

1 **RESEARCH ARTICLE**

2 **Enhancing lipid production in plant cells through
3 automated high-throughput genome editing and
4 phenotyping**

5 Jia Dong^{1,2,3,11}, Seth W. Croslow^{2,4,5,11}, Stephan T. Lane^{2,3}, Daniel C. Castro^{5,6}, Jantana
6 Blanford⁷, Shuaizhen Zhou^{2,3}, Kiyoul Park^{8,9}, Steven Burgess¹⁰, Mike Root³, Edgar
7 Cahoon^{8,9}, John Shanklin⁷, Jonathan V. Sweedler^{2,3,4,5,6*†}, Huimin Zhao^{2,3,4*†}, Matthew E.
8 Hudson^{1,2,3*†}

9
10 ¹Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL,
11 USA.

12 ²Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation,
13 University of Illinois at Urbana-Champaign, Urbana, IL, USA.

14 ³Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
15 Urbana, IL, USA.

16 ⁴Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.

17 ⁵Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-
18 Champaign, Urbana, IL, USA.

19 ⁶Department of Molecular and Integrative Physiology, University of Illinois at Urbana-
20 Champaign, Urbana, IL, USA.

21 ⁷Biology Department, Brookhaven National Laboratory, Upton, NY, USA.

22 ⁸Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, NE, USA.

23 ⁹Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, USA.

24 ¹⁰School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL,
25 USA.

26 ¹¹These authors contributed equally: Jia Dong, Seth W. Croslow.

27 **Short title:** Lipid enhancement via an automated platform

28 *Corresponding authors:

29 [†]Matthew Hudson: mhudson@illinois.edu; Huimin Zhao: zhao5@illinois.edu; Jonathan
30 Sweedler: jsweedle@illinois.edu.

31 The author responsible for distribution of materials integral to the findings presented in this
32 article in accordance with the policy described in the Instructions for Authors

33 (https://academic.oup.com/plcell/pages/General-Instructions) is Matthew Hudson
34 (mhudson@illinois.edu).

35
36
37
38
39

40 **Abstract**

41 Plant bioengineering is a time-consuming and labor-intensive process with no
42 guarantee of achieving desired traits. Here, we present a fast, automated, scalable,
43 high-throughput pipeline for plant bioengineering (FAST-PB) in maize (*Zea mays*) and
44 *Nicotiana benthamiana*. FAST-PB enables genome editing and product characterization
45 by integrating automated biofoundry engineering of callus and protoplast cells with
46 single-cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS).
47 We first demonstrated that FAST-PB could streamline Golden Gate cloning, with the
48 capacity to construct 96 vectors in parallel. Using FAST-PB in protoplasts, we found that
49 PEG2050 increased transfection efficiency by over 45%. For proof-of-concept, we
50 established a reporter-gene-free method for CRISPR editing and phenotyping via
51 mutation of *high chlorophyl fluorescence 136* (*HCF136*). We show that diverse lipids
52 were enhanced up to sixfold using CRISPR activation of lipid controlling genes. In callus
53 cells, an automated transformation platform was employed to regenerate plants with
54 enhanced lipid traits through introducing multi-gene cassettes. Lastly, FAST-PB enabled
55 high-throughput single-cell lipid profiling by integrating MALDI-MS with the biofoundry,
56 protoplast, and callus cells, differentiating engineered and unengineered cells using
57 single-cell lipidomics. These innovations massively increase the throughput of synthetic
58 biology, genome editing, and metabolic engineering and change what is possible using
59 single-cell metabolomics in plants.

60

61 **Introduction**

62 Plant genetic engineering is needed more than ever to maintain global food security
63 while battling ever-changing environmental conditions. Currently, engineering plants
64 with desired traits is a complex and intricate process demanding significant time and
65 labor (Mumm, 2013). This process involves several key steps, including gene construct
66 design, plant transformation or transfection, genome editing, and analysis and
67 screening to identify the desired traits (Karlson et al., 2021; Yin et al., 2017). As a result,
68 the development of engineered plants is typically a low-throughput and labor-intensive
69 process, and represents one of the major limitations in plant biotechnology (Huang et
70 al., 2022). Our research focuses on engineering plants for enhanced vegetative lipid
71 production, a promising avenue to improve global plant oil production without the need
72 for increased fertilizer or land area use (Napier et al., 2014; Maitra et al., 2022).

73 Achieving stable lipid production in biomass tissues requires the engineering and
74 expression of multiple genes, and prototyping of these multi-gene constructs is a rate-
75 limiting step in developing next-generation crops (Vanhercke et al., 2019, 2014; Volk et
76 al., 2023).

77 To overcome this limitation, we sought to integrate an automated biofoundry with single-
78 cell metabolomics to expedite the engineering of plant genomes and characterization of
79 cellular effects, which has never been done before. Biofoundries are specialized
80 workstations that integrate robotics, high-throughput instrumentation, computer-aided
81 design, and informatics to speed up iterative biological Design-Build-Test-Learn cycles
82 in a scalable manner (Hillson et al., 2019; Zhang et al., 2021; Chao et al., 2017). These
83 workstations are highly reproducible, and optimize resource utilization by reducing
84 human time and labor costs, increasing experimental throughput, and enabling
85 researchers to devote more time towards experimental design as well as analysis and
86 interpretation of results (Hillson et al., 2019). The Illinois Biological Foundry for
87 Advanced Biomanufacturing (iBioFAB) has demonstrated success in automating
88 synthetic biology processes such as plasmid assembly (Enghiad et al., 2022), yeast
89 genome editing (Si et al., 2017), and antimicrobial discovery (Si et al., 2015). This
90 success paves the way for the development of high-throughput plant genome editing

91 technologies. Beyond the iBioFAB, it is important to note that biofoundry development
92 has been strongly emphasized worldwide, including the United States, South Korea,
93 China, and others. The U.S. federal government has prioritized the acceleration of
94 Design-Build-Test-Learn capabilities through initiatives such as Executive Order 14081
95 and subsequent funding opportunities from the National Science Foundation (NSF 24-
96 556 and NSF 23-585). Despite these advances, most biofoundry initiatives have
97 focused on microbial, mammalian, and DNA-based systems, and progress in
98 automating plant biotechnology has been limited (Rigoulot et al., 2023).

99 Beyond developing engineered plants, a rapid and scalable method for characterizing
100 genome editing is essential for development of a high-throughput platform for plant
101 improvement. Single-cell metabolomics is compatible with high-throughput techniques,
102 allowing the metabolic profiles of individual cells to be determined. Single-cell
103 approaches allow the phenotypic heterogeneity among cells to be investigated (Pandian
104 et al., 2023). They also provide an immediate and dynamic snapshot of an individual
105 cell's functionality (Seydel, 2021). Historically, metabolic data has been collected from
106 cell populations, where average values lead to misleading interpretations about the
107 state of each cell (Ali et al., 2019). Recent studies have shown that measurements of
108 the average metabolome of a cell population conceals important information about the
109 heterogeneity of individual cells, since cells are highly dynamic and constantly interact
110 with each other and their environment (Guo et al., 2021; Lawson et al., 2015). Even two
111 genetically identical cells often display different chemical metabolomes (Seydel, 2021).
112 Therefore, various bioanalytical tools have been developed for measuring single cell
113 metabolomics, one example being matrix-assisted laser desorption/ionization mass
114 spectrometry (MALDI-MS) (Seydel, 2021; Bourceau et al., 2023; Neumann et al., 2019).
115 These methods have recently been applied to lipidome profiling of single cells in the
116 mouse brain (Zhang et al., 2023).

117 In this work, we have established a fast, automated, scalable, high-throughput pipeline
118 for plant bioengineering (FAST-PB) (Figure 1). This pipeline seamlessly integrates the
119 iBioFAB (Supplementary Figure S1) biofoundry for automated synthetic biology with
120 matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance
121 mass spectrometry (MALDI FT-ICR MS) for high-throughput single-cell lipid

122 identification. FAST-PB is compatible not only with protoplast cells that can be quickly
123 isolated, transfected, and analyzed, but also callus cell cultures that can be maintained
124 indefinitely for long-term studies and regenerated into a mature plant. As a proof of
125 concept, we applied this pipeline to assemble plasmid DNA constructs for plant
126 transformation, engineer two cell factories (protoplast and callus) with a multi-gene
127 stack giving a 2-6-fold improvement in lipid accumulation, and perform lipidomic
128 analysis at the single-cell level in a high-throughput manner. The FAST-PB pipeline
129 integrates three automated workflows, enabling further scientific findings: for the
130 automated protoplast workflow, we first show that FAST-PB can be used for
131 optimization of transfection efficiency in protoplasts, which can reach up to over 45%.
132 Next, to quickly detect genome editing during the validation of our workflow, we
133 developed a reporter gene-free system. Our system determines genome editing
134 efficiency via the knockout of a photosynthetic gene, *high chlorophyll fluorescence 136*
135 (*HCF136*), leading to changes in chlorophyll fluorescence intensity. We then applied this
136 platform to study genes involving lipid pathways, and initially found that the lipids in
137 protoplasts are stable over time, making them a useful platform for lipid engineering.
138 Using this approach, we validated the function of two genes for lipid production,
139 *Diacylglycerol O-acyltransferase 1 (DGAT1)* and *WRINKLED1 (WR1)* from *Nicotiana*
140 *benthamiana* and maize. These two endogenous genes significantly increase the
141 production of a variety of lipids by 2-6 fold when overexpressed using the CRISPR
142 activation system. We have also successfully established an automated callus
143 transformation to facilitate plant regeneration with enhanced lipids traits. Finally, for the
144 combination of callus and protoplast workflow, our high-throughput single-cell lipid
145 profiling differentiates between individual transformed and untransformed cells based on
146 their lipid profile, providing valuable information about how genetic engineering impacts
147 lipid metabolism at the cellular level. Overall, our pipeline has not only greatly
148 accelerated plant transformation, CRISPR genome editing, single cell metabolomics,
149 and plant regeneration, but also enhanced our capacity for scientific findings.

150 **Results**

151 **Design of the FAST-PB pipeline**

152 The iBioFAB is an integrated robotic platform that facilitates the development of fully
153 automated workflows for scalable and high-throughput synthetic biology applications.
154 User-defined workflows are encoded into *Momentum* software, which coordinates
155 communication between instruments, control of the robotic arm, and monitors location
156 of the inventory of plates, samples, and consumables. FAST-PB is a *Momentum*-based
157 biotechnology pipeline containing three main modules: (1) Design: CRISPR-P and
158 Benchling online tools are used to design gRNAs and build digital CRISPR vectors
159 containing Cas9 and gRNA sequences. A Golden Gate cloning workflow encoded into
160 the iBioFAB utilizes a Beckman Coulter Echo acoustic liquid handler for preparation of
161 PCR and DNA assembly reactions, an integrated TRobot2 thermocycler for reaction
162 incubations, and a Tecan Fluent pipetting liquid handler for *Escherichia coli*
163 transformations and plasmid extraction (Figure 1A, Supplementary Figures S1 and S2A,
164 Supplementary Table S1). (2) Build: plasmids are transformed into *N. benthamiana*
165 callus suspension cells (Figure 1B, Supplementary Figure S2B) or transfected into
166 protoplast cells derived from maize or *N. benthamiana* leaves (Figure 1C,
167 Supplementary Figures S2C-D). (3) Test: to complete the end-to-end automated trait
168 optimization pipeline, two mass spectrometry methods are integrated for lipid profiling.
169 For single-cell lipid measurements using MALDI-FT-ICR-MS, callus-derived protoplasts
170 are deposited onto indium tin oxide (ITO) coated microscopy slides. The locations of the
171 single cells on the ITO-slide are then determined and probed using the MALDI laser for
172 high-throughput lipid quantification. In addition, genome engineered plant cells can be
173 analyzed via liquid chromatography tandem mass spectrometry (LC-MS/MS) (Figure
174 1D).

175 Overall, distinct plant cell systems exhibit unique advantages and disadvantages, with
176 the selection of the optimal cell system often depending upon the specific application at
177 hand. Protoplasts can be rapidly generated and easily chemically transfected but are
178 generally short-lived, rendering them unsuitable for applications requiring complete
179 plant tissues. On the other hand, callus systems are comprised of a mass of

180 undifferentiated cells which can be maintained for longer periods and regenerated into
181 entire plants (or converted into protoplasts). To develop a versatile platform applicable
182 for the widest variety of plant engineering applications, we designed the FAST-PB
183 platform (Figure 1) for compatibility with both callus tissue (Figure 1A, B, D) and
184 protoplast cells (Figure 1A, C, D) as well as developing a custom technique that
185 synergistically harnesses the benefits of both, by converting callus to protoplasts (Figure
186 1A-D). Therefore, the FAST-PB platform contains three distinct automated workflows:
187 automated callus transformation (Figure 1A, B, D), automated protoplast isolation and
188 transfection (Figure 1A, C, D), and a combination of callus and protoplast workflow
189 (Figure 1A-D) for single-cell metabolomics.

190 **Automated protoplast isolation and transfection for scalable and rapid genome
191 editing and lipid phenotyping**

192 Genetic engineering of plant cells is challenging because plant cell walls restrict the
193 delivery of exogenous biomolecules (Demirer et al., 2019), and transformation and
194 phenotypic screening is labor intensive (Squire et al., 2023; Lenaghan and Neal
195 Stewart, 2019). Protoplasts offer one potential solution due to their ease of production
196 and transfection. Therefore, we initially established an automated workflow for high-
197 throughput protoplast isolation, transfection, and gene mutant screening.

198 The first step involved automating protoplast isolation from leaves of both maize and *N.*
199 *benthamiana*. We translated the manual protocol for protoplast isolation (Supplementary
200 Method 2) into an automated procedure (Supplementary Figure S2C). Briefly, leaf
201 sections were excised and transferred into 24-well v-bottom plates for processing.
202 Samples were then digested, filtered, washed, and resuspended on the Tecan Fluent
203 with required centrifugation steps performed by the F5 robotic arm and integrated
204 centrifuge. Using this workflow, high quality protoplast cells were isolated from both
205 etiolated maize and *N. benthamiana* leaves at a concentration of about 10^6 cells / mL
206 (Figure 2A-B).

207 Next, we developed an automated workflow for protoplast transfection by encoding an
208 established manual protocol (Supplementary Method 2) into *Momentum*
209 (Supplementary Figure S2D). In general, plasmids, polyethylene glycol (PEG)
210 transfection solution, MMG solution, and protoplast cells were mixed using the Tecan

211 Fluent, followed by incubation. Subsequently, centrifugation was performed with the
212 assistance of the F5 robotic arm and centrifuge. The washing and resuspension steps
213 were then carried out using Tecan Fluent. We first applied this transfection workflow to
214 optimize transfection efficiency by testing PEG with three different molecular weights:
215 2050, 3350, and 4000 g/mol. This choice is based on previous studies demonstrating
216 that the molecular weight of PEG influences gene delivery efficiency (Zhang et al.,
217 2008). Our experiments showed that PEG 2050 resulted in the highest fraction of GFP-
218 positive cells (Supplementary Figures S3A-B) with the overall highest number of intact
219 cells in both plants (Figure 2C and Supplementary Figures S3A-B), even though PEG
220 4000 is the most commonly used molecular weight for protoplast transfection in both *N.*
221 *benthamiana* and maize. Next, we employed PEG 2050 to transfet cells to assess the
222 viability of cells over time. We calculated the transfection stability over a period of four
223 days by dividing the number of GFP-positive cells by the total number of intact cells.
224 The largest proportion of cells expressing GFP was observed during the first two days in
225 *N. benthamiana* and the first three days in maize, reaching up to 41% and 57% for
226 maize and *N. benthamiana*, respectively (Figure 2D), but declined in the following days
227 (Supplementary Figures S3C-D).

228 To demonstrate genome editing using automated protoplast isolation and transfection,
229 we developed a reporter-gene-free cellular assay for loss of gene function. This
230 endogenous genome-editing assay is based on a single gene, *HCF136*, that increases
231 chlorophyll fluorescence when its function is lost (Meurer et al., 1998). We used this
232 assay to determine the effectiveness of the automated protoplast-editing procedures
233 using a simple plate reader assay for differential chlorophyll fluorescence. First, we
234 isolated cells from both maize and *N. benthamiana* leaves, then the two cell types were
235 individually transfected with CRISPR knockout plasmids: P-A0502 (negative control)
236 and P-A0502-HCF136 for *N. benthamiana*, and A1510 (negative control) and A1510-
237 HCF136 for maize (Supplementary Table S1). Each plasmid transfection had 10
238 replicates, resulting in a total of 40 samples in a 96-well plate. Our results showed that
239 we successfully induced mutations in *HCF136* in protoplast cells from both maize and
240 *N. benthamiana* (Figure 2F), resulting in a significant enhancement in chlorophyll
241 fluorescence intensity, as illustrated in Figure 2E. Thus, automation of protoplast

242 generation, transfection, and phenotyping can be achieved with FAST-PB.
243 Subsequently, we applied this automated workflow to the study of lipid metabolism and
244 engineering. Lipids in plants serve multiple functions, including energy storage,
245 structural support, protection, and signaling (Okazaki and Saito 2014; Xie et al. 2021).
246 To effectively explore lipid metabolism using protoplasts, it is essential that lipids remain
247 relatively stable throughout the experimental period. Thus, we applied our automated
248 protoplast isolation workflow to measure the lipid content in protoplasts over a four-day
249 period. Apart from a substantial increase in triacylglyceride (TAG) content in *N.*
250 *benthamiana* over three days, most lipids remained stable for four days in protoplasts of
251 both species (Figure 2G). These results indicate that protoplasts are a suitable and
252 scalable platform for lipid investigations.

253 We then employed our workflow to investigate several lipid-related genes in both maize
254 and *N. benthamiana*. Previous studies have shown that editing genes involved in fatty
255 acid synthesis ('Push'), TAG assembly ('Pull'), and lipid turnover ('Protect') can
256 significantly affect the accumulation of lipids in plants (Vanhercke et al., 2019, 2014).
257 Specifically, the three genes *WRI1*, *DGAT1*, and *Oleosin* represent push, pull, and
258 protect steps, respectively (Zhai et al., 2017a; Vanhercke et al., 2014). Thus, we applied
259 this workflow to the orthologs of these genes in *N. benthamiana* and maize using
260 CRISPR activation and / or strong promoter systems. *N. benthamiana* protoplast cells
261 were transfected with CRISPR activation vectors: P-A3701 as a control, P-A3701-
262 *DGAT1* (Overexpression of *DGAT1*), P-A3701-*WRI1* (Overexpression of *WRI1*). Maize
263 protoplast cells were transfected using two different strategies: CRISPR activation and
264 strong promoter. The CRISPR activation group included a control (A4110) and variants
265 containing overexpression of *DGAT1* (A4110-*DGAT1*), and *WRI1* (A4110-*WRI1*). The
266 strong promoter controls consisted of a control vector without lipid gene overexpression
267 constructs (pPTN1586C) and the vector pPTN1586, used to overexpress the genes
268 *DGAT1*, *WRI1*, *Oleosin*, *thioesterase (Thio14)*, and *lysophosphatidic acid*
269 *acyltransferase (LPATB)*. We initially used pPTN1586 as a positive control to validate
270 our automated workflow for lipid studies in maize protoplasts. Preliminary manual
271 experiments showed that transfection with pPTN1586 significantly increased lipid
272 production in maize protoplasts, demonstrating the maize protoplast system is suitable

273 for lipid studies. Consequently, this vector pPTN1586 was included as a positive control
274 in the automated maize protoplast workflow.

275 In *N. benthamiana*, overexpression of *WRI1* or *DGAT1* via CRISPR activation increased
276 accumulation of various lipid classes (Figure 2H). In maize, overexpression of either
277 *WRI1*, or *DGAT1* through CRISPR activation also resulted in increased accumulation of
278 many types of lipids (Figure 2H). The same trend was found in the control group after
279 overexpression of five lipid-related genes using strong promoters, but with higher lipid
280 accumulation (Figure 2H). In addition, we confirmed *DGAT1* was overexpressed in
281 response to CRISPR activation in maize cells, using RT-qPCR (Supplementary Figure
282 S4D). Thus, we developed an end-to-end automated pipeline for implementing gene
283 editing and transformation and characterizing lipid profiles using protoplasts in both a
284 monocot and dicot system.

285 **Automated callus cell culture transformation platform enhances lipids production 286 and facilitates plant regeneration**

287 In parallel, we developed an automated callus transformation workflow and integrated it
288 into our FAST-PB pipeline (Supplementary Figure S2B). Unlike protoplasts, plant callus
289 tissue is comprised of an unorganized mass of cells, which can be readily transformed
290 and cultured for long periods (Ikeuchi et al., 2013). These properties make callus tissue
291 a valuable tool for studying plant cell metabolomes, especially lipid metabolism (TSAI et
292 al., 1982; Norouzi et al., 2022). Nonetheless, there is a lack of research on using
293 biofoundries for automating management and transformation of callus cell cultures.
294 Therefore, an automated callus-transformation workflow was developed on the iBioFAB
295 (Supplementary Figure S2B) and utilized to knockout genes via CRISPR genome
296 editing and overexpress target genes driven either by the strong CaMV 35 strong
297 promoter or the CRISPR activation system (Supplementary Figure S4A-C).

298 As a first proof of concept of our automated callus platform, the *HCF136* gene was
299 again knocked out and confirmed via sequence analysis (Supplementary Figure S4A
300 and S4F). We detected deletion events after CRISPR knockout of the *HCF136* gene.
301 Additionally, we observed the mutated calli appeared yellowish and unhealthy on the
302 MS-selected media compared to the control (Supplementary Figure S4A).

303 Following this, we applied this automated workflow to assess three distinct lipid genes in
304 the callus system. Callus cultures transformed with an *Oleosin/WRI1/DGAT1* (OWD)
305 overexpression cassette (pMDC43-OWD) driven by the strong, constitutive 35S
306 promoter, or an empty vector control (pMDC43), were confirmed by observation of GFP
307 fluorescence, then stably maintained on selective agar plates (Supplementary Figure
308 S4C, Figure 3J). The lipids and fatty acids in these genetically-engineered calli were
309 then analyzed by LC-MS/MS and GC-MS. Compared to control cells, overexpression of
310 OWD led to increased accumulation of many lipids and fatty acids (Figures 3A, 3D, 3G),
311 indicating the induction of lipid synthesis resulted in cellular lipid accumulation.

312 In addition to simultaneous overexpression of OWD, we individually overexpressed
313 *DGAT1* (C-A3701-DGAT1), *WRI1* (C-A3701-WRI1) and control (C-A3701) using
314 CRISPR activation (Supplementary Figure S4B) and confirmed that both genes were
315 overexpressed by RT-qPCR (Supplementary Figure S4E). In contrast to simultaneously
316 overexpressing three genes in OWD, individual overexpression of either *WRI1* (Figure
317 3B) or *DGAT1* (Figure 3C) decreased accumulation of some lipids, although a far larger
318 number either increased or remained unchanged. Overexpression of *WRI1* increased
319 accumulation of a variety of lipids and fatty acids (Figure 3E and 3H) and
320 overexpression of *DGAT1* induced a similar overall profile (Figure 3F and 3I),
321 suggesting that the genetic modification achieved through CRISPR activation
322 successfully induced alteration in lipid composition.

323 **Whole plant regeneration and lipidomic analysis**

324 After confirming an increase of lipid content in these genetically engineered calli, we
325 initiated the process of plant regeneration by transferring them to MS induction media,
326 which resulted in the development of mature plants (Figure 3J). This demonstrates that
327 the FAST-PB automated callus workflow not only enables the designing, building, and
328 testing of engineered plant cells using robotics, but also facilitates the regeneration of
329 whole plants. We then generated three separate transgenic events and regenerated
330 whole *N. benthamiana* plants with overexpression of either *WRI1* or OWD, and then
331 profiled leaf tissue from one-month-old seedlings with liquid chromatography-tandem
332 mass spectrometry (LC-MS/MS) lipid assays (Figure 3K and 3L). These results are
333 consistent with those observed in the initial protoplast and callus analysis,

334 demonstrating that overexpression of *WR1* alone leads to a significant and consistent
335 increase in TAG and some phospholipid species by approximately 2- to 6-fold.
336 However, overexpression of OWD (*Oleosin*, *DGAT*, and *WR1*) creates an effective
337 push-pull-protect strategy where the levels of most phospholipids return to wild-type
338 levels, and DAG levels are only mildly elevated, whereas TAG levels are increased by
339 more than 15 fold in all of the transgenic events. In addition, to assess the consistency
340 of lipid production during plant growth, we measured lipid production in three-month-old
341 genetically engineered *N. benthamiana* using BODIPY (494/503) lipid staining, thin-
342 layer chromatography (TLC), and LC-MS/MS technology. We found that lipid production
343 was consistently higher in the overexpression group (pMDC43-OWD or A3701-WR1)
344 than in the control group (pMDC43 or A3701) (Supplementary Figure S5). In addition,
345 we performed lipid profiling on seeds from six independent transgenic events. The
346 results showed that while many types of lipids increased, the changes were not
347 significant (Supplementary Figure S5E).

348 Taken together, these results demonstrate a scalable pipeline that combines
349 automation, quantitative lipid analysis, transformation, and plant regeneration, with an
350 immediate application in improving plant lipid production.

351 **High-throughput single-cell lipid metabolism analysis achieved via automation 352 integrated with MALDI-MS**

353 Having developed a scalable and automated platform for genetic transformation of both
354 callus and protoplast systems, lipid profiling through LC-MS/MS became the rate-
355 limiting step in our analysis. Compared to other steps in our automated workflow, LC-
356 MS/MS is low throughput, costly, and incompletely compatible with our iBioFAB platform
357 due to the need for lipid extraction, which requires organic solvents and some manual
358 handling. To address these shortfalls and develop a complete end-to-end plant
359 synthetic biology pipeline, we sought to harness the benefits of both protoplast and
360 callus systems through a hybrid approach focused on single cell lipidomic analysis. We
361 started by transforming callus cells using the iBioFAB system to generate stable,
362 genetically-engineered cultures, then performed automated protoplast isolation. We
363 then developed a single-cell MALDI FT-ICR MS lipid analysis pipeline for isolated
364 callus-derived protoplasts (Figure 4A-B).

365 We started by performing automated protoplast isolation from wildtype callus and then
366 developed a single-cell MALDI-FT-ICR-MS lipidomic analysis pipeline for the isolated
367 protoplasts (Figure 4A-B). Briefly, protoplasts are imaged in the W5 lipid media to check
368 the quality of the cell before MALDI-MS (Figure 4A). Then cells are stained with a
369 nuclear dye, deposited onto an indium tin oxide-coated microscopy slide, imaged under
370 brightfield and fluorescence microscopy, then analyzed individually (Figure 4B). This
371 technique enables automatic, quantitative and cost-effective single-cell lipid
372 measurements with a high analytical throughput. As the first step, we conducted
373 traditional LC-MS/MS lipid profile measurements on bulk isolated protoplasts derived
374 from wild type calli, to ensure the consistency of the datasets obtained from the LC-
375 MS/MS and MALDI-MS. Of the detected lipid types from MALDI-MS, 33% were
376 matched to the LC-MS/MS lipid datasets. Using this workflow, MALDI-MS spectral
377 analysis revealed a variety of lipid types (Figure 4C). All these results indicate that
378 MALDI-MS has the capability to detect a wide range of lipids in individual cells.
379 We next used this automated callus transformation and protoplast generation workflow
380 to transform plasmids (pMDC43-OWD, pMDC43 as a control; C-A3701-DGAT1, C-
381 A3701-WRI1, C-A3701 as a control) into *N. benthamiana* callus and isolate protoplasts
382 from the genetically engineered calli.
383 To assess the consistency of lipid profiles between genetically engineered calli and
384 protoplast cells derived from these calli, we directly compared these platforms using
385 bulk LC-MS/MS analysis of pooled protoplasts and callus tissue. Consistent with the
386 results obtained by extracting lipids from genetically engineered transgenic calli for LC-
387 MS/MS, the callus-derived protoplasts exhibited increased lipid accumulation after
388 overexpression of either *WRI1* or *DGAT1* or simultaneous overexpression of the three-
389 gene OWD stack (Figure 4D and Supplementary Figure S6), demonstrating that lipid
390 profiles of callus-derived protoplasts represent the original callus.
391 High-throughput single-cell lipid metabolite profiling was then performed on the callus-
392 derived protoplasts using MALDI-MS. We observed a significant increase in the
393 accumulation of various lipid classes in the MALDI-MS data, particularly TAGs, in
394 response to OWD expression (Figure 4E). Single-cell MALDI data was mass matched
395 to the LC-MS/MS datasets for putative lipid assignment (Supplementary Table S2).

396 MALDI-MS spectral analysis revealed higher levels of several lipid classes after
397 overexpression of 43-OWD when compared against the negative control (Figure 4F-G).
398 These findings indicate that MALDI-MS analysis of protoplasts is a promising method
399 for single-cell lipid measurements in plants.

400 To ensure the accuracy and reliability of the MALDI-MS method for lipid measurement,
401 we compared single-cell MALDI-MS to the reference method, LC-MS/MS on bulk cells.
402 We found a high degree of consistency between the two datasets, both in terms of lipid
403 classes and species-level trends, such as TAGs (Figure 4H-I). This finding indicates
404 that single protoplast MALDI-FT-ICR-MS facilitates accurate and efficient high-
405 throughput lipid measurement on single plant cells, positioning it as a valuable
406 alternative to the LC-MS/MS approach. Similar results on the comparability and
407 concordance between LC-MS and MALDI-MS have also been recently reported in
408 human cells (Martín-Saiz et al., 2023). Moreover, our single cell measurements and
409 data processing have the capacity to differentiate transformed and untransformed cell
410 types within the 43-OWD group, demonstrating that based on single-cell heterogeneity,
411 we can estimate which protoplasts have been genetically engineered (Supplementary
412 Figure S6E).

413 Taken together, by coupling callus transformation with protoplast isolation and MALDI-
414 FT-ICR-MS analysis, FAST-PB embodies a high-throughput, automation-friendly, end-
415 to-end pipeline for plant genetic engineering and characterization at the single cell level.
416 This can be used for investigating the effects of specific genetic perturbations on lipid
417 metabolism, and potentially other metabolic pathways.

418 **Discussion**

419 Traditional plant genetic engineering involves labor-intensive, low-throughput processes
420 encompassing gene construction, transfection or transformation, genome editing,
421 mutant identification, gene function analysis, and plant regeneration (Karlson et al.,
422 2021; Yin et al., 2017; Mumm, 2013). To automate these steps and achieve high
423 throughput, we successfully established the FAST-PB pipeline comprising automated
424 gene constructions, protoplast cell isolation and transfection, callus transformation,
425 genomic DNA extraction, and lipid profiling. Protoplasts provide a rapid way to validate

426 the effectiveness of CRISPR knockout or CRISPR activation on gene expression and
427 serve as a great way to screen large numbers of genes for ones that may affect cellular
428 biochemistry. Callus can be readily converted to protoplasts or regenerated into stable
429 plant lines. Stable transgenic plants, while the ultimate goal of these procedures, are the
430 slowest and most space-dependent of the systems in which to test genes; FAST-PB
431 allows us to test many genes in protoplasts and callus and only to move the most
432 promising ones into stable plants. Our results demonstrate that, compared to the
433 manual protocols, each automated step from the FAST-PB pipeline significantly reduces
434 time and labor (Table S3).

435 While biofoundries excel in precision, scalability, and cost-efficiency for genome editing
436 and metabolic engineering (Si et al., 2017), they have yet to be applied to plant
437 synthetic biology. Here we fill this gap with our broadly applicable and scalable plant
438 genetic engineering pipeline. Our automated protoplast engineering workflow enables
439 rapid isolation and transfection of up to 96 individual samples in a short amount of time.
440 Another potential benefit of this workflow is the ability to simultaneously optimize
441 multiple parameters (e.g. PEG types, mannitol concentrations, and incubation times) for
442 transfection efficiency. As an example, we were able to quickly optimize transfection
443 efficiency using three PEG batches with different average molecular weights (2050,
444 3350, and 4000) on the iBioFAB platform, finding that the PEG 2050 consistently
445 enhanced transfection efficiency while preserving the integrity of the protoplast cultures
446 (Figure 2C). Furthermore, we envision applications of our automated protoplast
447 engineering workflow for high-throughput assessments of *in vivo* gene editing efficiency
448 of specific guide RNAs, subcellular localization experiments via fused fluorescent
449 proteins, or confirmation of protein-protein interactions through bimolecular fluorescence
450 complementation assays. Our automated callus transformation workflow enables
451 simultaneous processing of up to twelve six-well plates at a time for a total throughput of
452 96 samples and facilitating plant regeneration (Figure 3J), opening the door to high-
453 throughput screening of genes related to whole-plant traits such as plant pathology,
454 biofuel production, and crop yield improvement.

455 Single-cell technology has gained significant attention in recent years (Roy et al., 2018).
456 Plant tissues encompass a multitude of distinct cell types, each assuming specialized

457 roles, exhibiting diverse molecular behaviors, and generating unique metabolites in
458 response to biotic and abiotic stresses (Cole et al., 2021). Profiling whole plant tissues
459 using traditional bulk methods can obscure and dilute signals associated with specific
460 single cells. However, plant cell walls and tissue structures tend to complicate single cell
461 analysis. Therefore, we automated the isolation of protoplast cells using the iBioFAB
462 platform, followed by measurement of lipid profiles in each single cell using MALDI/MS
463 technology as a high-throughput single-cell assay, and validation of the results by
464 comparison to lower-throughput LC-MS/MS assays on bulk cells. We were able to
465 measure a wide variety of lipid classes in single cells, including storage lipids (TAG and
466 DAG) and phospholipids (PC, PE, LPC, and LPE) showing comparable results to LC-
467 MS/MS (Figure 4). The greatest advantage of MALDI-MS is that it achieves lipid
468 profiling in just 1-2 seconds per cell, while LC-MS/MS takes approximately 20 minutes
469 per sample (Table S3). In terms of cost, MALDI-MS proves to be more economical, with
470 a current (2025) estimated cost of ~ \$0.9 per sample compared to ~ \$6 per sample for
471 LC-MS/MS (Table S3). Therefore, the addition of MALDI-MS increases the cost-
472 effectiveness and throughput of FAST-PB.

473 Single-cell studies with FAST-PB have a variety of potential applications. Previous
474 studies have identified specific cell types related to processes such as oil production
475 (Taylor et al., 2021), plant pathogen responses, and environmental stress (Cole et al.,
476 2021). Our platform enables quickly transfecting cells for high-throughput gene analysis
477 and enables dissection of gene function at the single cell level. Moreover, our workflows
478 can accelerate genomic and metabolic engineering processes within cell factories,
479 facilitating plant transformation and regeneration. Lastly, within each cell, various types
480 of organelles / vesicles play a role in disease or stress tolerance (Urzì et al., 2021; Cui
481 et al., 2020). Recent reports demonstrate the ability of MALDI-MS to probe these
482 subcellular structures (Castro et al., 2021; Eberwine et al., 2023; Castro et al., 2023),
483 although not all these methods have yet been applied to characterizing plant vesicles,
484 which may be the site of at least some of the increased cellular phospholipid content of
485 some of the engineered cells described in this report. The ability to examine the
486 contents of these subcellular structures, an obvious next step for our platform, could
487 deepen our understanding of lipid function in plant health and diseases.

488 Lipid engineering in plants is gaining importance in agriculture as lipids play essential
489 roles as energy storage, cell membrane components, and signaling molecules in plant
490 growth and defense mechanisms (Mamode Cassim and Mongrand, 2019; Raczyk and
491 Rudzińska, 2015). In this study, we focused on three lipid-related genes (*WR1*, *DGAT1*
492 and *Oloesin*) and employed a classic push-pull-protection strategy (Vanhercke et al.,
493 2019, 2014; Volk et al., 2023) to enhance lipid production through lipid engineering in
494 cell systems. Following the overexpression of these three genes either individually or in
495 a triple combination, using either the traditional strong promoter system or the more
496 versatile CRISPR activation method, we observed a substantial increase in the
497 accumulation of various types of fatty acids and lipids (Figures. 2-4). Notably, the
498 increase observed in both TAG and phospholipids in cells transformed with *WR1* was
499 replicated in regenerated plants (Figure 3K). However, the push-pull-protect strategy
500 resulted in plants with a much higher TAG content, but limited increases in phospholipid
501 levels (Figure 3L). This illustrates the power of a combined cellular-level screening
502 platform with rapid prototyping of transgenic regenerated plants. These results also
503 have implications for the partitioning of carbon in cellular lipids between TAG and
504 phospholipids. It appears that while *WR1* expression alone acts to increase
505 phospholipid species as well as TAG in leaf tissues of regenerated plants, the addition
506 of *Oleosin* and *DGAT* acts to effectively “pull” and “protect” most of the extra lipids in the
507 form of TAG, implying that the pools of DAG that lead to these products are connected
508 (Chapman and Ohlrogge, 2012). The results indicate that our cell systems, including
509 protoplasts and callus suspension cells, as well as our three automated workflows, are
510 well suited for the prototyping of lipid metabolic engineering strategies. In addition,
511 besides these three genes, numerous other genes are involved in oil production in
512 leaves (Vanhercke et al., 2014). Hence, we have the potential to stack or combine
513 additional genes from these three steps (pull, push, and protection) with the aim of
514 enhancing vegetative lipid production for bioenergy production in plants.

515 In recent years, worldwide interest in biofoundries has led to the establishment of
516 facilities in many countries, including the United States (e.g., iBioFAB), South Korea (K-
517 BIOFOUNDRY) and China (e.g., Advanced Biofoundry Shenzhen), leading to initiatives
518 like the Global Biofoundry Alliance., promoting worldwide collaboration and

519 standardized practices. However, while most efforts focus on microbial, mammalian,
520 and in vitro systems, our work aims to address the lack of plant engineering
521 biofoundries. Here, we develop plant-focused automated design-build-test-learn cycle
522 pipelines adaptable to global biofoundry frameworks to demonstrate the potential of this
523 technology. We plan for these protocols to be accessible to plant researchers via both
524 access to our service facility (the NSF iBioFoundry at the University of Illinois at Urbana-
525 Champaign) and by providing our open-access protocols for individual laboratories to
526 apply on low-cost liquid handlers, which are now priced similarly to other standard
527 molecular biology laboratory instruments.

528 Further work is needed to fully realize the potential of plant biofoundries. Regenerating
529 entire plants from protoplasts is challenging, which is why we developed callus
530 workflows, but protoplast regeneration workflows would be preferable. Our workflow still
531 relies on manual transfer of genetically-engineered calli into shoot media, a procedure
532 that could be automated by integrating a tissue culture robot. We provide here a proof of
533 concept using two plant species (*N. benthamiana* and maize) and four genes (*HCF136*,
534 *WRI1*, *DGAT1*, and *Oleosin*). The workflow has the capacity for high-throughput
535 investigations of much larger numbers of genes, for example, a screen for metabolic
536 regulators of lipid content. By establishing and validating the high-throughput pipeline
537 presented here, our work lays a solid foundation for transitioning plant engineering
538 towards biofoundries and extending the reach and impact of researchers aiming for
539 impactful discoveries for the next generation of plant science.

540 In summary, the FAST-PB pipeline developed here has potential to transform genome
541 editing, metabolic engineering, and metabolite profiling in plants by expanding the toolkit
542 for trait discovery and manipulation by executing iterative design-build-test-learn cycles
543 in small cell cultures. This workflow streamlines discovery, characterization, and fine-
544 tuning of traits in highly scalable small cell cultures, leading to the regeneration of full
545 plants after the desired phenotypes have been optimized.

546 Materials and Methods

547 Plant materials and growth conditions

548 *Nicotiana benthamiana* and maize (*Zea mays*) B73 were grown in a Conviron growth
549 chamber (Conviron, Winnipeg, Canada) at the University of Illinois with a 16-hour light
550 and 8-hour dark photoperiod. The temperatures during the light and dark periods were
551 26 °C and 22 °C, respectively. The relative humidity was consistently maintained at 50%
552 and the light intensity provided was 100 $\mu\text{mol m}^{-2} \text{ sec}^{-1}$, measured as photosynthetic
553 photon flux density.

554 *N. benthamiana* plants used for callus generation in this study were germinated on 1/2
555 Murashige & Skoog (MS) media plates (Murashige and Skoog, 1962) containing 2%
556 sucrose under 16 h/8 h, 22 °C /18 °C, light/dark conditions with 100 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ light
557 intensity. Leaf explants (0.5 x 0.5) cm were excised from approximately 2-week-old
558 plants using aseptic technique. Explants were subsequently placed on MS plates
559 containing 30 g/L sucrose, 0.1 g/L myo-inositol, 0.18 g/L KH_2PO_4 , 1 mg/L Thiamine,
560 0.11 mg/L 2,4 D, pH 5.8 to induce callus generation. The plates were kept under
561 continuous light at 25 °C for 2 weeks, and the resulting calli were transferred and
562 maintained under continuous light at 25 °C with a shaking speed of 120 rpm (An, 1985).

563 Plasmids used in this study

564 A0502: pMOD_A0502 (#91012, Addgene) for CRISPR knockout system in *N.*
565 *benthamiana*, B2103: pMOD_B2013 (#91061, Addgene) for CRISPR knockout and
566 activation systems in plants, C0000: pMOD_C0000 (#91081, Addgene) for CRISPR
567 knockout and activation systems in plants, D100: pTRANS_100 (#91198, Addgene) for
568 protoplast system, T230: pTRANS_230 (obtained from Dr. Voytas's lab (Čermák et al.,
569 2017)) for callus system, A1510: pMOD_A1510 (#91036, Addgene) CRISPR knockout
570 system in maize, A3701: pMOD_A3701 (#91052, Addgene) for CRISPR activation
571 system in *N. benthamiana*, A4110: pMOD_A4110 (#91056, Addgene) CRISPR
572 activation system in maize. The detailed of the above plasmids can be found in the
573 previous study (Čermák et al., 2017) and in Supplementary Table S1. pMDC43 and
574 pMDC43-OWD can be found in the previous publications (Zhai et al., 2021, 2017b) for
575 use in the transformation of *N. benthamiana* callus suspension cells, and the details of

576 the plasmid sequences can be found in the Supplementary Materials 1-2. Binary vector
577 pPTN1586 was constructed by GoldenBraid modular assembly (Sarrion-Perdigones et
578 al., 2013). Each gene of interest was synthesized by GenScript Biotech (Piscataway,
579 NJ) to be GoldenBraid-domesticated and codon-optimized for sorghum (*Sorghum*
580 *bicolor*). Genes used in pPTN1586 are *Cuphea avigera* var. *pulcherrima* *DGAT1*
581 (*CpuDGAT1*, ANN46862.1), sorghum *Wrinkled1* (SbWRI1, XP_002450194.1), sesame
582 (*Sesamum orientale*) *oleosin* (SiOle, Q9XHP2.1), *Cuphea palustris* *thioesterase*
583 (Thio14, AAC49180.1), and *Cuphea avigera* var. *pulcherrima* class B *lysophosphatidic*
584 *acid acyltransferase* (*CpuLPATB*, ALM22873.1). One amino acid residue in *SbWRI1*
585 was changed (K10R) for protein stability (Zhai et al., 2017a). pZP212 (pPTN1586C)
586 served as an empty vector used as a control plasmid during the transfection of maize
587 protoplast cells with pPTN1586. Maps for pPTN1586 and pZP212 (pPTN1586C) are
588 provided in the Supplementary materials. pZP212 (Hajdukiewicz et al., 1994)
589 (pPTN1586C) serves as an empty vector used as a control plasmid during the
590 transfection of maize protoplast cells with pPTN1586. Detailed sequences of pPTN1586
591 and pZP212 can be found in the Supplementary Materials 3-4.

592 **Automation methods and instruments**

593 iBioFAB workflows were encoded into *Momentum* software (Thermo Scientific™,
594 Waltham, MA, USA) (Enghiad et al., 2022), which coordinates instruments, controls the
595 Thermo Fisher F5 robotic arm, and manages plate movement and tracking. The
596 Beckman Coulter Echo 550 instrument (Beckman Coulter, Brea, CA, USA) was used for
597 DNA cloning applications while all manipulations of plant cell cultures were performed
598 on the Tecan Fluent 1080 robotic liquid handler (Tecan, Männedorf, Switzerland). The
599 Tecan Fluent 1080 is equipped with a Pickolo (SciRobotics, Israel) colony picker.
600 Incubation steps were carried out in a Thermo Fisher Cytomat 2C automated incubator
601 and centrifugation was performed in an Agilent Microplate Centrifuge (Agilent, Santa
602 Clara, CA, USA). Growth of *Agrobacterium* cell cultures was quantified using a Tecan
603 Infinite plate reader. All instruments are integrated onto a single platform and movement
604 between instruments was performed by the Thermo Fisher F5 robotic arm. A 3D model
605 of the integrated iBioFAB platform and flowchart of all automated workflows can be
606 found in Supplementary Figures S1 and S2.

607 **Gene cloning, genomic DNA extraction and chlorophyll fluorescence**
608 **measurement**

609 Benchling software was used to generate CRISPR guide RNAs (gRNAs) for the *WR11*
610 gene (Maize: *Zm00001d037760*; *N. benthamiana*: *NbS00061229g0004*) and the
611 *DGAT1* gene (Maize: *Zm00001d005016*; *N. benthamiana*: *NbS00004767g0010*).
612 Additionally, CRISPR-P v2.0 (Lei et al., 2014) was employed to generate two gRNAs
613 targeting *HCF136* gene (*N. benthamiana*: *NbS00049766g0015*). Plasmids containing
614 gRNAs were cloned using the previously reported protocol (Čermák et al., 2017) and
615 the detailed of protocol can be found in Supplementary Method 1, which was translated
616 into an automation workflow (Supplementary Figure S1A). For assembly of B plasmid, a
617 Beckman Coulter Echo 550 acoustic liquid handler was used to mix gRNA cassette
618 PCR reactions, plasmid B and cloning reactions, then a Tecan Fluent was used to
619 transform assembled plasmid B into *E. coli*. Next, plasmid B with two gRNA sequences
620 was extracted from an overnight culture of *E. coli* using the Tecan Fluent, following our
621 previously reported automated protocol (Enghiad et al., 2022). Sanger sequencing was
622 employed to confirm B plasmids before subsequent assembly. A second round Golden
623 Gate reaction was employed to assemble plasmid modules A, B with gRNAs, and C into
624 the pTRANS backbone using the Echo 550 instrument again followed by transformation
625 into *E. coli* using the Tecan Fluent. In summary, 15 vectors were cloned using FAST-PB
626 pipeline are listed in Supplementary Table S1 and gRNAs and primers are listed in
627 Supplementary Table S4.

628 Genomic DNA was isolated from plant cells using the Promega Wizard® SV 96
629 Genomic DNA Purification System (Promega Corporation, Madison, WI, USA) following
630 the manufacturer's protocol using the Tecan Fluent (Supplementary Figure S2E).
631 Subsequently, Tecan Fluent Flexible-Channel Arm (FCA) arm transferred 5 μ L of the
632 DNA extracts into a new 96-well plate for DNA measurements using the high-throughput
633 Lunatic UV/Vis absorbance spectrometer Microfluidic system (Unchained Labs,
634 Pleasan).

635 After transfection for 24 hours with *HCF136* in maize or *N. benthamiana*, we utilized the
636 Tecan Infinite Plate reader on the iBioFAB platform to measure chlorophyll fluorescence
637 after overnight dark incubation of cell culture. This measurement was performed by

638 setting the Excitation Wavelength to 650 nm and the Emission Wavelength to 675 nm.
639 The output yielded two datasets: one representing the intensity of chlorophyll
640 fluorescence and the other reflecting cell intensity, as indicated by A600 measurements.
641 Subsequently, the final result value was calculated as the ratio of the intensity of
642 chlorophyll fluorescence to cell intensity. Targeted deletions in *HCF136* were confirmed
643 via PCR, capillary sequencing and Inference of CRISPR Edits (ICE) analysis (Conant et
644 al., 2022).

645 **Protoplast isolation and transfection**

646 To isolate protoplasts from Maize B73, 30 leaves were collected from 14-day-old
647 etiolated seedlings then sliced into pieces with 1 mm thickness and evenly distributed
648 into a 24 square-well V-bottom plate. *N. benthamiana* protoplasts were isolated from
649 five 8-week-old leaves cut into 2 mm thickness and distributed to another same type of
650 plate. After slicing the leaves and distributing them into two 24-well plates (one for
651 maize and the other for *N. benthamiana*), the remaining isolation steps were performed
652 on the iBioFAB platform (Supplementary Figures S2C-D). First, the FCA arm of Tecan
653 Fluent distributed 2 mL of enzyme solution into each well of a 24-well plate followed by
654 shaking for four hours at 100 RPM at room temperature without light in the incubator of
655 the Tecan Fluent. Next, the digested leaf solution was filtered on a 24-well AcroPrep
656 filter plate with 30-40 µm pore volume (Pall Corporation, Port Washington, New York,
657 USA) using the Te-VacS vacuum separation module integrated into the Tecan Fluent
658 system. The filtered solution was then centrifuged on an Agilent automated microplate
659 centrifuge (Agilent, Santa Clara, CA, USA) for 2 min at 150 rcf. The Tecan Fluent was
660 again used to remove the supernatant and wash cells by adding 200 µL of W5 solution
661 to each well. Following another round of centrifugation and supernatant removal, the cells
662 were resuspended into 200 µL of W5 solution. All cells from all 24 wells were then
663 combined into a single tube and centrifuged again. After supernatant removal, the cells
664 were resuspended into 5 mL of MMG solution using the FCA arm, and the cell
665 concentration was determined using a hemocytometer (Thermo Scientific, Waltham,
666 MA, USA).

667 Next, the FCA arm slowly distributed 100 µL of isolated protoplasts into each well of a
668 96-well plate. To optimize transfection efficiency, three different average number

669 molecular weights of PEG (2050, 3350, and 4000) were used: PEG 2050 (Sigma-
670 Aldrich, Lot #: BCBW7040), PEG 3350 (Sigma-Aldrich, Lot #: MKCL5061), and PEG
671 4000 (Sigma-Aldrich, Lot #: BCCF2031). These three types of PEG and one type of
672 plasmid p201GFP-Cas9 (Jacobs et al., 2015) were gently added into each well of 96-
673 well plate containing protoplast cells and then slowly mixing them, according to a
674 predefined worklist using the Momentum™ software. The transformation mixtures were
675 incubated in the dark at room temperature for 30 min. Subsequently, the FCA arm
676 added 600 µL of W5 solution to each well and mixed gently to stop the transformation
677 reaction. The F5 robotic arm moved the plate to the centrifuge followed by centrifugation
678 for 2 min at 150 rcf (Relative Centrifugal Field) and then removal of supernatants and
679 resuspension into fresh W5 solution. After second wash, plates were centrifuged again
680 for 2 min at 150 rcf and cells were resuspended into 100 µL of W5 solution through
681 using the Tecan Fluent system. After determining that PEG 2050 yielded the highest
682 transfection efficiency, we used this optimal PEG type to transfect cells in both maize
683 B73 and *N. benthamiana*. All automated transfection procedures with same PEG type
684 2050 but different plasmids were conducted as previously described. In maize B73, we
685 employed eight types of plasmids (A4110, A4110-DGAT1, A4110-WRI1, pPTN1586C,
686 pPTN1586, A1510, A1510-HCF136, p201GFP-Cas9 (Jacobs et al., 2015)), with each
687 type having four to ten replicates. Similarly, for *N. benthamiana* transfection, we used
688 six types of plasmids (P-A3701, P-A3701-DGAT1, P-A3701-WRI1, P-A0502, P-A0502-
689 HCF136, p201GFP-Cas9), also with four to ten replicates for each type.

690 ***N. benthamiana* callus transformation and whole-plant regeneration**

691 Two seven-week-old calli were placed in a single well of a 6-well plate, resulting in two
692 calli per well, for a total of two 6-well plates. Tecan Fluent was used to add 3 mL MS
693 liquid media to each well. The plates were then exposed to continuous light for a period
694 of 20 days while shaking at 200 rpm (Revolutions Per Minute). Prior to transformation,
695 the Pickolo colony picker (SciRobotics, Kfar Saba, HaMerkaz, Israel) was used to pick
696 *Agrobacterium tumefaciens* colonies from an agar plate containing rifampicin and
697 kanamycin antibiotics into a 96-deepwell plate containing 1 mL LB media per well.
698 Specifically, seven colonies were selected from seven different plates, namely C-A3701,
699 C-A3701-WRI1, C-A3701-DGAT1, C-A1510, C-A1510-HCF136, pMDC43, and

700 pMDC43-OWD. The F5 robotic arm transferred the plate to the Thermo Scientific™
701 Cytomat™_6K automated incubator (Thermo Scientific, Waltham, MA, USA), where it
702 underwent overnight outgrowth at 200 rpm. The following day, the 96-deep well plate
703 was taken out from the incubator and placed on the dock of the Tecan Fluent.
704 Subsequently, the FCA arm of the Tecan Fluent transferred 100 μ l of the overnight
705 culture to a new 96-well plate for optical density (OD) measurement at 600 nm using
706 Tecan infinite plate reader (Männedorf, Switzerland) on the iBioFAB platform. Following
707 the OD measurement, if the OD of the cell culture was within the range of 0.4-1, the
708 optimal overnight culture was introduced to the ten-week-old callus suspension cells in
709 the 6-well plates. The co-culture was conducted under light conditions for two days.
710 Next, co-culture cells were washed four times with MS liquid media using the Tecan
711 Fluent. After washing, calli transformed with C-A3701, C-A3701-WRI1, C-A3701-
712 DGAT1, C-A1510 and C-A1510-HCF136 were placed on 2 mg/L phosphinothricin (PPT)
713 selection MS media plates, while those transformed with pMDC43 and pMDC43-OWD
714 were placed on a 15 mg/L hygromycin-selected MS media plates. The automated
715 procedures are demonstrated in Supplementary Figure S2B. Shoot and root
716 regeneration procedures followed those described in a previous study (Clemente,
717 2006). Briefly, genetically engineered calli were transferred into the shoot media (MS
718 Salts & MS vitamins + 30 g sucrose + 2 mg/L kinetin + 1 mg/L IAA (auxin)+ 400 mg/L
719 timentin + 2.0 mg/L glufosinate ammonium- for bar gene selection- or 20 mg/L
720 hygromycin selection). After 10-16 weeks, shoots were generated then transferred to
721 the root media (MS salts & vitamins + 30g sucrose+ 200 mg/L timentin + 2.0 mg/L
722 glufosinate ammonium- for bar gene selection- or 20 mg/L hygromycin selection- for
723 rooting). After 5-8 weeks, fully rooted plants were transferred to pots with PRO-MIX BX
724 BIOFUNGICIDE MYCORRHIZAE soil in the growth chamber.

725 **RNA extraction and RT-qPCR analysis**

726 RNA was extracted from callus and protoplast cultures using the ZR Plant RNA
727 Miniprep™ kit (R2024, Zymo Research, CA, USA) and TRIzol™ Reagent (15596026,
728 Thermo Scientific, Waltham, Massachusetts, USA), respectively. The single-stranded
729 cDNA was synthesized using the High-Capacity cDNA Reverse Transcription Kit
730 (ThermoFisher Scientific; Waltham, Massachusetts, USA). Real-time PCR (qPCR) was

731 performed using the Power SYBR® Green PCR Master Mix (ThermoFisher Scientific) in
732 a LightCycler 480 instrument (Roche; Indianapolis, IN, USA). Gene expression levels
733 were normalized to the expression of the constitutively expressed reference genes
734 (Table S4). Relative gene expression was calculated following previously published
735 methods (Livak and Schmittgen, 2001; Dong et al., 2020). The qPCR primers are
736 shown in Supplementary Table S4.

737 **Lipid extraction and LC-MS/MS analysis**

738 Lipid extraction from plant tissues and protoplasts were performed as described
739 elsewhere (Zhai et al., 2018). Briefly, 700 μ L of extraction solvent (chloroform:
740 methanol: formic acid 2:1:0.1 v/v/v) and 350 μ L of 1M KCl with 0.2M H_3PO_4 were added
741 for liquid-liquid partition. This was vortexed for 30 min, centrifuged at 20,000 x g for 10
742 min, then the lower layer was taken and dried using a SpeedVac vacuum concentrator
743 (Thermo Scientific, USA). The samples were redissolved in 200 μ L of an LC-MS grade
744 solvent mixture of isopropanol/acetonitrile/water 65/30/5, added to an HPCL vial insert,
745 and 2 μ L SPLASH™ LIPIDOMIX® Mass Spec Standard (Avanti Polar Lipids was added
746 to each of the samples for an internal calibrant.

747 LC-MS/MS analysis was performed on a Vanquish™ UHPLC coupled with Q Exactive™
748 Orbitrap Mass Spectrometer (Thermo Scientific, USA) with HESI source. An Acuity
749 UPLC® BEH C18 column (2.1 \times 100 mm, 1.7 μ m) was kept at 45 °C. Solvent A was
750 60:40 (v/v) acetonitrile:water with 10 mM ammonium formate and 0.1 % formic acid, and
751 solvent B was 90:10 (v/v) isopropanol:acetonitrile with 10 mM ammonium formate and
752 0.1 % formic acid. The gradient started with 15% phase B and increased to 50% at 2
753 min, then to 98% at 15.5 min. The column was washed at 98% phase B for 2 min, and
754 continued with equilibration using 15% B from 17.6 to 20 min. Flow rate was kept at 250
755 μ L/min.

756 For mass spectrometry analysis, the capillary temperature was set at 300 °C, for both
757 positive and negative modes. Sheath gas flow rate was set to 35 and aux gas to 10. For
758 positive scan, the spray voltage was 3.5 kV and for negative was 2.8 kV. Positive and
759 negative data were collected by separate injections. Data was acquired by full MS scan
760 followed by data dependent scans with fragmentation energy. Full MS scan range was
761 *m/z* 150-1500. The AGC (Automatic Gain Control) target was set to 3e6. For data

762 dependent MS², the top 10 ions were selected for fragmentation at stepped normalized
763 collision energy of 15, 25 and 35. The isolation window was *m/z* 1.0, resolution was set
764 to 17,500, the AGC target was at 1e⁵, and dynamic exclusion was set as 5.0 s for
765 triggered ions. Centroid mode was used for all data collection. Peak detection,
766 alignment, and identification were performed on MS-Dial (ver 4.90) with built-in *in silico*
767 LC/MS/MS based lipidomics database (Tsugawa et al., 2020). Identification was based
768 on MS2 match, and the score cut off was set at 80%. For lipid quantification, the
769 average peak area of each class of lipid was normalized using internal standards
770 (SPLASHTM LIPIDOMIX® Mass Spec Standard, Avanti Polar Lipids, Alabaster,
771 Alabama, USA) then divided by the respective sample fresh weight (callus tissue or
772 leaf) or by the total number of cells analyzed (protoplast cells).

773 **Gas chromatography-mass spectrometry (GC-MS) analysis**

774 Qualitative, targeted fatty acids analysis was performed using an Agilent 6890N gas
775 chromatography attached to a 5975B MS in the Metabolomics Laboratory of Roy J.
776 Carver Biotechnology Center, University of Illinois at Urbana-Champaign, as previously
777 described (Xue et al., 2020). One microliter injection of the sample was made into the
778 column in a Pulsed Splitless mode, with the front inlet pressure elevated to 40 psi for
779 18 s. Helium was the carrier gas used. The front inlet, MS transfer line, MS source, and
780 MS quad were maintained at 300 °C, 230 °C, 230 °C and 150 °C, respectively. The GC
781 oven temperature protocol was as follows: 50 °C for 2 min, ramp up at 30 °C/min for a
782 2 min hold at 120 °C, a second ramp up at 30 °C/min for a 2 min hold at 180 °C, and a
783 final ramp up at 30 °C/min for a 9.33 min hold at 250°C. For fatty acids quantification,
784 the average peak area of each type of fatty acid was normalized using an internal
785 standard (Tricosanoic acid, C23:0) then divided by the fresh weight of callus tissue.

786 **Matrix application and high-throughput MALDI-MS analysis**

787 A matrix solution containing 45 mg/mL 2,5-dihydroxybenzoic acid dissolved in 70%
788 methanol was deposited onto ITO-coated microscopy slides using an HTX M5-Sprayer
789 (HTX Technologies). The sprayer temperature was set to 70 °C, with a flow rate of 0.1
790 ml min⁻¹, track spacing of 3 mm, pressure of 10 psi, and a gas flow rate of 3 l min⁻¹. One
791 pass of the matrix was applied to the slides, with a final matrix density of 3.195 mg/mm².

792 MALDI-MS analysis was performed with a SolariX XR 7T FT-ICR mass spectrometer
793 (mass spectrometer equipped with an APOLLO II dual MALDI/ESI source (Bruker)).
794 Data were acquired in positive-mode with a mass range of *m/z* 54-1,600, yielding a
795 transient length of 0.524 s using a Smartbeam-II UV laser (355 nm) set to “Small” mode,
796 generating a ~100- μ m diameter laser footprint. Each MALDI-MS acquisition consisted of
797 500 laser shots at a frequency of 1,000 Hz. microMS was used as previously described
798 to generate instrument stage coordinates and geometry files for all MALDI acquisitions
799 of selected protoplasts with a distance filter of 200 μ m (removed protoplasts located
800 closer than 200 μ m to each other from the target list) (Comi et al., 2017).
801 Peak picking and peak export were performed using Compass DataAnalysis 4.4
802 (Bruker) with a signal-to-noise ratio of 5 and a relative intensity threshold of 0.01%.
803 Mass spectral binning was performed in custom Matlab scripts with a semicontinuous
804 bin width of 3 ppm. Features were mass matched to a bulk LC-MS/MS database using a
805 5 ppm filter, and cells with fewer than 5 matched lipids were removed from the sample
806 set.

807 **Thin layer chromatography (TLC), lipid staining and visualization of oil droplets**
808 TLC was performed following a previous study (Zhang et al., 2016). Briefly, after lipid
809 extraction, we loaded 15 μ L of standards and 25 μ L of lipid extract samples onto the
810 TLC plate. After a 45-minute run, TLC was visualized through ionization. Lipid staining
811 and visualization of oil droplets followed the method described in a previous study (Cai
812 et al., 2015) using leaves from three-month-old genetically engineered *N. benthamiana*.

813 **Statistical methods in this study**

814 MALDI-MS data was analyzed using a two-tailed Mann-Whitney test. All other P-values
815 provided were generated using the two-tailed Welch’s t-test unless otherwise stated.
816 Asterisks indicate: **** P < 0.0001; *** P < 0.001; ** P < 0.01; * P < 0.05. Statistical
817 analysis, including volcano plot analysis, was conducted using the web tool available at
818 <https://www.metaboanalyst.ca/> (Lu et al., 2023).

819 **Accession Numbers**

820 Information on all the genes can be found in Supplementary Table S4.

821

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

844 **Funding**

845 We acknowledge the Center for Advanced Bioenergy and Bioproducts Innovation (U.S.
846 Department of Energy, Office of Science, Office of Biological and Environmental
847 Research under Award Number DE- SC0018420). Any opinions, findings, and
848 conclusions or recommendations expressed in this publication are those of the author(s)
849 and do not necessarily reflect the views of the U.S. Department of Energy. The funders
850 had no role in study design, data collection and analysis, decision to publish, or
851 preparation of the manuscript.

852 **Acknowledgments**

853 We express our gratitude to Benjamin Haas for generously sharing the gene cloning
854 protocol and reference primers for RT-qPCR, which greatly contributed to the success
855 of this study. We also extend our thanks to Dr. Thomas Clemente for providing the
856 necessary information on plasmids (pPTN1586C and pPTN1586), which were
857 instrumental in advancing our research. We would like to acknowledge Dr. Zhiyang
858 Zhan and Dr. Yingqi Cai for providing the plasmids (pMDC43 and pMDC43-OWD). We
859 thank Dr. Kingsley Boateng and Dr. Austin Cyphersmith for their assistance in setting up
860 the microscopy procedure.

861

862 **Author contributions**

863 All authors designed experiments, analyzed data, and assisted in the writing and
864 editorial process. J.D., S.W.C., S.L., D.C.C., J.B., S.Z., K.P., M.R. performed the
865 experiments. S.B., E.C., J.S., H.Z., J.V.S., and M.E.H. conceived and supervised the
866 overall project.

867

868 **Competing interests**

869 All authors declare no competing interests.

870 **Figure Legends**

871 **Figure 1. Overview of the FAST-PB for high-throughput genome editing and lipid**
872 **engineering in protoplast and callus cell systems. (A)** Automated gene cloning
873 using the Golden Gate cloning method streamlines the process of plasmid assembly
874 (Design). **(B)** Automated callus transformation with CRISPR vectors or strong promoter
875 vectors to facilitate plant regeneration with the increased lipid production trait. GFP
876 fluorescence indicates successful transformation (Build). **(C)** Automated protoplast
877 isolation and transfection (Build). **(D)** Top: Protoplast cells from transgenic callus tissues
878 applied on MALDI slides for lipid measurement and LC-MS analysis of lipids from callus

879 and protoplast cells. Bottom: Characterization of lipids through MALDI spectra analysis
880 and lipid class quantification (Test).

881 **Figure 2. Automated protoplast isolation and transfection to genotyping and**
882 **phenotyping cells.** (A) Protoplast isolation from *N. benthamiana* leaves (left) using
883 automation yielded abundant and high-quality protoplast cells (pictured at 40x
884 magnification, middle). Protoplasts transfected with the Cas9 vector (p201GFP-Cas9)
885 exhibit GFP fluorescence (right). (B) Etiolated maize B73 (left) allowed successful
886 protoplast isolation on the automation platform, yielding abundant high-quality protoplast
887 cells (pictured at 40x magnification, middle). Subsequent transfection with the Cas9
888 vector (p201GFP-Cas9) induced GFP fluorescence in numerous cells (right). (C) Total
889 intact cell number was counted under three types of PEG (2050, 3350, 4000)
890 treatments in the etiolated maize B73 and *N. benthamiana*. Biological replicate n = 4.
891 (D) Transfection efficiency (Ratio of GFP-expressing and total intact cell numbers) in
892 four days after transfection. Biological replicate n = 4. For C and D, Center line
893 represents the median of the data. Box limits Indicate the upper and lower quartiles
894 (25th and 75th percentiles). Whiskers extend to 1.5 times the interquartile range (IQR)
895 from the upper and lower quartiles. Points represent outliers, which are data points
896 beyond the whiskers. (E) Quantification of chlorophyll fluorescence intensity following
897 *HCF136* gene knockout (*HCF136*-KO) in both maize and *N. benthamiana*. n = 10. (F)
898 Mutation analysis of the *HCF136* gene performed using next-generation Sanger
899 sequencing and Inference of CRISPR Editing (ICE) analysis (Hsiau et al., 2018; Dong et
900 al., 2020) in maize and *N. benthamiana*. A DNA sequence alignment is shown where
901 the first line of the alignment shows control sequence from unedited cells. The vertical
902 dotted line shows the target site of the guide RNA. Subsequent sequences show
903 dashes where bases have been deleted at the target site relative to the reference line.
904 (G) Lipid classes were measured across four days in protoplasts using LC-MS/MS in *N.*
905 *benthamiana* (top) and etiolated maize B73 (bottom). Biological replicate n = 6. (H) Top:
906 Lipid analysis and quantification after overexpression of P-3701-WRI1 (3701-WRI1) and
907 P-3701-DGAT (3701-DGAT1) through using the CRISPR activation system, with P-
908 3701 (3701) as a control in *N. benthamiana*. Biological replicate n = 4. Bottom: Lipid
909 analysis and quantification after overexpression of lipid-related genes in etiolated maize

910 B73. Two groups in this study, first group is 4110, 4110-WRI1, and 4110-DGAT using
911 the CRISPR activation system, and 4110 as a control; the second group is pPTN1586
912 and pPTN1586C, and this group refers to a positive control group using the strong
913 promoter system. pPTN1586 contains five genes (*DGAT1*, *WRI1*, *Oleosin*, *Thio14*, and
914 *LPATB*) for overexpression, with pPTN1586C serving as an empty vector control for
915 pPTN1586. Biological replicate n = 5. For lipid quantification, the average peak area of
916 each class of lipid was normalized using internal standards then divided by the total
917 number of protoplast cells analyzed. Error bars represent standard error. Asterisks
918 indicate: *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$, calculated using two-tailed Welch's t-test.
919 TAG: Triacylglycerol; DAG: Diacylglycerol; PC: Phosphatidylcholine; PE:
920 Phosphatidylethanolamine; PA: Phosphatidic acid; PG: Phosphatidylglycerol; PI:
921 Phosphatidylinositol; PS: Phosphatidylserine; LPC: Lysophosphatidylcholine; LPE:
922 Lysophosphatidylethanolamine.

923 **Figure 3. Lipid profiling and comparative analysis of genetically engineered *N.***
924 ***benthamiana* callus and leaf samples using LC-MS/MS. A-C**, Annotated volcano
925 plots ($\log_2(\text{FC})$ versus $-\log_{10}(\text{P-values})$) showing the up- and down-regulated lipid
926 species in callus cultures after **(A)** simultaneous overexpression of (OWD) genes using
927 the strong 35S promoter, 43 as a control **(B)** overexpression of *WRI1* using CRISPR
928 activation, 3701 as a control, and **(C)** overexpression of *DGAT1* using CRISPR
929 activation, 3701 as a control. n ≥ 3 . **D-F**, Quantification of lipid classes through fold
930 change calculation for the overexpression of *WRI1*, *DGAT1* and *Oleosin* genes **(D)**,
931 overexpression of the *WRI1* gene **(E)**, and overexpression of the *DGAT1* gene **(F)**. n \geq
932 3. **G-I**, Fatty acids quantification through fold change formula for overexpression of
933 *WRI1*, *DGAT1* and *Oleosin* genes **(G)**, the *WRI1* gene **(H)**, the *DGAT1* gene **(I)**. n ≥ 3 .
934 Biological replicate n = 3 for the OWD group. **J**, Genetically engineered calli and plants.
935 The images show the growth and characteristics of genetically engineered calli and
936 plants transformed with pMDC43 as a control and pMDC43-OWD vectors. (Top Left)
937 Callus tissues generated from the pMDC43-OWD vector, which overexpresses *Oleosin*,
938 *WRI1*, and *DGAT1* (OWD) genes, grown on MS medium containing hygromycin for
939 resistance selection. (Top Right) Fluorescence image of pMDC43-OWD callus tissues,
940 indicating successful genetic transformation with visible green fluorescence. (Bottom

941 Left) Regenerated plant from the pMDC43 vector. (Bottom Right) Regenerated plant
942 from the pMDC43-OWD vector. Scale bars represent 10 mm. **K**, Lipid profiling in one-
943 month-old genetically engineered *N. benthamiana* after overexpression of *WRI1* (3701-
944 *WRI1*) using the CRISPR activation system. The sample size is $n = 3$, representing
945 independent genetically engineered plants. **L**, Lipid profiling in one-month-old
946 genetically engineered *N. benthamiana* after overexpression of *Oleosin*, *WRI1* and
947 *DGAT1* (pMDC43-OWD). The sample size is $n > 3$, representing independent
948 genetically engineered plants. Dots on bar charts represent the means of replicated
949 measurements of individual genetically engineering events. For lipid quantification, the
950 average peak area of each class of lipid was normalized using internal standards then
951 divided by the respective sample fresh weight (callus tissue or leaf). Error bars
952 represent standard error. Asterisks indicate: *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$,
953 calculated using a two-sided t-test for the volcano plots (**A-C**) and two-tailed Welch's t-
954 test for the remaining figures (**D-L**). TAG: Triacylglycerol; DAG: Diacylglycerol; PC:
955 Phosphatidylcholine; PE: Phosphatidylethanolamine; PA: Phosphatidic acid; PG:
956 Phosphatidylglycerol; PI: Phosphatidylinositol; PS: Phosphatidylserine; LPC:
957 Lysophosphatidylcholine; LPE: Lysophosphatidylethanolamine.

958 **Figure 4. Lipidomic analysis of genetically engineered callus-derived protoplast**
959 **samples using LC-MS/MS and high-throughput single-cell measurements via**
960 **MALDI FT-ICR MS.** **(A)** Protoplast cells in the W5 liquid media were imaged to check
961 the quality before performing MALDI/MS (on the left). Then, using Hoechst staining
962 method to stain the cells, they were imaged (on the right). **(B)** Overview of the single-
963 cell MALDI-MS workflow for callus-derived protoplasts. **(C)** Mass spectra with identified
964 lipid species annotated in the wildtype calli-derived protoplast. **(D)** Lipid profiling in
965 callus-derived protoplast cells. $n = 6$. **(E)** Ranked dot plot showing the top ten lipid
966 features for the control (43) and genetically engineered (43-OWD) protoplast samples.
967 Samples are colored by their p-value-modulated z score and the size of each dot
968 represents the fraction of the total samples that had each feature. **(F)** Subtracted
969 average mass spectra for control (43) and genetically overexpressed (43-OWD)
970 protoplasts across the entire lipid range. The accurate m/z values for can be found in
971 Supplementary Table S2. **(G)** Selected m/z window around the TAG lipid region, with

972 detected lipid species annotated. The accurate *m/z* values for can be found in
973 Supplementary Table S2. (H) Comparison of lipid class between the LC-MS/MS and
974 MALDI-MS datasets. (I) The comparison of TAG lipid features between LC-MS/MS and
975 single-cell MALDI-MS detection. Biological replicate $n >= 3$ for all MALDI-MS and LC-
976 MS/MS datasets. Error bars represent standard error. Asterisks indicate: **** $P < 0.0001$;
977 *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$, LCMS statistics were calculated using a two-tailed
978 Welch's t-test and MALDI-MS data was analyzed using a two-tailed Mann-Whitney test.
979 TAG: Triacylglycerol; DAG: Diacylglycerol; PC: Phosphatidylcholine; PE:
980 Phosphatidylethanolamine; PA: Phosphatidic acid; PG: Phosphatidylglycerol; PI:
981 Phosphatidylinositol; PS: Phosphatidylserine; LPC: Lysophosphatidylcholine; LPE:
982 Lysophosphatidylethanolamine.

983

ACCEPTED MANUSCRIPT

984 References

985 **Ali, A., Abouleila, Y., Shimizu, Y., Hiyama, E., Emara, S., Mashaghi, A., and**
986 **Hankemeier, T.** (2019). Single-cell metabolomics by mass spectrometry:
987 Advances, challenges, and future applications. *TrAC - Trends Anal. Chem.* **120**.

988 **An, G.** (1985). High Efficiency Transformation of Cultured Tobacco Cells. *Plant Physiol.*
989 **79**.

990 **Bourceau, P., Geier, B., Suerdieck, V., Bien, T., Soltwisch, J., Dreisewerd, K., and**
991 **Liebeke, M.** (2023). Visualization of metabolites and microbes at high spatial
992 resolution using MALDI mass spectrometry imaging and *in situ* fluorescence
993 labeling. *Nat. Protoc.*

994 **Cai, Y., Goodman, J.M., Pyc, M., Mullen, R.T., Dyer, J.M., and Chapman, K.D.**
995 (2015). Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and
996 influence lipid droplet proliferation. *Plant Cell* **27**.

997 **Castro, D.C., Chan-Andersen, P., Romanova, E. V., and Sweedler, J. V.** (2023).
998 Probe-based mass spectrometry approaches for single-cell and single-organelle
999 measurements. *Mass Spectrom. Rev.*

1000 **Castro, D.C., Xie, Y.R., Rubakhin, S.S., Romanova, E. V., and Sweedler, J. V.**
1001 (2021). Image-guided MALDI mass spectrometry for high-throughput single-
1002 organelle characterization. *Nat. Methods* **18**.

1003 **Čermák, T., Curtin, S.J., Gil-Humanes, J., Čegan, R., Kono, T.J.Y., Konečná, E.,**
1004 **Belanto, J.J., Starker, C.G., Mathre, J.W., Greenstein, R.L., and Voytas, D.F.**
1005 (2017). A multipurpose toolkit to enable advanced genome engineering in plants.
1006 *Plant Cell* **29**.

1007 **Chao, R., Mishra, S., Si, T., and Zhao, H.** (2017). Engineering biological systems using
1008 automated biofoundries. *Metab. Eng.* **42**.

1009 **Chapman, K.D. and Ohlrogge, J.B.** (2012). Compartmentation of triacylglycerol
1010 accumulation in plants. *J. Biol. Chem.* **287**.

1011 **Clemente, T.** (2006). *Nicotiana* (*Nicotiana tabaccum*, *Nicotiana benthamiana*). In
1012 *Agrobacterium Protocols*.

1013 **Cole, B. et al.** (2021). Plant single-cell solutions for energy and the environment.
1014 *Commun. Biol.* **4**.

1015 **Comi, T.J., Neumann, E.K., Do, T.D., and Sweedler, J. V.** (2017). microMS: A Python
1016 Platform for Image-Guided Mass Spectrometry Profiling. *J. Am. Soc. Mass*
1017 *Spectrom.* **28**.

1018 **Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S.,**
1019 **Kelso, R., Holden, K., Enzmann, B.L., and Stoner, R.** (2022). Inference of
1020 CRISPR Edits from Sanger Trace Data. *Cris. J.* **5**.

1021 **Cui, Y., Gao, J., He, Y., and Jiang, L.** (2020). Plant extracellular vesicles. *Protoplasma*
1022 **257**.

1023 **Demirer, G.S., Zhang, H., Matos, J.L., Goh, N.S., Cunningham, F.J., Sung, Y.,**
1024 **Chang, R., Aditham, A.J., Chio, L., Cho, M.J., Staskawicz, B., and Landry, M.P.**
1025 (2019). High aspect ratio nanomaterials enable delivery of functional genetic
1026 material without DNA integration in mature plants. *Nat. Nanotechnol.* **14**.

1027 **Dong, J., Zielinski, R.E., and Hudson, M.E.** (2020). t-SNAREs Bind the Rhg1 α -SNAP
1028 and Mediate Soybean Cyst Nematode Resistance. *Plant J. cell Mol. Biol.*

1029 **Eberwine, J. et al.** (2023). Subcellular omics: a new frontier pushing the limits of
1030 resolution, complexity and throughput. *Nat. Methods* **20**.

1031 **Enghiad, B., Xue, P., Singh, N., Boob, A.G., Shi, C., Petrov, V.A., Liu, R., Peri, S.S.,**
1032 **Lane, S.T., Gaither, E.D., and Zhao, H.** (2022). PlasmidMaker is a versatile,
1033 automated, and high throughput end-to-end platform for plasmid construction. *Nat.*
1034 *Commun.* **13**.

1035 **Guo, S., Zhang, C., and Le, A.** (2021). The limitless applications of single-cell
1036 metabolomics. *Curr. Opin. Biotechnol.* **71**.

1037 **Hajdukiewicz, P., Svab, Z., and Maliga, P.** (1994). The small, versatile pPZP family of
1038 Agrobacterium binary vectors for plant transformation. *Plant Mol. Biol.* **25**.

1039 **Hillson, N. et al.** (2019). Building a global alliance of biofoundries. *Nat. Commun.* **10**.

1040 **Hsiau, T., Maures, T., Waite, K., Yang, J., Kelso, R., Holden, K., and Stoner, R.**
1041 (2018). Inference of CRISPR Edits from Sanger Trace Data. *bioRxiv*: 251082.

1042 **Huang, Y., Shang, M., Liu, T., and Wang, K.** (2022). High-throughput methods for
1043 genome editing: The more the better. *Plant Physiol.* **188**.

1044 **Ikeuchi, M., Sugimoto, K., and Iwase, A.** (2013). Plant callus: Mechanisms of
1045 induction and repression. *Plant Cell* **25**.

1046 **Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., and Parrott, W.A.** (2015). Targeted
1047 genome modifications in soybean with CRISPR/Cas9. *BMC Biotechnol.* **15**.

1048 **Karlson, C.K.S., Mohd-noor, S.N., Nolte, N., and Tan, B.C.** (2021). Crispr/dcas9-
1049 based systems: Mechanisms and applications in plant sciences. *Plants* **10**.

1050 **Lawson, D.A. et al.** (2015). Single-cell analysis reveals a stem-cell program in human
1051 metastatic breast cancer cells. *Nature* **526**.

1052 **Lei, Y., Lu, L., Liu, H.Y., Li, S., Xing, F., and Chen, L.L.** (2014). CRISPR-P: A web
1053 tool for synthetic single-guide RNA design of CRISPR-system in plants. *Mol. Plant*
1054 **7**: 1494–1496.

1055 **Lenaghan, S.C. and Neal Stewart, C.** (2019). An automated protoplast transformation
1056 system. In *Methods in Molecular Biology*.

1057 **Liu, D., Shi, L., Han, C., Yu, J., Li, D., and Zhang, Y.** (2012). Validation of Reference
1058 Genes for Gene Expression Studies in Virus-Infected *Nicotiana benthamiana* Using
1059 Quantitative Real-Time PCR. *PLoS One* **7**.

1060 **Livak, K.J. and Schmittgen, T.D.** (2001). Analysis of relative gene expression data
1061 using real-time quantitative PCR and the 2- $\Delta\Delta CT$ method. *Methods* **25**: 402–408.

1062 **Lu, Y., Pang, Z., and Xia, J.** (2023). Comprehensive investigation of pathway
1063 enrichment methods for functional interpretation of LC-MS global metabolomics
1064 data. *Brief. Bioinform.* **24**.

1065 **Maitra, S., Viswanathan, M.B., Park, K., Kannan, B., Alfanar, S.C., McCoy, S.M.,**
1066 **Cahoon, E.B., Altpeter, F., Leakey, A.D.B., and Singh, V.** (2022). Bioprocessing,
1067 Recovery, and Mass Balance of Vegetative Lipids from Metabolically Engineered
1068 “oilcane” Demonstrates Its Potential as an Alternative Feedstock for Drop-In Fuel
1069 Production. *ACS Sustain. Chem. Eng.* **10**.

1070 **Mamode Cassim, A. and Mongrand, S.** (2019). Lipids light up in plant membranes.
1071 *Nat. Plants* **5**.

1072 **Manoli, A., Sturaro, A., Trevisan, S., Quaggiotti, S., and Nonis, A.** (2012). Evaluation
1073 of candidate reference genes for qPCR in maize. *J. Plant Physiol.* **169**.

1074 **Martín-Saiz, L. et al.** (2023). Using the Synergy between HPLC-MS and MALDI-MS
1075 Imaging to Explore the Lipidomics of Clear Cell Renal Cell Carcinoma. *Anal. Chem.*
1076 **95**.

1077 **Meurer, J., Plücken, H., Kowallik, K. V., and Westhoff, P.** (1998). A nuclear-encoded
1078 protein of prokaryotic origin is essential for the stability of photosystem II in
1079 *Arabidopsis thaliana*. *EMBO J.* **17**.

1080 **Mumm, R.H.** (2013). A look at product development with genetically modified crops:
1081 Examples from maize. *J. Agric. Food Chem.* **61**.

1082 **Murashige, T. and Skoog, F.** (1962). A Revised Medium for Rapid Growth and Bio
1083 Assays with Tobacco Tissue Cultures. *Physiol. Plant.* **15**.

1084 **Napier, J.A., Haslam, R.P., Beaudoin, F., and Cahoon, E.B.** (2014). Understanding
1085 and manipulating plant lipid composition: Metabolic engineering leads the way.
1086 *Curr. Opin. Plant Biol.* **19**.

1087 **Neumann, E.K., Do, T.D., Comi, T.J., and Sweedler, J. V.** (2019). Exploring the
1088 Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells
1089 and Subcellular Structures. *Angew. Chemie - Int. Ed.* **58**.

1090 **Norouzi, O., Hesami, M., Pepe, M., Dutta, A., and Jones, A.M.P.** (2022). In vitro plant
1091 tissue culture as the fifth generation of bioenergy. *Sci. Rep.* **12**.

1092 **Pandian, K., Matsui, M., Hankemeier, T., Ali, A., and Okubo-Kurihara, E.** (2023).
1093 Advances in single-cell metabolomics to unravel cellular heterogeneity in plant
1094 biology. *Plant Physiol.*

1095 **Raczyk, M. and Rudzińska, M.** (2015). Analysis of plant lipids. *Plant Lipids Sci.*
1096 *Technol. Nutr. Value Benefits to Hum. Heal.* **661**.

1097 **Rigoulot, S.B. et al.** (2023). Automated, High-Throughput Protoplast Transfection for
1098 Gene Editing and Transgene Expression Studies. In *Plant Genome Engineering: Methods in Molecular Biology*, S.B. Rigoulot, ed (Humana, New York, NY.), pp.
1099 129–149.

1100 **Roy, A.L., Conroy, R., Smith, J., Yao, Y., Beckel-Mitchener, A.C., Anderson, J.M.,**
1101 **and Wilder, E.L.** (2018). Accelerating a paradigm shift: The common fund single
1102 cell analysis program. *Sci. Adv.* **4**.

1103 **Sarrion-Perdigones, A., Vazquez-Vilar, M., Palací, J., Castelijns, B., Forment, J.,**
1104 **Ziarsolo, P., Blanca, J., Granell, A., and Orzaez, D.** (2013). Goldenbraid 2.0: A
1105 comprehensive DNA assembly framework for plant synthetic biology. *Plant Physiol.*
1106 **162**.

1108 **Seydel, C.** (2021). Single-cell metabolomics hits its stride. *Nat. Methods* **18**.

1109 **Si, T., Chao, R., Min, Y., Wu, Y., Ren, W., and Zhao, H.** (2017). Automated multiplex

1110 genome-scale engineering in yeast. *Nat. Commun.*

1111 **Si, T., Xiao, H., and Zhao, H.** (2015). Rapid prototyping of microbial cell factories via

1112 genome-scale engineering. *Biotechnol. Adv.* **33**.

1113 **Squire, H.J., Tomatz, S., Voke, E., González-Grandío, E., and Landry, M.** (2023).

1114 The emerging role of nanotechnology in plant genetic engineering. *Nat. Rev. Bioeng.* **1**.

1115 **Taylor, M.J., Lukowski, J.K., and Anderton, C.R.** (2021). Spatially Resolved Mass

1116 Spectrometry at the Single Cell: Recent Innovations in Proteomics and

1117 Metabolomics. *J. Am. Soc. Mass Spectrom.* **32**.

1118 **TSAI, C.H., WEN, M.C., and KINSELLA, J.E.** (1982). Cocobean Tissue Culture: Lipid

1119 Composition and Fatty Acid Metabolism. *J. Food Sci.* **47**.

1120 **Tsugawa, H. et al.** (2020). A lipidome atlas in MS-DIAL 4. *Nat. Biotechnol.* **38**.

1121 **Urzì, O., Raimondo, S., and Alessandro, R.** (2021). Extracellular vesicles from plants:

1122 Current knowledge and open questions. *Int. J. Mol. Sci.* **22**.

1123 **Vanhercke, T. et al.** (2014). Metabolic engineering of biomass for high energy density:

1124 Oilseed-like triacylglycerol yields from plant leaves. *Plant Biotechnol. J.* **12**.

1125 **Vanhercke, T., Dyer, J.M., Mullen, R.T., Kilaru, A., Rahman, M.M., Petrie, J.R.,**

1126 **Green, A.G., Yurchenko, O., and Singh, S.P.** (2019). Metabolic engineering for

1127 enhanced oil in biomass. *Prog. Lipid Res.* **74**.

1128 **Volk, M.J., Tran, V.G., Tan, S.I., Mishra, S., Fatma, Z., Boob, A., Li, H., Xue, P.,**

1129 **Martin, T.A., and Zhao, H.** (2023). Metabolic Engineering: Methodologies and

1130 Applications. *Chem. Rev.* **123**.

1131 **Xue, P., Si, T., Mishra, S., Zhang, L., Choe, K., Sweedler, J. V., and Zhao, H.** (2020).

1132 A mass spectrometry-based high-throughput screening method for engineering

1133 fatty acid synthases with improved production of medium-chain fatty acids.

1134 *Biotechnol. Bioeng.* **117**.

1135 **Yin, K., Gao, C., and Qiu, J.L.** (2017). Progress and prospects in plant genome editing.

1136 *Nat. Plants* **3**.

1137 **Zhai, Z., Keereetawee, J., Liu, H., Feil, R., Lunn, J.E., and Shanklin, J.** (2018).

1139 Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing
1140 wrinkled1[open]. *Plant Cell* **30**.

1141 **Zhai, Z., Liu, H., and Shanklin, J.** (2021). Ectopic expression of oleosin 1 and
1142 inactivation of gbss1 have a synergistic effect on oil accumulation in plant leaves.
1143 *Plants* **10**.

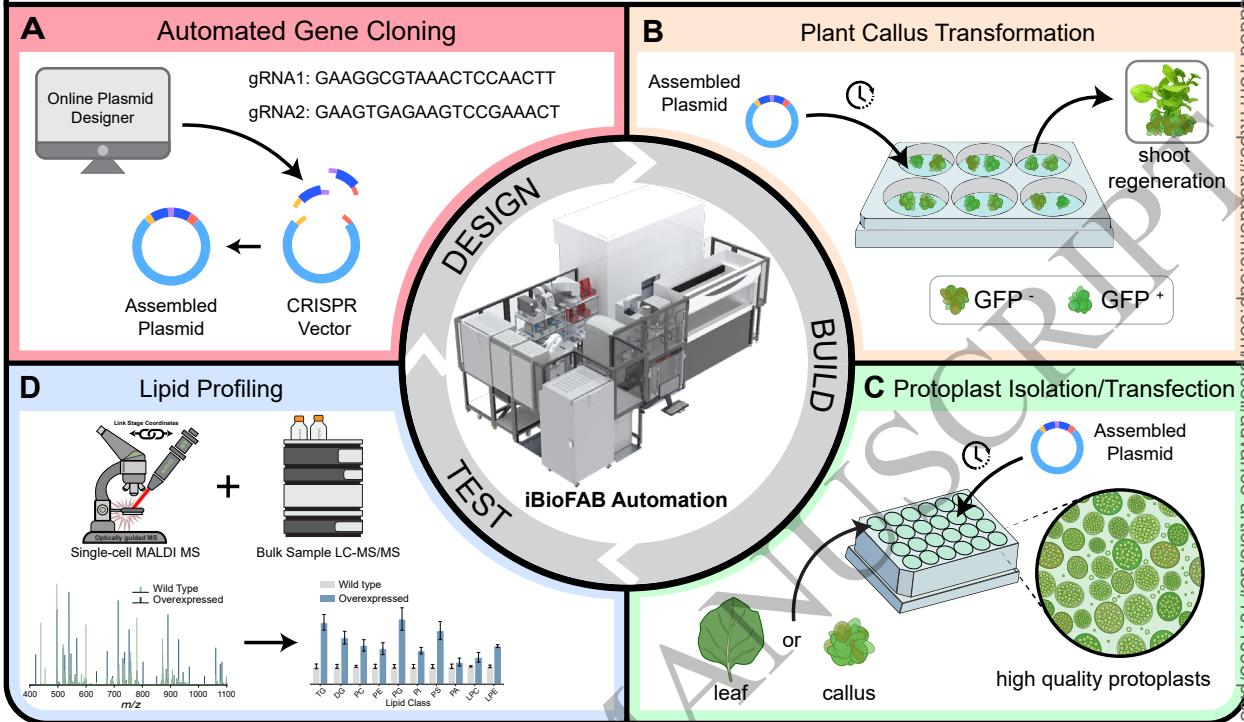
1144 **Zhai, Z., Liu, H., and Shanklin, J.** (2017a). Phosphorylation of WRINKLED1 by KIN10
1145 results in its proteasomal degradation, providing a link between energy
1146 homeostasis and lipid biosynthesis. *Plant Cell* **29**.

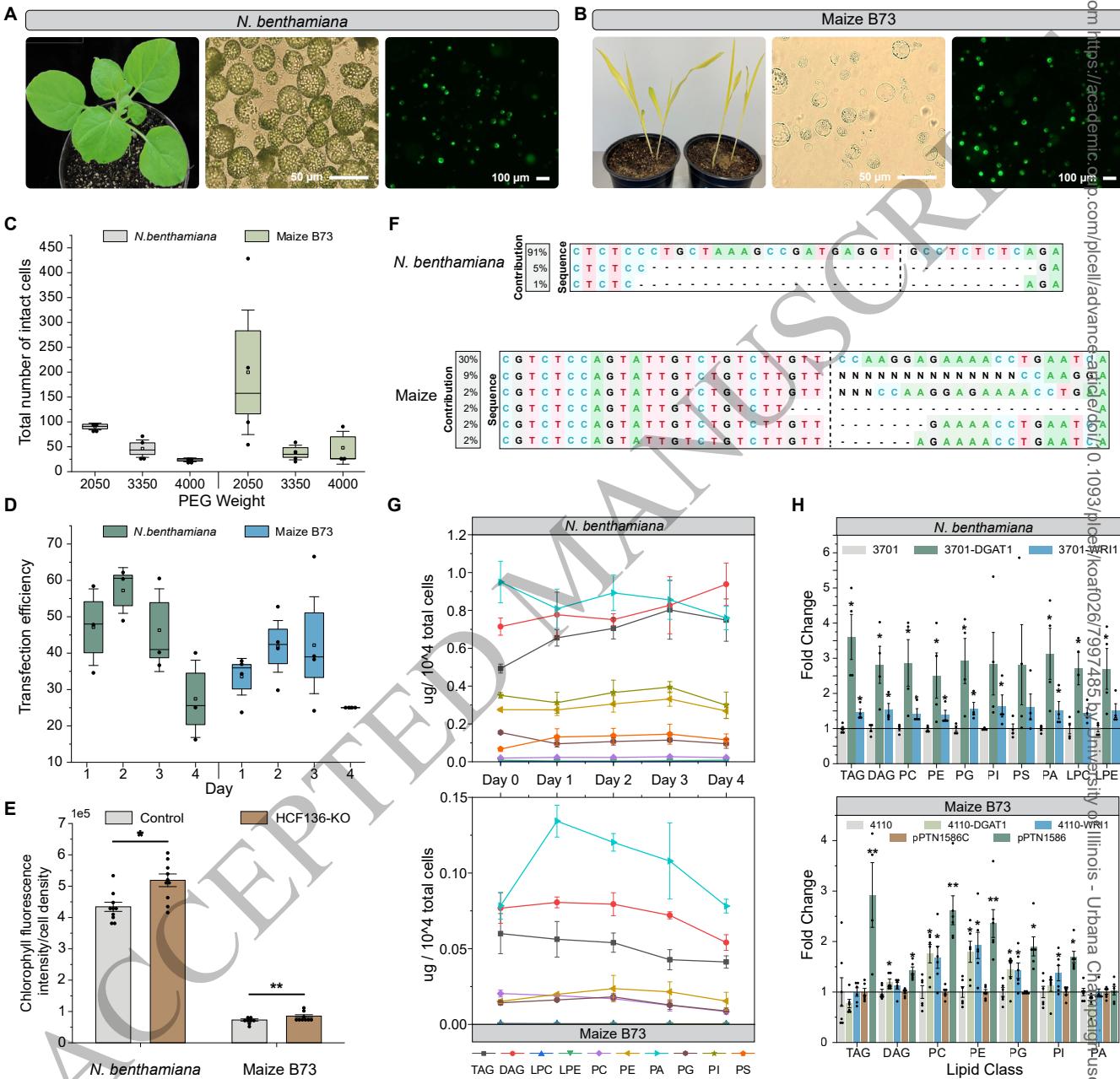
1147 **Zhai, Z., Liu, H., Xu, C., and Shanklin, J.** (2017b). Sugar potentiation of fatty acid and
1148 triacylglycerol accumulation. *Plant Physiol.* **175**.

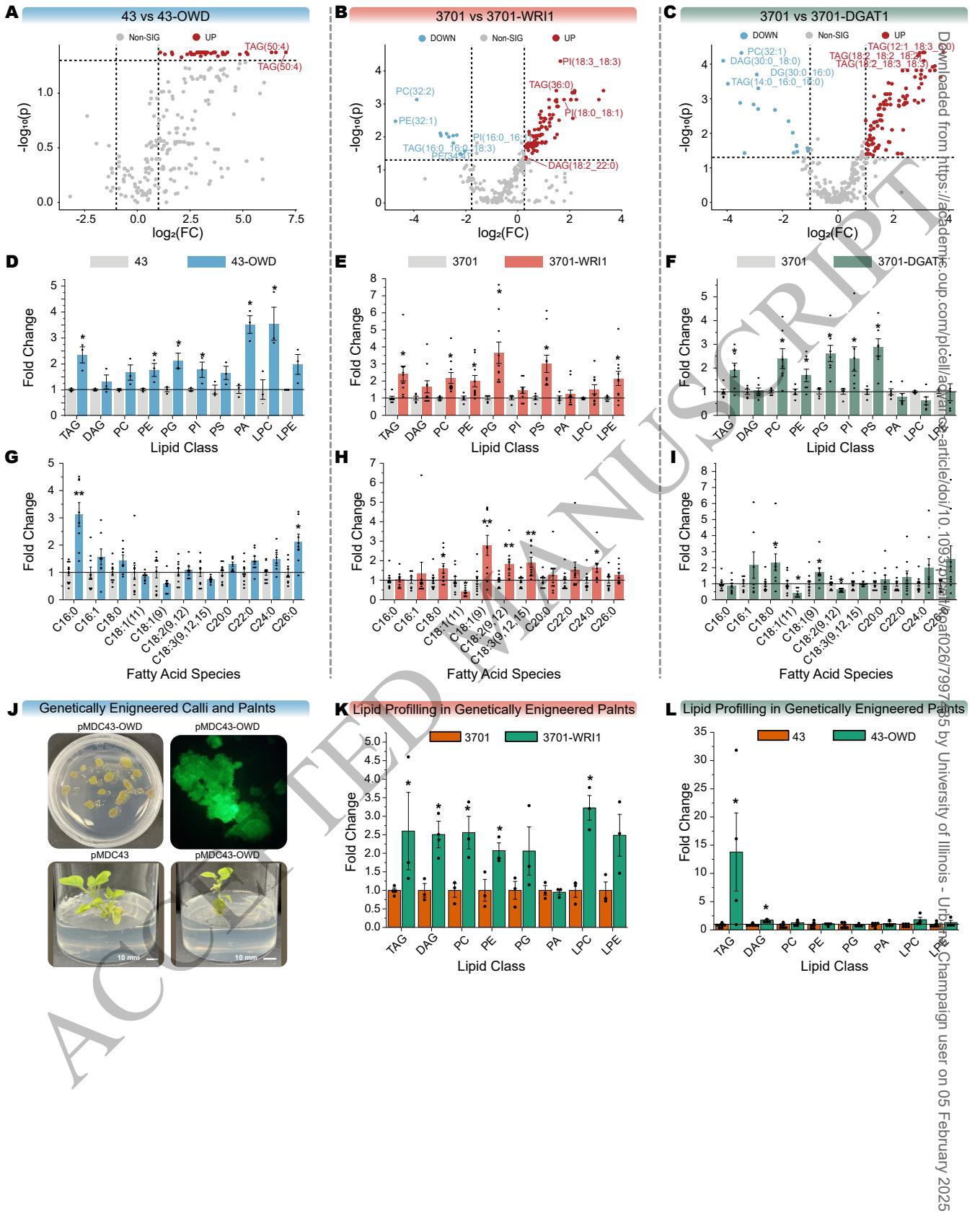
1149 **Zhang, H., Liu, Y., Fields, L., Shi, X., Huang, P., Lu, H., Schneider, A.J., Tang, X.,**
1150 **Puglielli, L., Welham, N. V., and Li, L.** (2023). Single-cell lipidomics enabled by
1151 dual-polarity ionization and ion mobility-mass spectrometry imaging. *Nat. Commun.*
1152 **14**: 5185.

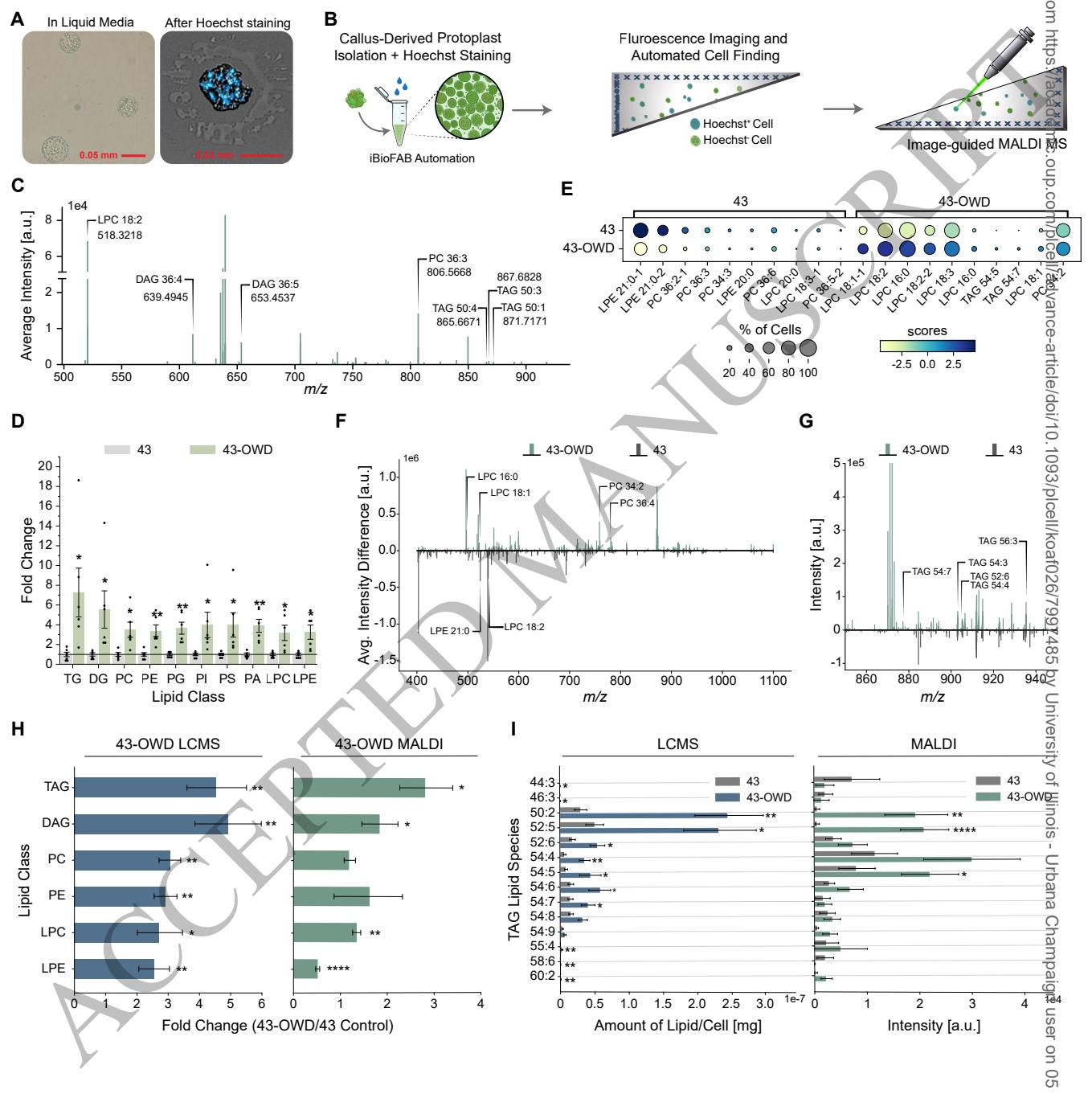
1153 **Zhang, J., Chen, Y., Fu, L., Guo, E., Wang, B., Dai, L., and Si, T.** (2021). Accelerating
1154 strain engineering in biofuel research via build and test automation of synthetic
1155 biology. *Curr. Opin. Biotechnol.* **67**.

1156 **Zhang, S., Skerker, J.M., Rutter, C.D., Maurer, M.J., Arkin, A.P., and Rao, C. V.**
1157 (2016). Engineering *Rhodosporidium toruloides* for increased lipid production.
1158 *Biotechnol. Bioeng.* **113**.


1159 **Zhang, X., Pan, S.R., Hu, H.M., Wu, G.F., Feng, M., Zhang, W., and Luo, X.** (2008).
1160 Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene
1161 delivery: Effects of PEG molecular weight and PEGylation degree. *J. Biomed.*
1162 *Mater. Res. - Part A* **84**.


1163


1164


ACCEPTED MANUSCRIPT

FAST-PB Platform

Parsed Citations

Ali, A., Abouleila, Y., Shimizu, Y., Hiyama, E., Emara, S., Mashaghi, A., and Hankemeier, T. (2019). Single-cell metabolomics by mass spectrometry: Advances, challenges, and future applications. *TrAC - Trends Anal. Chem.* 120.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

An, G. (1985). High Efficiency Transformation of Cultured Tobacco Cells. *Plant Physiol.* 79.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bourceau, P., Geier, B., Suerdieck, V., Bien, T., Soltwisch, J., Dreisewerd, K., and Liebeke, M. (2023). Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling. *Nat. Protoc.*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cai, Y., Goodman, J.M., Pyc, M., Mullen, R.T., Dyer, J.M., and Chapman, K.D. (2015). Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. *Plant Cell* 27.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Castro, D.C., Chan-Andersen, P., Romanova, E. V., and Sweedler, J. V. (2023). Probe-based mass spectrometry approaches for single-cell and single-organelle measurements. *Mass Spectrom. Rev.*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Castro, D.C., Xie, Y.R., Rubakhin, S.S., Romanova, E. V., and Sweedler, J. V. (2021). Image-guided MALDI mass spectrometry for high-throughput single-organelle characterization. *Nat. Methods* 18.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Čermák, T., Curtin, S.J., Gil-Humane, J., Čegan, R., Kono, T.J.Y., Konečná, E., Belanto, J.J., Starker, C.G., Mathre, J.W., Greenstein, R.L., and Voytas, D.F. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. *Plant Cell* 29.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chao, R., Mishra, S., Si, T., and Zhao, H. (2017). Engineering biological systems using automated biofoundries. *Metab. Eng.* 42.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chapman, K.D. and Ohlrogge, J.B. (2012). Compartmentation of triacylglycerol accumulation in plants. *J. Biol. Chem.* 287.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Clemente, T. (2006). Nicotiana (Nicotiana tabaccum, Nicotiana benthamiana). In *Agrobacterium Protocols*.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cole, B. et al. (2021). Plant single-cell solutions for energy and the environment. *Commun. Biol.* 4.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Comi, T.J., Neumann, E.K., Do, T.D., and Sweedler, J. V. (2017). microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling. *J. Am. Soc. Mass Spectrom.* 28.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Conant, D., Hsiao, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K., Enzmann, B.L., and Stoner, R. (2022). Inference of CRISPR Edits from Sanger Trace Data. *Cris. J.* 5.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cui, Y., Gao, J., He, Y., and Jiang, L. (2020). Plant extracellular vesicles. *Protoplasma* 257.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Demirer, G.S., Zhang, H., Matos, J.L., Goh, N.S., Cunningham, F.J., Sung, Y., Chang, R., Aditham, A.J., Chio, L., Cho, M.J., Staskawicz, B., and Landry, M.P. (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. *Nat. Nanotechnol.* 14.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dong, J., Zielinski, R.E., and Hudson, M.E. (2020). t-SNAREs Bind the Rhg1 α -SNAP and Mediate Soybean Cyst Nematode Resistance. *Plant J. cell Mol. Biol.*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Eberwine, J. et al. (2023). Subcellular omics: a new frontier pushing the limits of resolution, complexity and throughput. *Nat. Methods* 20.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Enghiad, B., Xue, P., Singh, N., Boob, A.G., Shi, C., Petrov, V.A., Liu, R., Peri, S.S., Lane, S.T., Gaither, E.D., and Zhao, H. (2022). PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction. *Nat. Commun.* 13.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo, S., Zhang, C., and Le, A. (2021). The limitless applications of single-cell metabolomics. *Curr. Opin. Biotechnol.* 71.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of *Agrobacterium* binary vectors for plant transformation. *Plant Mol. Biol.* 25.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hillson, N. et al. (2019). Building a global alliance of biofoundries. *Nat. Commun.* 10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hsiau, T., Maures, T., Waite, K., Yang, J., Kelso, R., Holden, K., and Stoner, R. (2018). Inference of CRISPR Edits from Sanger Trace Data. *bioRxiv*: 251082.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huang, Y., Shang, M., Liu, T., and Wang, K. (2022). High-throughput methods for genome editing: The more the better. *Plant Physiol.* 188.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ikeuchi, M., Sugimoto, K., and Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. *Plant Cell* 25.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., and Parrott, W.A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. *BMC Biotechnol.* 15.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Karlson, C.K.S., Mohd-noor, S.N., Nolte, N., and Tan, B.C. (2021). Crispr/dcas9-based systems: Mechanisms and applications in plant sciences. *Plants* 10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lawson, D.A. et al. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. *Nature* 526.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lei, Y., Lu, L., Liu, H.Y., Li, S., Xing, F., and Chen, L.L. (2014). CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. *Mol. Plant* 7: 1494–1496.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lenaghan, S.C. and Neal Stewart, C. (2019). An automated protoplast transformation system. In *Methods in Molecular Biology*.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, D., Shi, L., Han, C., Yu, J., Li, D., and Zhang, Y. (2012). Validation of Reference Genes for Gene Expression Studies in Virus-Infected *Nicotiana benthamiana* Using Quantitative Real-Time PCR. *PLoS One* 7.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2- $\Delta\Delta CT$ method. *Methods* 25: 402–408.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lu, Y., Pang, Z., and Xia, J. (2023). Comprehensive investigation of pathway enrichment methods for functional interpretation of LC-MS global metabolomics data. *Brief. Bioinform.* 24.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maitra, S., Viswanathan, M.B., Park, K., Kannan, B., Alfanar, S.C., McCoy, S.M., Cahoon, E.B., Altpeter, F., Leakey, A.D.B., and Singh, V. (2022). Bioprocessing, Recovery, and Mass Balance of Vegetative Lipids from Metabolically Engineered "oilcane" Demonstrates Its Potential as an Alternative Feedstock for Drop-In Fuel Production. *ACS Sustain. Chem. Eng.* 10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mamode Cassim, A. and Mongrand, S. (2019). Lipids light up in plant membranes. *Nat. Plants* 5.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Manoli, A., Sturaro, A., Trevisan, S., Quaggiotti, S., and Nonis, A. (2012). Evaluation of candidate reference genes for qPCR in maize. *J. Plant Physiol.* 169.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Martín-Saiz, L. et al. (2023). Using the Synergy between HPLC-MS and MALDI-MS Imaging to Explore the Lipidomics of Clear Cell Renal Cell Carcinoma. *Anal. Chem.* 95.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Meurer, J., Plücken, H., Kowallik, K. V., and Westhoff, P. (1998). A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in *Arabidopsis thaliana*. *EMBO J.* 17.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mumm, R.H. (2013). A look at product development with genetically modified crops: Examples from maize. *J. Agric. Food Chem.*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murashige, T. and Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 15.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Napier, J.A., Haslam, R.P., Beaudoin, F., and Cahoon, E.B. (2014). Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Curr. Opin. Plant Biol. 19.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Neumann, E.K., Do, T.D., Comi, T.J., and Sweedler, J. V. (2019). Exploring the Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angew. Chemie - Int. Ed. 58.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Norouzi, O., Hesami, M., Pepe, M., Dutta, A., and Jones, A.M.P. (2022). In vitro plant tissue culture as the fifth generation of bioenergy. Sci. Rep. 12.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pandian, K., Matsui, M., Hankemeier, T., Ali, A., and Okubo-Kurihara, E. (2023). Advances in single-cell metabolomics to unravel cellular heterogeneity in plant biology. Plant Physiol.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Raczyk, M. and Rudzińska, M. (2015). Analysis of plant lipids. Plant Lipids Sci. Technol. Nutr. Value Benefits to Hum. Heal. 661.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rigoulot, S.B. et al. (2023). Automated, High-Throughput Protoplast Transfection for Gene Editing and Transgene Expression Studies. In Plant Genome Engineering. Methods in Molecular Biology, S.B. Rigoulot, ed (Humana, New York, NY.), pp. 129–149.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Roy, A.L., Conroy, R., Smith, J., Yao, Y., Beckel-Mitchener, A.C., Anderson, J.M., and Wilder, E.L. (2018). Accelerating a paradigm shift: The common fund single cell analysis program. Sci. Adv. 4.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., Blanca, J., Granell, A., and Orzaez, D. (2013). Goldenbraid 2.0: A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 162.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Seydel, C. (2021). Single-cell metabolomics hits its stride. Nat. Methods 18.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Si, T., Chao, R., Min, Y., Wu, Y., Ren, W., and Zhao, H. (2017). Automated multiplex genome-scale engineering in yeast. Nat. Commun.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Si, T., Xiao, H., and Zhao, H. (2015). Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol. Adv. 33.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Squire, H.J., Tomatz, S., Voke, E., González-Grandío, E., and Landry, M. (2023). The emerging role of nanotechnology in plant genetic engineering. Nat. Rev. Bioeng. 1.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Taylor, M.J., Lukowski, J.K., and Anderton, C.R. (2021). Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. J. Am. Soc. Mass Spectrom. 32.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

TSAI, C.H., WEN, M.C., and KINSELLA, J.E. (1982). Cocobean Tissue Culture: Lipid Composition and Fatty Acid Metabolism. J. Food Sci. 47.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tsugawa, H. et al. (2020). A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Urzì, O., Raimondo, S., and Alessandro, R. (2021). Extracellular vesicles from plants: Current knowledge and open questions. Int. J. Mol. Sci. 22.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vanhercke, T. et al. (2014). Metabolic engineering of biomass for high energy density: Oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol. J. 12.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vanhercke, T., Dyer, J.M., Mullen, R.T., Kilaru, A., Rahman, M.M., Petrie, J.R., Green, A.G., Yurchenko, O., and Singh, S.P. (2019). Metabolic engineering for enhanced oil in biomass. *Prog. Lipid Res.* 74.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Volk, M.J., Tran, V.G., Tan, S.I., Mishra, S., Fatma, Z., Boob, A., Li, H., Xue, P., Martin, T.A., and Zhao, H. (2023). Metabolic Engineering: Methodologies and Applications. *Chem. Rev.* 123.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xue, P., Si, T., Mishra, S., Zhang, L., Choe, K., Sweedler, J. V., and Zhao, H. (2020). A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids. *Biotechnol. Bioeng.* 117.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yin, K., Gao, C., and Qiu, J.L. (2017). Progress and prospects in plant genome editing. *Nat. Plants* 3.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhai, Z., Keereetawee, J., Liu, H., Feil, R., Lunn, J.E., and Shanklin, J. (2018). Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1[open]. *Plant Cell* 30.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhai, Z., Liu, H., and Shanklin, J. (2021). Ectopic expression of oleosin 1 and inactivation of gbs1 have a synergistic effect on oil accumulation in plant leaves. *Plants* 10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhai, Z., Liu, H., and Shanklin, J. (2017a). Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis. *Plant Cell* 29.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhai, Z., Liu, H., Xu, C., and Shanklin, J. (2017b). Sugar potentiation of fatty acid and triacylglycerol accumulation. *Plant Physiol.* 175.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, H., Liu, Y., Fields, L., Shi, X., Huang, P., Lu, H., Schneider, A.J., Tang, X., Puglielli, L., Welham, N. V., and Li, L. (2023). Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging. *Nat. Commun.* 14: 5185.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, J., Chen, Y., Fu, L., Guo, E., Wang, B., Dai, L., and Si, T. (2021). Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. *Curr. Opin. Biotechnol.* 67.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, S., Skerker, J.M., Rutter, C.D., Maurer, M.J., Arkin, A.P., and Rao, C. V. (2016). Engineering *Rhodosporidium toruloides* for increased lipid production. *Biotechnol. Bioeng.* 113.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, X., Pan, S.R., Hu, H.M., Wu, G.F., Feng, M., Zhang, W., and Luo, X. (2008). Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: Effects of PEG molecular weight and PEGylation degree. *J. Biomed. Mater. Res. - Part A* 84.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)