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‭Challenge‬
‭High energy particle physics and cosmology concern themselves with estimating‬

‭fundamental parameters of nature, such as the masses and interactions of fundamental‬
‭particles like the Higgs boson and the rate of expansion of the universe. In doing so, they‬
‭analyze exabyte-scale datasets, some of the largest in all of science, and face many challenges‬
‭in subsequent data analysis. These challenges are shared between the two disciplines, but we‬
‭focus on particle physics to highlight one specific domain. In particle physics, the standard‬
‭method for estimating parameters involves performing Monte Carlo (MC) integration as a‬
‭function of both parameters of interest and nuisance parameters using an expensive simulator,‬
‭counting the number of observed collision events (i.i.d. samples) from an experiment in the‬
‭corresponding integration domains, and forming a Poisson likelihood function. This likelihood‬
‭function is then used in a Frequentist manner to construct a maximum likelihood point estimate‬
‭(MLE) and confidence set for the parameters. To sufficiently populate the high-dimensional‬
‭integration domains, simulators consume billions of CPU-hours annually and produce hundreds‬
‭of petabytes of intermediate output data. Several techniques have been developed to: optimize‬
‭definitions of the integration domains so as to be maximally sensitive to a particular subset of‬
‭parameters, efficiently estimate the integrals, and build robust surrogate models by interpolating‬
‭between integral evaluations at different parameter points. One can view this whole endeavor as‬
‭classical‬‭Simulation-Based Inference (SBI).‬

‭This approach has several limitations. Given the continual increase in collected‬
‭experimental data, the current usage of simulators as well as inference methodologies face‬
‭scaling challenges. The larger dataset size allows for improved parameter estimation only if‬
‭accompanied by a corresponding decrease in the statistical uncertainties of the MC integration.‬
‭The curse of dimensionality and usage of simulators requires inference to be performed only in‬
‭a low-dimensional subspace of the true data dimension, reducing the amount of extracted‬
‭information. Additionally, the simulators are known to be imperfect models of the true data. The‬
‭resulting‬‭domain shift‬‭, between the simulated and‬‭real data distributions, means all inference‬
‭tasks must take into account uncertainties that are often difficult to quantify. A more precise‬
‭description of the simulator uncertainty will require improved methods of quantifying and‬
‭parameterizing its deficiencies.‬
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‭Opportunity‬
‭Recent developments suggest that Machine Learning (ML) methods may allow for more‬

‭efficient and more sensitive construction of the likelihood function. ML SBI techniques can‬
‭exploit the higher-dimensional information contained in the simulator much more efficiently than‬
‭traditional methods. The predominant Frequentist interpretation of the likelihood allows for a‬
‭convenient simplification: these methods regress an approximation of the integrand but need‬
‭not estimate the associated Jacobian, as it does not affect the determination of the MLE or the‬
‭likelihood ratio used to construct confidence sets. As the observation space is i.i.d. samples,‬
‭one only needs to estimate the likelihood function for single samples. Furthermore, if the‬
‭simulator is differentiable, local information about the shape of the likelihood can be extracted to‬
‭improve the convergence of the approximation. Established techniques for interpolation in‬
‭classical SBI may be incorporated as inductive bias in the ML approximation as well. Generative‬
‭models trained on simulations and/or auxiliary data can be used as computationally efficient‬
‭replacements for the simulator and mitigate the impact of domain shift.‬

‭Innovation‬
‭As the total number of collision events numbers in the billions, the fidelity requirements‬

‭of a regressed likelihood function are stringent. Therefore, the computational cost of training the‬
‭likelihood regression is likely to exceed the simulation costs of classical SBI. New techniques‬
‭are necessary to keep this cost under control. Generative AI has great potential to meet these‬
‭scaling challenges, properly account for domain shift, and provide improved parameter‬
‭estimation. However, the usage of ML models, for either likelihood construction or for generative‬
‭alternatives to the classical simulator, requires appropriate uncertainty quantification on their‬
‭outputs. Best practices need to be established to minimize the impact of the simulation-reality‬
‭domain shift and corresponding uncertainties. This challenge is particularly striking for‬
‭generative models, which produce output in high-dimensional space, making traditional‬
‭methods for quantifying these deficiencies infeasible. Inclusion of additional domain adaptation‬
‭methods, which force the ML-SBI to learn only dataset-invariant features, would enhance‬
‭out-of-distribution robustness and enhance our ability to perform accurate inference on real‬
‭data.‬

‭The deployment of these new techniques would revolutionize data analysis in particle‬
‭physics, vastly improving the precision on fundamental physics parameters extracted from‬
‭subatomic particle collisions. This improved precision could allow the observation of new‬
‭physical phenomena at subatomic scales, revolutionizing our understanding of nature's most‬
‭fundamental constituents.‬


