

1 Comparison of Microprecipitation Methods for Polonium 2 Source Preparation for Alpha Spectrometry

3
4 Hilary P. Emerson^{1*}, Matthew RisenHuber¹, Caleb Allen¹, Jose Veleta¹, Morgan Haney¹, Staci
5 Herman¹, and Chelsie Beck¹

6 *¹Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, USA*

7 Abstract

8 Detection of radioactive isotopes of polonium is important for understanding natural processes,
9 management and assessment of radioactive waste, and nuclear forensics applications. The most
10 common methods for preparation of polonium samples for alpha spectrometry are
11 electrodeposition and spontaneous deposition which are time consuming. Here, we compare
12 three approaches utilizing rapid microprecipitation from bismuth phosphate, copper sulfide, or
13 tellurium alongside traditional spontaneous deposition methods. From these experiments, results
14 show that copper sulfide microprecipitation recoveries are similar to spontaneous deposition on
15 silver and less time consuming with an approximate five-fold decrease in preparation time,
16 including in the presence of complex matrices like seawater.

17 Keywords

18 Polonium, microprecipitation, alpha spectroscopy

19 Introduction

20 There are 42 isotopes of polonium including naturally occurring and anthropogenically
21 produced isotopes of polonium that are of interest for understanding natural processes,
22 management and assessment of radioactive waste, and nuclear forensics applications [1, 2]. For
23 example, significant mobilization of polonium-210 (Po-210) has been observed during recovery
24 of unconventional oil and gas [3], and it has been a valuable tracer for understanding nutrient
25 cycling in oceanic systems [4] and atmospheric fallout [2]. In nuclear forensics applications,
26 polonium is also an activation product produced from neutron bombardment of bismuth that has

27 been monitored in waste and the environment, including the subsurface and atmosphere [2]. In
28 addition, Po-210 has been used previously as a poison leading to significant public health
29 concerns [5].

30 Polonium isotopes are primarily alpha emitters with Po-210 being the longest lived
31 naturally occurring isotope (half-life of approximately 138 days) and polonium-209 (Po-209)
32 being the longest lived anthropogenically produced isotope (half-life of approximately 124
33 years). It is important to have fast and reliable methods of preparation of samples for analysis,
34 especially when short-lived isotopes are of interest. To date, the primary preparation methods
35 for alpha spectrometry for polonium are spontaneous deposition and electrodeposition methods
36 which require significant preparation time [1, 6]. When there are large numbers of samples to be
37 analyzed or short-lived isotopes are targeted, there is a need for methods that can be conducted
38 more quickly.

39 A recent review describes the different methods available for measuring polonium in
40 samples including digestion, purification/separation, source preparation, and analysis methods
41 [7]. When analyzing samples by alpha spectrometry, a thin, homogenous layer of sample is
42 required. Once a sample has been digested or purified/separated, there are three primary
43 methods of source preparation for alpha spectrometry, including spontaneous (or self)
44 deposition, electrodeposition, and microprecipitation. Spontaneous deposition methods are most
45 commonly used with silver flakes or discs (as well as copper, stainless steel, and nickel) with
46 good recoveries (>95%) and selectivity for polonium, although deposition may be less uniform
47 and can be time consuming with optimized procedures generally requiring heated deposition for
48 2-2.5 hours [1, 6, 8, 9]. In addition, the presence of redox active metals and organics may
49 interfere with deposition or degrade resolution of the alpha spectra [9]. Electrodeposition
50 procedures require a specialized setup with electrodes and a power supply and a similar time of
51 preparation as compared to spontaneous deposition. However, electrodeposition generally
52 results in the highest recovery, uniformity of deposition, and peak resolution [1, 7].
53 Microprecipitation methods are relatively fast and require minimal equipment in that a simple
54 filter system is required (with or without vacuum). However, microprecipitation techniques may
55 be less selective and result in less uniform precipitates and lower selectivity, peak resolution,
56 and recoveries. Therefore, microprecipitation methods are generally optimized for the element
57 of interest and/or conducted following separation procedures [7].

58 The objective of this work was to test rapid methods of preparation for alpha
59 spectrometry that still preserve polonium recovery and peak resolution. Rapid
60 microprecipitation methods were tested comparing previously published techniques, including
61 bismuth phosphate [10], copper sulfide [11, 12], and tellurium microprecipitation [13],
62 alongside a standard spontaneous deposition [1, 6].

63 Experimental

64 Materials

65 A Po-209 standard (0.97 pCi/g or 35890 μ Bq/g) was procured (Eckert and Ziegler,
66 Valencia, CA). All salts were ACS Reagent grade or better in purity with additional chemical
67 details in the microprecipitation methods section. Hydrochloric (HCl) acid, nitric (HNO₃) acid,
68 and ammonium hydroxide (NH₄OH) used were Optima grade (Fisher Scientific, Hampton, NH).
69 All dilutions were prepared with deionized water (DI, $> 18 \text{ M}\Omega\cdot\text{cm}$).

70
71 A complex seawater (SW) matrix was prepared for comparison with separation of simple
72 solutions. A highly enriched uranium (HEU) target was irradiated at Washington State
73 University in a natural boron carbide shield. At the same time, an Atlantic Seawater standard
74 from Ocean Scientific International Limited (Havant, UK) was irradiated at Pacific Northwest
75 National Laboratory with a 14 MeV neutron generator. The HEU was dissolved in 3 M HNO₃,
76 while the seawater was dissolved in DI water. Two types of samples were then prepared with
77 and without the irradiated seawater as described in Table 1.

78
79 **Table 1.** Fissions, seawater, and stable tracers added per replicate of the radiological samples
80 processed.

Description	Fissions	Seawater	Stable Tracers (100 μ g of each)
No Seawater	5×10^{11}	0	Cu, Mn, Ni, Pt, V, Zn
Seawater	5×10^{11}	1×10^{-4} atoms ²⁴ Na/ Fissions	Cu, Mn, Ni, Pt, V, Zn

82 Methods

83 **Table 2** summarizes the matrix of experiments conducted to compare microprecipitation
84 and spontaneous deposition methods. These methods of preparation for alpha spectrometry are
85 summarized in the sections for microprecipitation and spontaneous deposition, respectively.
86 Three different microprecipitation procedures were tested, including copper sulfide, bismuth
87 phosphate, and tellurium. The alpha spectrometry section details counting methods. Samples
88 were prepared in 0.1 M hydrochloric acid (HCl) either via addition of a polonium standard to
89 0.1 M HCl for the simplified matrix or via separation and elution of polonium from a complex
90 seawater (SW) matrix (as described in materials section) with an initial volume of 40 mL.

91 The optimal microprecipitation method identified in the simplified matrix was compared
92 alongside spontaneous deposition for the SW matrix. The SW matrix was eluted from resins
93 following two different isolation procedures. For one of the procedures, polonium was eluted
94 from strontium resin (Sr resin, Eichrom Technologies, Inc., Lane Lisle, IL) in 0.1 M HCl as
95 described previously [14] and summarized in the Supplemental Materials **Fig. S1**. For the
96 second procedure, polonium was eluted from a mixture of Sr resin and KNiFC Pan resin
97 (Eichrom Technologies, Inc., Lane Lisle, IL) in 8 M HNO₃ with transposition via repeated
98 evaporation to near dryness at by setting the hot plate to 150°C with addition of 0.1 M HCl. The
99 transposition was conducted at relatively low temperature to reduce volatilization of polonium
100 [1, 3] and without drying completely, as dry ash procedures have reported significantly lower
101 recoveries [9]. Both isolation procedures were tested for comparison of the microprecipitation
102 method with the best performance in the simple matrix with the SW matrix. The second
103 isolation procedure was also tested with the spontaneous deposition procedure to allow for
104 comparison of standard methods with the best preforming microprecipitation in the SW matrix.

105 **Table 2.** Matrix of experiments.

Method	Matrix ¹	Background Solution	Elution Conditions ³
Bismuth Phosphate	Simple	0.1 M HCl	N/A
Tellurium	Simple	0.1 M HCl	N/A
Copper Sulfide – 1 ²	Simple	0.1 M HCl	N/A
Copper Sulfide – 0.5 ²	Simple SW	0.1 M HCl	Sr Resin

Spontaneous Deposition	SW	8 M HNO ₃	KNiFC Pan Resin
		0.1 M HCl	Sr Resin
		8 M HNO ₃	KNiFC Pan Resin

106 ¹The “Simple” Matrix includes addition of only a Po-209/210 standard to acid solutions, while the “SW” matrix
 107 includes addition of a background seawater matrix as described in the materials section.

108 ²The total copper added in the copper sulfide microprecipitation was tested at 0.5 and 1.0 µg based on previous
 109 research [11, 12].

110 ³Samples prepared in the SW matrix also went through separations schemes to isolate polonium isotopes for
 111 analysis.

112 *Microprecipitation*

113 For the bismuth phosphate method, the following reagents were added in series based on
 114 previous research [10]:

115 (i) 125 µL of 1000 µg/mL Bi stock solution in 2% HNO₃ (High Purity Standards,
 116 Charleston, SC) in 0.1 M HCl
 117 (ii) 100 µL H₂O₂ (30% concentration, Fisher Scientific)
 118 (iii) 1 mL of 14.5 M NH₄OH (Fisher Scientific)
 119 (iv) 0.75 mL of 3.2 M (NH₄)₂HPO₄ (99+% purity, Thermo Scientific)

120
 121 For the copper sulfide method, the following reagents were added in series based on
 122 previous research [11, 12]:

123 (i) 1 mL of 0.5 or 1.0 mg Cu/mL from CuCl₂·2H₂O (Fisher Scientific) in 0.1 M HCl
 124 (ii) 1 mL of 0.3 wt.% Na₂S from Na₂S·9H₂O (Fisher Scientific) in 0.1 M HCl

125
 126 For the tellurium method, the following reagents were added in series based on previous
 127 research [13]:

128 (i) 0.4 mL of 1 mg/mL Te from H₁₀Na₂O₉Te (99.5% purity, Fisher Scientific) in 30%
 129 HCl
 130 (ii) 4 mL of 10 m/v% SnCl₂ (Fisher Scientific) in 1 M HCl

131
 132 Approximately 15 minutes after addition, samples for all methods were vacuum filtered
 133 onto Resolve filters (Eichrom Technologies, Inc., 0.1 µm pore size, polyethylene). During
 134 vacuum filtration, the filter was pre-rinsed with alcohol and deionized water (DI, resistivity >

135 18 MΩ-cm), before the sample was quantitatively transferred to the filtration unit with three 1
136 mL rinses of the sample tube with 0.1 M HCl, followed by another round of rinsing with DI
137 and then alcohol.

138 *Spontaneous Deposition*

139 Spontaneous deposition was conducted based on previous research [1, 6]. First, the Po
140 fraction was adjusted to pH 2 via dropwise addition of 10 M NH₄OH and heated to 90-95 °C in
141 a glass beaker. A polished silver disc was taped on the bottom side to allow for alpha counting
142 of only the top side of the disc before emplacement into the beaker. During deposition, the
143 sample was gently stirred with a magnetic bar for 2 hours with addition of DI periodically to
144 keep the volume from fluctuating during heating. After, the disc was removed, rinsed with DI
145 water, and air-dried in a fume hood.

146 *Alpha spectrometry*

147 Samples were counted on a Canberra Alpha Analyst with Passivated Implanted Planar
148 Silicon (PIPS) detectors. Counting times were approximately 48 hours resulting in an error of <
149 2% based on counting statistics [15]. The data was analyzed via Canberra software, Apex-Alpha
150 with a library built from the Evaluated Nuclear Structure Data File, which defines peak
151 energies, half-lives, and branching ratios. Regions of Interest (ROI) were taken from the peak
152 energies and extend from +25 keV to -75 keV for a total range of 100 keV surrounding the
153 peak. This ROI can change based on interfering isotopes or sample attenuation, which increases
154 the ROI at the low energy tail. It should be noted that counts may have been attenuated due to
155 sample geometry or precipitate size (for the microprecipitation method) and expanding the ROI
156 only works with neat samples. In addition, the efficiency is slightly increased for the samples
157 prepared on filters (for the microprecipitation method) as the distance from the detectors is
158 slightly decreased as compared to the calibrated geometry.

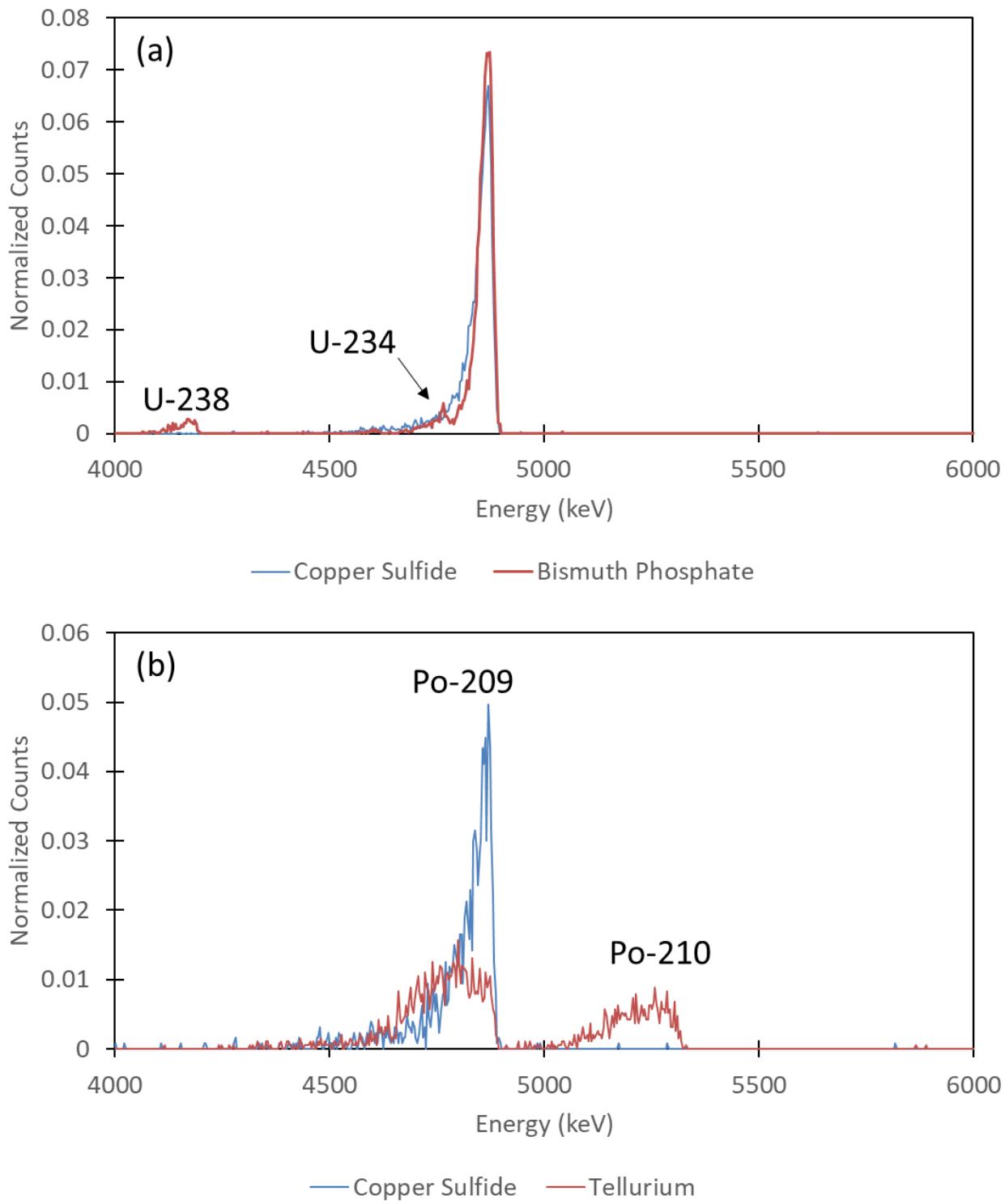
159 **Results**

160 *Comparison of microprecipitation methods*

161 Three different microprecipitation methods and a standard spontaneous deposition
162 method were tested for preparation of polonium for alpha spectrometry. All three
163 microprecipitation methods were effective with recoveries over 90% for clean samples prepared
164 from high purity solutions and a Po-209 stock. However, the copper sulfide method was
165 determined to be the optimal method as the full-width-half-maximum (FWHM) was
166 significantly different for each of the three microprecipitation methods with the average FWHM
167 increasing in the following order: copper sulfide < bismuth phosphate < tellurium, as
168 summarized in **Table 3** and Supplemental Materials **Table S.1** (which compares the methods
169 based on a t-test with an $\alpha = 0.05$). The narrowest FWHM is preferred as it allows for the
170 greatest potential differentiation in alpha energies and suggests less attenuation of the alpha
171 particles due to deposition layer thickness. In addition, there was an increase in the background
172 observed during alpha counting due to chemical impurities for the bismuth phosphate and
173 tellurium microprecipitation methods. Therefore, the copper sulfide method was chosen for
174 further comparison with spontaneous deposition methods for a sample with a SW matrix.

175 For the bismuth phosphate microprecipitation method, there were visible peaks from
176 naturally occurring U-234/238 (4774.6 and 4198 keV, respectively) likely due to chemical
177 impurities in the $(\text{NH}_4)_2\text{HPO}_4$ salts (> 99% purity, Thermo Scientific) as shown in the
178 Supplemental Materials **Fig. 1a**. The location of the primary U-234 peak (4774.6 keV) near the
179 Po-209 (4883 and 4885 keV) peaks could lead to loss of approximately 1-2% of the low end of
180 the tail of Po-209. These peaks were observed in the background (reagent blank) and samples
181 spiked with Po-209. This amount of uranium would represent small fraction of the total mass
182 added from the $(\text{NH}_4)_2\text{HPO}_4$ as U-238 (approximately an 8.7×10^{-7} fraction). Uranium is
183 commonly observed at elevated concentrations in phosphate minerals [16, 17]. Although
184 cleanup of the background natural uranium in these salts is possible, it would be time
185 consuming. Because of the added time for purifying salts and the ease of other
186 microprecipitation methods tested, further testing with this method was not conducted.

187 The largest FWHM was observed for the tellurium microprecipitation along with the
188 greatest variability, as shown in **Table 3**. Although the FWHM was larger for tellurium, the
189 visual precipitate (Supplemental Materials **Fig. S.2a**) appeared relatively more consistent than
190 copper sulfide. In addition, there were visible peaks from Po-210 likely due to chemical
191 impurities in the $\text{H}_{10}\text{Na}_2\text{O}_9\text{Te}$ (>99.5% purity) salt as shown in **Fig. 1b**, potentially concentrated


192 alongside the tellurium during purification from natural materials. Therefore, if Po-210
193 measurements are of interest, then this method should be avoided unless chemicals are tested
194 prior to preparation. Because of the larger FWHM and background Po-210, further testing was
195 also not conducted with this method.

196 Overall, the copper sulfide method led to the narrowest FWHM, did not have significant
197 background peaks due to chemical impurities, and was similarly fast to prepare when compared
198 with the other two microprecipitation methods. The preparation time for the copper sulfide
199 microprecipitation, approximately 30 minutes, as compared to spontaneous deposition resulted
200 in an approximate five-fold decrease in preparation time for alpha spectrometry. In addition,
201 select tests were conducted to determine the optimal mass of Cu to add to samples for
202 precipitation of copper sulfide. Previously published research added between 0.5 and 1 mg of
203 Cu during sample preparation [11, 12]. However, a significant difference was not observed with
204 addition of 0.5 or 1 mg of Cu as summarized in the Supplemental Materials, section S.3, **Fig.**
205 **S.3** Testing continued with 0.5 mg of Cu.

206 **Table 3.** Summary of results for microprecipitation methods with error based on one standard
207 deviation of triplicate samples.

Method	Recovery (%)	FWHM
Copper Sulfide	93 \pm 3	32.9 \pm 2.6
Bismuth Phosphate	105 \pm 5	37.3 \pm 1.7
Tellurium	114 \pm 1	67.9 \pm 15.7

208 ¹0.5 mg of copper added for microprecipitation

209

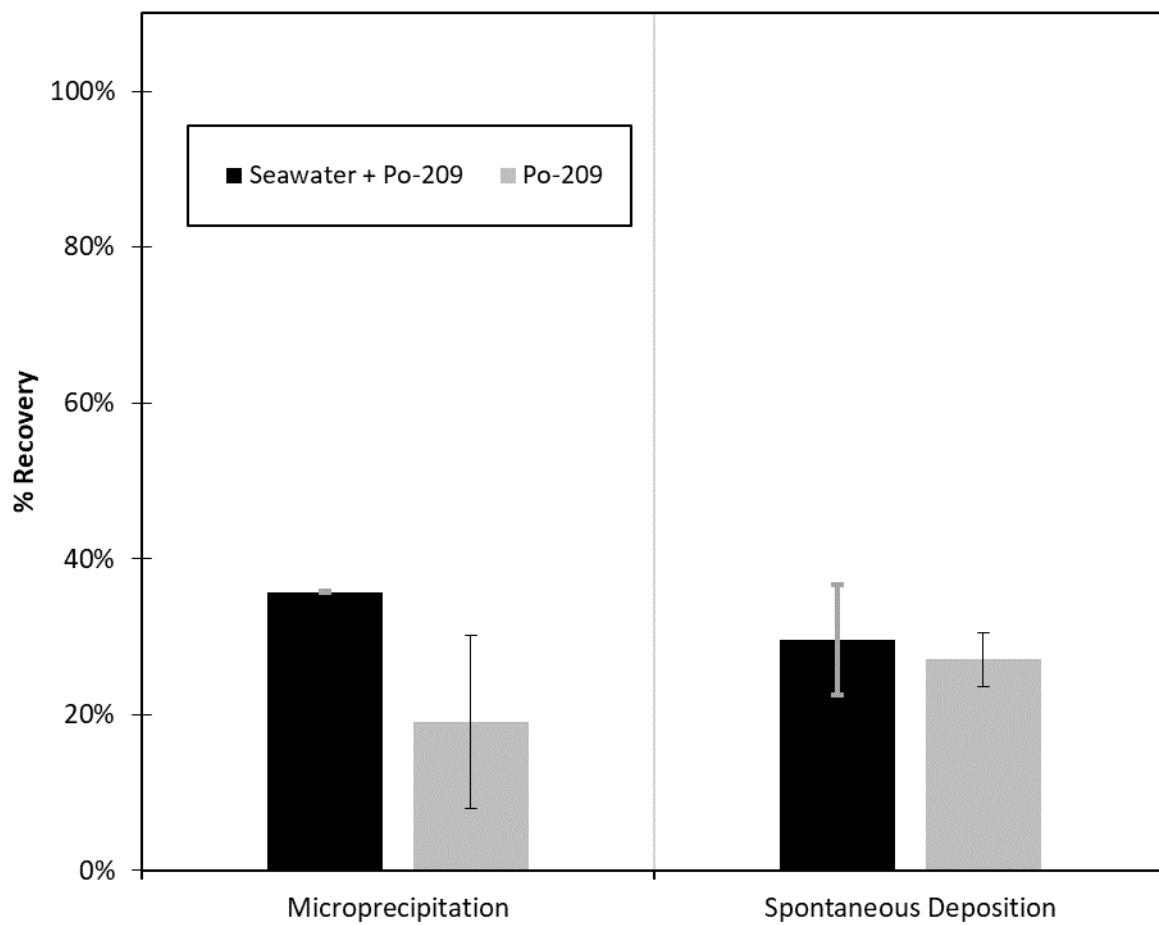
210 **Fig. 1.** Comparison of spectra showing salt impurities for bismuth phosphate and tellurium
 211 methods with (a) copper sulfide (blue) and bismuth phosphate (red) microprecipitation methods
 212 showing peaks for background uranium-234/238 in $(\text{NH}_4)_2\text{HPO}_4$ and (b) copper sulfide (blue)

213 and tellurium (red) showing peaks for natural polonium-210 in $H_{10}Na_2O_9Te$. Note: Results are
214 normalized based on the total counts across the entire spectra.

215

216 *Methods testing on SW matrices*

217


218 Testing of the copper sulfide method for microprecipitation of polonium with and without the
219 SW matrix, including initial separations procedures described previously [14], resulted in
220 decreased overall recoveries ($29.5 \pm 1.5\%$ recovery across the entire separation and deposition
221 procedure) as compared to the clean samples. However, the decreased recoveries likely
222 represent losses during separations procedures and not during microprecipitation due to the
223 excellent recoveries observed in the simple matrix samples presented in the previous section.

224

225 In addition, both the copper sulfide microprecipitation and spontaneous deposition methods
226 were conducted on split samples following the second developmental separation procedure with
227 a comparison of results with and without the SW matrix following elution in 8 M HNO_3 and
228 transposition into 0.1 M HCl. Overall, the results were similar for both (**Figure 2**), although one
229 of the copper sulfide microprecipitation samples (without SW) included a significant
230 overlapping peak in the low range of the Po-209 peak impacting overall recoveries. Moreover,
231 the FWHM were not significantly different when compared between the simplified matrix and
232 SW matrix for both copper sulfide microprecipitation and spontaneous deposition (SI, section
233 S.4, **Table S2**), although a significant difference was observed when comparing the two
234 different methods (**Table 4**) for the SW matrix and combined comparison with both matrices.
235 The error introduced by the overlapping peak in one of the simplified matrix samples for copper
236 sulfide likely impacted the comparison in those conditions.

237

238

239

240 **Fig. 2.** Comparison of recoveries for Po-209 after separation, elution, and transposition,
 241 including microprecipitation and alpha spectrometry and spontaneous depositions and alpha
 242 spectrometry for polonium with (*black*) and without (*gray*) seawater.

243

244 **Table 4.** Summary of results comparing copper sulfide microprecipitation and spontaneous
 245 deposition method FWHM values with average and one standard deviation, including a
 246 comparison t-test for the two sample sets assuming unequal variances for an $\alpha = 0.05$ with the
 247 $t_{\text{test}}/t_{\text{stat}}$ with any comparison *italicized* for statistical differences.

Conditions	Copper Sulfide (FWHM)	Spontaneous Deposition (FWHM)	$t_{\text{test}}/t_{\text{stat}}$
Simple	31 ± 9	20 ± 2	$1.7/6.3$
SW	44 ± 2	20 ± 2	$15.2/2.9$

	Both	38±9	20±2	3.7/2.4
--	------	------	------	---------

248 ¹The “Simple” Matrix includes addition of only a Po-209/210 standard to acid solutions, while the “SW” matrix
 249 includes addition of a background seawater matrix as described in the materials section.

250

251 *Conclusions*

252

253 Bismuth phosphate, tellurium, and copper sulfide microprecipitation methods were compared
 254 under simplified conditions for preparation of polonium for alpha spectrometry. From these
 255 experiments, the copper sulfide method was the best microprecipitation method tested for
 256 polonium, because it had the smallest FWHM and chemicals used for preparation did not require
 257 removal of background alpha emitters. In addition, results showed that copper sulfide
 258 microprecipitation recoveries for polonium were similar to spontaneous deposition on silver and
 259 less time consuming with an approximate five-fold decrease in preparation time, including in the
 260 presence of complex matrices like seawater. While the FWHMs were significantly wider for the
 261 copper sulfide method as compared to spontaneous deposition, the peaks were sufficient to
 262 discriminate between Po-209 and Po-210. Moreover, it is unlikely that peaks would be affected
 263 by other major alpha emitters due to the selectivity of the method. Previously, decontamination
 264 factors were measured for the actinides and radium, with the smallest measured for radium at
 265 135. Meaning that there was 135× more Ra in solution, as compared to the amount retained on
 266 the filter [11]. Consequently, significant quantities would be required to cause interference. If
 267 time is the most important factor, the copper sulfide method is the best option of those tested
 268 with the reagents used.

269

270 *Acknowledgements*

271

272 This work was sponsored by the Department of Energy’s National Nuclear Security
 273 Administration, Office of Defense Nuclear Nonproliferation Research and Development. PNNL
 274 is operated by Battelle for the U.S. Department of Energy (DOE) under Contract No. DE-AC05-
 275 76RL0-1830. The authors also thank Nik Uhnak and Evan Warzecha for their preparation and
 276 calculations for the samples irradiated to prepare the seawater matrix.

277 The views expressed here do not necessarily reflect the opinion of the United States
278 Government, the United States Department of Energy or Pacific Northwest National Laboratory.

279 *References*

280

281 [1] K. M. Matthews, C.-K. Kim, and P. Martin, "Determination of 210Po in environmental
282 materials: a review of analytical methodology," *Applied Radiation and Isotopes*, vol. 65,
283 no. 3, pp. 267-279, 2007.

284 [2] B. R. Persson and E. Holm, "Polonium-210 and lead-210 in the terrestrial environment: a
285 historical review," *Journal of environmental radioactivity*, vol. 102, no. 5, pp. 420-429,
286 2011.

287 [3] P. Thakur and A. Ward, "210Po in the environment: insight into the naturally occurring
288 polonium isotope," *Journal of Radioanalytical and Nuclear Chemistry*, vol. 323, no. 1,
289 pp. 27-49, 2020.

290 [4] D. Kadko, M. P. Bacon, and A. Hudson, "Enhanced scavenging of 210Pb and 210Po by
291 processes associated with the East Pacific Rise near 8° 45' N," *Earth and planetary
292 science letters*, vol. 81, no. 4, pp. 349-357, 1987.

293 [5] J. Harrison, R. Leggett, D. Lloyd, A. Phipps, and B. Scott, "Polonium-210 as a poison,"
294 *Journal of Radiological Protection*, vol. 27, no. 1, p. 17, 2007.

295 [6] K. Bagnall, "The chemistry of polonium," *Quarterly Reviews, Chemical Society*, vol. 11,
296 no. 1, pp. 30-48, 1957.

297 [7] L. Zhou, R. Wang, H. Ren, P. Wang, and Y. Cao, "Detection of polonium-210 in
298 environmental, biological and food samples: a review," *Molecules*, vol. 28, no. 17, p.
299 6268, 2023.

300 [8] B. Zhao, Z. Sun, Y. Guo, Z. Zhou, X. Wang, and P. Ke, "Occurrence characteristics of
301 uranium mineral-related substances in various environmental media in China: a critical
302 review," *Journal of hazardous materials*, vol. 441, p. 129856, 2023.

303 [9] B. N. Seiner, S. M. Morley, T. A. Beacham, M. M. Haney, S. Gregory, and L. Metz,
304 "Effects of digestion, chemical separation, and deposition on Po-210 quantitative
305 analysis," *Journal of Radioanalytical and Nuclear Chemistry*, vol. 302, pp. 673-678,
306 2014.

307 [10] S. L. Maxwell, B. K. Culligan, J. B. Hutchison, R. C. Utsey, and D. R. McAlister, "Rapid
308 determination of 210 Po in water samples," *Journal of Radioanalytical and Nuclear
309 Chemistry*, vol. 298, pp. 1977-1989, 2013.

310 [11] N. Guérin and X. Dai, "Rapid preparation of polonium counting sources for alpha
311 spectrometry using copper sulfide microprecipitation," *Analytical chemistry*, vol. 85, no.
312 13, pp. 6524-6529, 2013.

313 [12] B. Lemons, H. Khaing, A. Ward, and P. Thakur, "A rapid method for the sequential
314 separation of polonium, plutonium, americium and uranium in drinking water," *Applied
315 Radiation and Isotopes*, vol. 136, pp. 10-17, 2018.

316 [13] L. Song, Y. Ma, Y. Wang, Y. Yang, M. Luo, and X. Dai, "Method of polonium source
317 preparation using tellurium microprecipitation for alpha spectrometry," *Analytical
318 chemistry*, vol. 89, no. 24, pp. 13651-13657, 2017.

319 [14] S. Herman *et al.*, "Evaluation of SR/TEVA/TRU triple stack for separation of activation
320 products," *Journal of Radioanalytical and Nuclear Chemistry*, vol. 333, no. 5, pp. 2351-
321 2360, 2024.

322 [15] G. F. Knoll, "Radiation detection and measurement," *John & Wiley Sons Inc*, 2010.

323 [16] P. C. Burns and R. J. Finch, *Uranium: mineralogy, geochemistry, and the environment*.
324 Walter de Gruyter GmbH & Co KG, 2018.

325 [17] P. Smedley and D. Kinniburgh, "Uranium in natural waters and the environment:
326 Distribution, speciation and impact," *Applied Geochemistry*, vol. 148, p. 105534, 2023.