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Introduction
The U.S. natural gas transmission pipeline system is a ~$540 billion asset under corrosion.

Paper no: C2025-00213

• Supplies 28 trillion cf of natural gas/year to 75 million customers.

• >$7 billion/year is spent on corrosion.

• Government legislation (49 CFR § 192.477) requires internal corrosion monitoring programs for pipelines.

Natural Gas Transmission Pipeline 

Incidents

Justman, Rose & Bauer, NETL, 2017. Data analyzed from U.S. DOT PHMSA incident data
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Introduction
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• Water is the primary factor causing corrosion inside gas 
pipelines.

• CO2 is the second most important contributor to corrosion.
• A natural gas transmission pipeline might be expected to have a partial pressure 

of 310 kPa (45 psig) of CO2

*https://www.rosen-group.com/global/solutions/industry-case-studies/oil-gas/Case-Study-Black-is-Black.html

**M. Askari et al., Journal of Natural Gas Science and Engineering, 71, November 2019, 102971.

Different forms of internal corrosion in natural 

gas pipelines.**

General Corrosion Classifications

Low <0.025 mm y-1

Moderate 0.025-0.125 mm y-1

High 0.125-0.25 mm y-1

Severe >0.25 mm y-1

NACE RP0775-2005

For example, a short-lived project can tolerate a 

higher corrosion rate than a long-term, high-

investment project.
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Approach to Mitigate Internal Corrosion & 
Methane Emission

Paper no: C2025-00213

Several prevention methods have been suggested 
to mitigate internal corrosion, such as:

• Corrosion inhibitors

• Internal coatings

Superhydrophobic Anti-Corrosion Coatings
• To reduce the coating’s permeability and the 

contact area with corrosive species.

• Superhydrophobic coatings are based on 

hydrophobic materials with microscopic 

surface roughness, which can trap air on the 

surface and thus increase the effective contact 

angle. 

Challenges: 

Corrosion underneath the coating (i.e., under 

film corrosion), eventually developing into 

surface blisters and localized pitting 

corrosion.
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Experimental Setup & Test Matrix

Flat electrochemical cell

Parameters

Total pressure (bar) 1

pCO2 (bar) 0.97

Solution 0.25 L of 3.5 wt.% NaCl

Measured solution pH 3.88

Solution temperature 
(°C)

25

Duration (days) 8

Tested alloys
X65 carbon steel

Coated X65 carbon steel

Thermostatic 
water bath

Counter 

Electrode

(Pt) 

Working Electrode

(carbon steel) 

CO2 Outlet

CO2 inletReference Electrode b)

Experimental matrix
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Experimental Setup & Test Matrix

Illustration of different steps for a layer-by-layer assembly technique.
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Electrochemical Results: Coated & Uncoated 
Carbon Steel Immersed in a CO2 Saturated NaCl 
Solution
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CR
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Uncoated 

carbon steel
-0.85 5.35 x 10-5 0.530 0.496 0.62

Coated 

carbon steel
-0.71 1.3 x 10-5 0.462 0.975 0.15

Corrosion Kinetic Parameters Ecorr, icorr, and CR for Uncoated and Coated Carbon 
Steel Immersed in a 3.5 wt.% NaCl Solution Saturated with CO2 at 20 °C

pCO2 = 0.97 bar , T=20oC, 3.5 wt.% NaCl, 

pHin = 3.87, pHfin = 3.9

Chemical reactions Electrochemical reactions

Chemical reactions 
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Electrochemical Results: Coated & Uncoated 
Carbon Steel Immersed in a CO2 Saturated NaCl 
Solution
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Electrochemical Results: Coated & Uncoated 
Carbon Steel Immersed in a CO2 Saturated NaCl 
Solution

pCO2 = 0.97 bar, T = 20 °C, 3.5 wt.% NaCl, pHin = 3.87, pHfin = 3.9

Corrosion rate  Open circuit potential
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Electrochemical Results: Uncoated Carbon Steel 
Immersed in a CO2 Saturated NaCl Solution

Nyquist diagram Bode diagram
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Electrochemical Results: Coated Carbon Steel 
Immersed in a CO2 Saturated NaCl Solution

Nyquist diagram
Bode diagram
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Electrochemical Results: Coated Carbon Steel 
Immersed in a CO2 Saturated NaCl Solution

Nyquist diagram
Bode diagram
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Estimation of Water Uptake of an Organic 
Coating by Electrochemical Impedance 
Spectroscopy The amount of water/solution in the organic coating (film) 

is a very important property, contributing to the 

assessment of the anticorrosive protection of organic 

coatings (the Brasher–Kingsbury (BK) equation).

G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, J. Electroanal. Chem. 

176(1984) 275.

C. H. Hsu; F. Mansfeld, “Technical Note: Concerning the Conversion of the Constant Phase Element 

Parameter Y0 into a Capacitance”, Corrosion 57, 9 (2001) p: 747.

Hu and Mansfeld formula to calculate Cfilm

Equivalent circuit to model EIS data

Cfilm: Capacitance of the film with time

C0: Capacitance of the film coating at t = 0

𝜀water: Dielectric constant of water = 80

𝛷water: Water content: A volume fraction of water at the time t

𝐶𝑑𝑙 = 𝑄𝑑𝑙

1

α ∗
𝑅𝑠∗𝑅𝑡

𝑅𝑠+𝑅𝑡

1−α

α

 

Brug's formula to calculate Cdl 

𝐶𝑓𝑖𝑙𝑚 = 𝑄
𝑓𝑖𝑙𝑚

1

αf ∗ 𝑅
𝑓𝑖𝑙𝑚

1−αf

αf  

𝜙𝑤𝑎𝑡𝑒𝑟 =
lo g ൘

𝐶𝑓𝑖𝑙𝑚
𝐶0

ሻ 𝑙𝑜𝑔𝜀𝑤𝑎𝑡𝑒𝑟
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Estimation of Water Uptake of an Organic 
Coating by Electrochemical Impedance 
Spectroscopy 

Corrosion rate
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Conclusion
• The corrosion performance of the hydrophobic coating was investigated in 3.5 wt.% NaCl 

saturated with CO2 at 20 °C. 

• The water uptake was estimated using the Brasher and Kingsbury relation.

• The corrosion of the base metal without coating (3.8 mm/y) was compared to coated 

carbon steel (0.02 mm/y). The superhydrophobic coating exhibited good behavior against 

CO2 corrosion. 

• The low water uptake of the superhydrophobic coating correlates to its corrosion 

resistance. 

• The results showed that the superhydrophobic coating with innovative nano-based 

materials effectively protects the surface of metallic parts against mechanical aggressors, 

corrosion, and fouling agents. These coatings have proven to be ideal candidates to 

protect steel pipelines. 
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