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Challenge

High energy particle physics and cosmology concern themselves with estimating
fundamental parameters of nature, such as the masses and interactions of fundamental
particles like the Higgs boson and the rate of expansion of the universe. In doing so, they
analyze exabyte-scale datasets, some of the largest in all of science, and face many challenges
in subsequent data analysis. These challenges are shared between the two disciplines, but we
focus on particle physics to highlight one specific domain. In particle physics, the standard
method for estimating parameters involves performing Monte Carlo (MC) integration as a
function of both parameters of interest and nuisance parameters using an expensive simulator,
counting the number of observed collision events (i.i.d. samples) from an experiment in the
corresponding integration domains, and forming a Poisson likelihood function. This likelihood
function is then used in a Frequentist manner to construct a maximum likelihood point estimate
(MLE) and confidence set for the parameters. To sufficiently populate the high-dimensional
integration domains, simulators consume billions of CPU-hours annually and produce hundreds
of petabytes of intermediate output data. Several techniques have been developed to: optimize
definitions of the integration domains so as to be maximally sensitive to a particular subset of
parameters, efficiently estimate the integrals, and build robust surrogate models by interpolating
between integral evaluations at different parameter points. One can view this whole endeavor as
classical Simulation-Based Inference (SBI).

This approach has several limitations. Given the continual increase in collected
experimental data, the current usage of simulators as well as inference methodologies face
scaling challenges. The larger dataset size allows for improved parameter estimation only if
accompanied by a corresponding decrease in the statistical uncertainties of the MC integration.
The curse of dimensionality and usage of simulators requires inference to be performed only in
a low-dimensional subspace of the true data dimension, reducing the amount of extracted
information. Additionally, the simulators are known to be imperfect models of the true data. The
resulting domain shift, between the simulated and real data distributions, means all inference
tasks must take into account uncertainties that are often difficult to quantify. A more precise
description of the simulator uncertainty will require improved methods of quantifying and
parameterizing its deficiencies.
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Opportunity

Recent developments suggest that Machine Learning (ML) methods may allow for more
efficient and more sensitive construction of the likelihood function. ML SBI techniques can
exploit the higher-dimensional information contained in the simulator much more efficiently than
traditional methods. The predominant Frequentist interpretation of the likelihood allows for a
convenient simplification: these methods regress an approximation of the integrand but need
not estimate the associated Jacobian, as it does not affect the determination of the MLE or the
likelihood ratio used to construct confidence sets. As the observation space is i.i.d. samples,
one only needs to estimate the likelihood function for single samples. Furthermore, if the
simulator is differentiable, local information about the shape of the likelihood can be extracted to
improve the convergence of the approximation. Established techniques for interpolation in
classical SBI may be incorporated as inductive bias in the ML approximation as well. Generative
models trained on simulations and/or auxiliary data can be used as computationally efficient
replacements for the simulator and mitigate the impact of domain shift.

Innovation

As the total number of collision events numbers in the billions, the fidelity requirements
of a regressed likelihood function are stringent. Therefore, the computational cost of training the
likelihood regression is likely to exceed the simulation costs of classical SBI. New techniques
are necessary to keep this cost under control. Generative Al has great potential to meet these
scaling challenges, properly account for domain shift, and provide improved parameter
estimation. However, the usage of ML models, for either likelihood construction or for generative
alternatives to the classical simulator, requires appropriate uncertainty quantification on their
outputs. Best practices need to be established to minimize the impact of the simulation-reality
domain shift and corresponding uncertainties. This challenge is particularly striking for
generative models, which produce output in high-dimensional space, making traditional
methods for quantifying these deficiencies infeasible. Inclusion of additional domain adaptation
methods, which force the ML-SBI to learn only dataset-invariant features, would enhance
out-of-distribution robustness and enhance our ability to perform accurate inference on real
data.

The deployment of these new techniques would revolutionize data analysis in particle
physics, vastly improving the precision on fundamental physics parameters extracted from
subatomic particle collisions. This improved precision could allow the observation of new
physical phenomena at subatomic scales, revolutionizing our understanding of nature's most
fundamental constituents.



