or in air (blue) prior to annealing at 460°C for 30 min in Ar. Plots are offset for clarity.

To assist understanding of SbCl₃ treatment chemistry, the effects of high RH drying and annealing of SbCl₃ films were monitored. Films were deposited on glass microscope slides from SbCl₃/dry methanol solutions and dried at 65°C, either in the N₂ glovebox or in air at 100% RH for 45 mins. Both films were then annealed at 460°C for 30 min. The glovebox-dried film was transparent to the eye after drying and remained so following annealing. XRD measurements (not shown) indicated the film remained amorphous, likely as SbCl₃,

throughout processing. In contrast, after drying at high RH, the other sample had dried as a uniform opaque white film, which became more transparent following annealing. Analysis of the XRD data (not shown) indicates the presence of the SbOCl in the as-dried film, an expected product of SbCl₃ hydrolysis, which converts to Sb₈O₁₁Cl₂ during the anneal step. The formation of the higher order oxychloride phase is consistent with reported thermal degradation pathways for SbOCl [8 and discussion below].

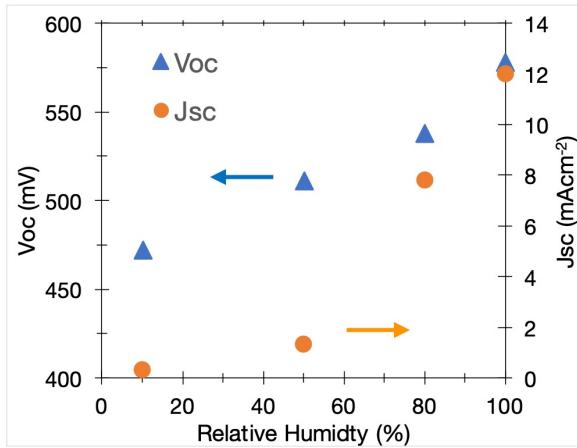
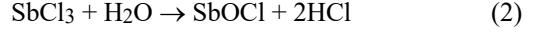



Fig. 6. Effect of controlled RH during drying of SbCl₃ films at ~65°C on Voc and Jsc of resultant SbCl₃-treated devices.

B. Chemical mechanisms of SbCl₃ treatments

These observations show humidity exposure during treatment is critical to drive SbCl₃-activation of CdSeTe. While high RH during film drying gives improved cell performance, it must be well controlled to achieve consistent results. The solution behavior of SbCl₃ was considered to understand the observed SbCl₃ treatment chemistry, particularly the role of humidity exposure, and to guide further optimization of treatment conditions. Tian et al. [9] modeled speciation of SbCl₃ with varying pH in aqueous solution, showing that SbCl_x^(3-x) complexes dominate at acidic pH, while at neutral and alkaline conditions, Sb-O phases (e.g. SbO⁺, Sb(OH)₃, etc.), along with free Cl⁻, are formed. Though methanol solutions are employed in this work, an effective solution pH can be assumed to estimate the majority species present at particular solution conditions. With exposure to H₂O vapor during film drying, SbCl₃ will react to form small levels of SbOCl or similar species, as confirmed from XRD analysis, along with small levels of HCl or free Cl⁻ (Eq. (2)). At low [HCl], the effective pH of the solution will remain nearly unchanged (essentially neutral) and the SbOCl phase remains dominant [9] with liberated HCl/Cl⁻ available for CdSeTe activation. Removal of SbCl₃/SbOCl films from CdSeTe by rinsing in methanol

following just film drying at high RH, reveals discoloration of the CdSeTe surface, consistent with etching by HCl. If significantly large levels of water are added, a larger HCl concentration will be generated via Eq. (2), which decreases the effective pH of the solution, and SbCl_x^(3-x) complexes will now dominate and largely reduce levels of free Cl⁻ [9].

How this speciation affects the chemistry of Cl⁻ activation can be estimated from the thermal decomposition of Sb-oxychlorides [8 and references therein]. SbOCl degrades at temperatures >245°C to produce higher oxychlorides, before forming Sb₂O₃ near 600°C. At each decomposition step, SbCl₃ is formed as a secondary phase [8], highlighting its high thermal stability compared to the oxychlorides, and preventing further formation of free Cl⁻ for CdSeTe activation. In the absence of humidity exposure, the thermal stability of SbCl₃ prevents generation of Cl⁻ and, as observed, no activation is expected. The degradation of SbOCl to Sb₈O₁₁Cl₂ was confirmed from XRD analysis in this work.

These considerations highlight the need to ensure the presence of SbOCl or similar species through controlled hydrolysis of SbCl₃ during treatment. Further analysis of SbCl₃ chemistry is being carried out and findings will be used to guide characterization and optimization of SbCl₃-based treatments. With exposure to humidity during film drying, SbCl₃ hydrolysis forms SbOCl along with generation of free Cl⁻. It may be expected, with generation of Cl⁻ at these benign conditions, as opposed to relying on thermal degradation of the chloride phase, that lower anneal temperatures could now achieve CdSeTe activation. However, preliminary re-optimization of anneal conditions for high RH dried SbCl₃ treatments at lower temperatures down to 400°C have so far shown poor devices through insufficient Cl⁻ activation. Treatment optimization is continuing and will be presented in a later publication

III. SUMMARY

SbCl₃ is shown to be a viable activation agent for CdTe-based solar cells. Optimization of solution SbCl₃-based air treatments of CdSeTe:Sb show promising performance, with cells of Jsc ≈ 25 mAcm⁻² demonstrated. Optimization of treatment conditions showed strong effects of annealing time and temperature on JV performance. Exposure to high RH during SbCl₃ film drying was found to be critical for the activation of CdSeTe cells. The role of water vapor in treatment chemistry was confirmed by XRD characterization, which indicated hydrolysis of the SbCl₃ film coupled with the formation of CdCl₂ and Sb₂Te₃ majority surface phases on activated CdSeTe, though no reaction was observed after dry SbCl₃ processing. Mechanistic details of SbCl₃ speciation in solution and during annealing highlights the roles of H₂O vapor

on CdSeTe activation. These findings will guide further optimization and understanding of treatment chemistry.

III. ACKNOWLEDGEMENTS

Funding was provided by the Alliance for Sustainable Energy, LLC, Managing and Operating Contractor for the National Renewable Energy Laboratory for the U.S. Department of Energy, and was supported in part by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number 37989. The authors thank K. Dewberry and G. Obikoya for JV measurements.

REFERENCES

- [1] M. A. Scarpulla, B. McCandless, A. B. Phillips, Y. Yan, M. J. Heben, C. Wolden, G. Xiong, W. K. Metzger, D. Mao, D. Krasikov, I. Sankin, S. Grover, A. Munshi, W. Sampath, J. R. Sites, A. Bothwell, D. Albin, M. O. Reese, A. Romeo, M. Nardone, R. Klie, J. M. Walls, T. Fiducia, A. Abbas, and S. M. Hayes, "CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects", *Sol. Energy Mater. Sol. Cells*, vol. 255, pp. 112289, 2023.
- [2] B. E. McCandless and R. W. Birkmire, "Cd_{1-x}Zn_x solar cells with 1.6 eV band gap", in *31st IEEE Photovoltaic Specialists Conference*, 2005, p. 398.
- [3] A. Ciris, "The effect of SbCl₃ treatment on CdTe produced by close space sublimation method", *J. Appl. Phys.*, vol. 133, pp. 225302, 2023.
- [4] B. Du, K. Dobson, B. McCandless, A. Nahar, U. Das, S. Fields, A. Arehart, and W. Shafarman, "Pyrolyzer assisted vapor transport deposition of antimony-doped cadmium telluride" in *50th IEEE Photovoltaic Specialist Conference*, 2023.
- [5] D.-B. Li, C. Yao, S. N. Vijayaraghavan, R. A. Awni, K. K. Subedi, R. J. Ellingson, L. Li, Y. Yan and F. Yan, "Low-temperature and effective ex situ group V doping for efficient polycrystalline CdSeTe solar cells", *Nat. Energy*, vol. 6, pp. 715–722, 2021.
- [6] B. E. McCandless, W. A. Buchanan, C. P. Thompson, G. Sriramagiri, R. J. Lovelett, J. Duenow, D. Albin, S. Jensen, E. Colegrove, J. Moseley, H. Moutinho, S. Harvey, M. Al-Jassim and W. K. Metzger, "Overcoming carrier concentration limits in polycrystalline CdTe thin films with in situ doping", *Sci. Rep.*, vol. 8, pp. 14519, 2018.
- [7] L. Greenspan, "Humidity fixed points of binary saturated aqueous solution", *J. Res. Natl. Bur. Stand. A Phys. Chem.*, vol. 81A, pp. 89–96, 1977.
- [8] L. Costa, G. Paganetto, G. Bertelli, and G. Camino, "Thermal decomposition of antimony oxyhalides I. Oxychlorides", *J. Therm. Anal.*, vol. 36, pp. 1141–1153, 1990.
- [9] Q. Tian, Y. Xin, L. Yang, X. Wang, and X. Guo, "Theoretical simulation and experimental study of hydrolysis separation of SbCl in complexation-precipitation system", *Trans. Nonferrous Met. Soc. China*, vol. 26, pp. 2746–2753, 2016.