

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

Bigelow Laboratory for Ocean Sciences

Final Scientific/Technical Report

*Optimizing cost-effective and benchmarked industry standards to
quantify nutrient bioextraction by seaweed*

DE-AR0001169

Award:	DE-AR0001169
Sponsoring Agency:	USDOE, Advanced Research Project Agency – Energy (ARPA-E)
Lead Recipient:	Bigelow Laboratory for Ocean Sciences
Project Team Members:	Clarkson University, Atlantic Sea Farms, Tenj Aquarium Design + Build
Project Title:	Optimizing cost-effective and benchmarked industry standards to quantify nutrient bioextraction by seaweed
Program Director:	Dr. Nichole Price
Principal Investigator:	Dr. Nichole Price, Dr. Stephen Archer, Dr. Rachel Sipler
Contract Administrator:	John McKown, Jason Grundy, James McManus, Beth Orcutt
Date of Report:	February 10, 2025
Reporting Period:	1/10/2020 to 1/09/2023

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number [DE-AR0001169]. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Please check the appropriate box:

This Report contains no Protected Data.

This Report contains Protected Data and the award allows data to be marked as protected. Refer to your Attachment 2 for guidance on how to appropriately mark Protected Data. The applicable notice is provided below:

PROTECTED RIGHTS NOTICE These protected data were produced under agreement no. _____ with the U.S. Department of Energy and may not be published, disseminated, or disclosed to others outside the Government until 5 years after development of information under this agreement, unless express written authorization is obtained from the recipient. Upon expiration of the period of protection set forth in this Notice, the Government shall have unlimited rights in this data. This Notice shall be marked on any reproduction of this data, in whole or in part.

This Report contains SBIR/STTR Data and the award allows data to be marked as SBIR data. Refer to your Attachment 2 for guidance on how to appropriately mark SBIR Data. The applicable notice is provided below:

SBIR/STTR RIGHTS NOTICE These SBIR/STTR data are furnished with SBIR/STTR rights under [Award No. _____ or a subaward under Award No. _____]. For a period of [CHOOSE THE APPLICABLE QUOTED TEXT: for awards issued prior to May 2, 2019 “4 years or for awards issued on or after May 2, 2019 “20 years”], unless extended in accordance with FAR 27.409(h), after acceptance of all items to be delivered under this [Award or subaward], the Government will use these data for Government purposes only, and they shall not be disclosed outside the Government (including disclosure for procurement purposes) during such period without permission of the Contractor, except that, subject to the foregoing use and disclosure prohibitions, these data may be disclosed for use by support contractors. After the protection period, the Government has a paid-up license to use, and to authorize others to use on its behalf, these data for Government purposes, but is relieved of all disclosure prohibitions and assumes no liability for unauthorized use of these data by third parties. This notice shall be affixed to any reproductions of these data, in whole or in part.

Table of Contents

Table of Figures/Tables.....	3
Public Executive Summary	3
Acknowledgements	4
Accomplishments and Objectives	5
Project Activities	5
Project Outputs	6
Follow-On Funding	7

Table of Figures/Tables

Table 1. Key Milestones and Deliverables.....	5
Table 2. Follow-on Funding Received.	7

Public Executive Summary

Interest in the utility of seaweed farms to mitigate coastal eutrophication, or nutrient loading, has grown commensurate with the recent rise of the farmed seaweed industry in the U.S. But economic valuation of this ecosystem service remains elusive in part because of challenges in quantifying this spatiotemporally variable biological process with reproducible and comparable metrics. Regulatory bodies that permit wastewater discharge or lease area for aquaculture farms require water quality testing and reporting of dissolved total nitrogen (N) in nearshore marine environments. These metrics must meet EPA standards for testing and reporting (e.g., Total Kjeldahl Nitrogen - TKN). However, these metrics are inherently highly variable over space and time in dynamic nearshore systems, and expensive to evaluate with sufficient breadth to constrain this variance, creating a critical bottleneck to direct quantification of farmed seaweed net uptake rates *in situ*.

Our research program used controlled pulse-chase laboratory experiments with a widely farmed sugar kelp species, *Saccharina latissima*, to quantify N uptake rates on the same samples, contrasting multiple methods (stable isotopes, elemental analyses, disappearance of ammonium and nitrate from the media, and simple surface-volume ratios) and explored the significance of sample storage and preparation, ontogeny, tissue type, nutrient availability, and intraspecific variation to N assimilation estimates.

We discovered that sugar kelp can uptake several forms of dissolved inorganic nitrogen (DIN) – nitrate, nitrite, and ammonium – but do so at different rates depending on the age of the seaweed, specific tissue type (greatest in vegetative growth areas), and the conditions to which they may have become acclimatized (faster if initially nutrient-starved). Up to $82.1\% \pm 27.3\%$ of the biomass of sugar kelp comes

from DIN. Thus, elemental analysis may be a cost-effective path forward for verification and comparable with the more expensive isotopic approaches currently used.

Our outputs include set of recommended industry standards for analyzing nitrogen content in algal biomass, benchmarked against existing water quality testing standards, to evaluate nutrient bioextraction effectiveness of seaweed farms. We also provided, in two peer-reviewed manuscripts, evidence that farming seaweed downstream of waste water treatment facilities is more cost effective at mitigating eutrophication than facilities upgrades when kelp used as food.

Acknowledgements

The facilities team at Bigelow Laboratory was critical to addressing operational issues in the seawater suite and environmental growth chamber. Friends of Casco Bay¹ were influential partners in helping us identify the correct levels of eutrophication and nitrogen species to explore. We'd also like to acknowledge ARPA-E for financially supporting our research, and to the Shelby Cullom Davis Charitable Fund and the Maine Technology Institute for providing cost-share, as well as all the other members of the project team:

Dr. Stephen Archer, Bigelow Laboratory for Ocean Sciences, Co-PI

Dr. Shane Rogers, Clarkson University, Co-PI

Dr. Rachel Sipler, Bigelow Laboratory for Ocean Sciences, Key Personnel

Dr. Brianna Stanely, Bigelow Laboratory for Ocean Sciences, Postdoc

Dr. Jingjing Wu, Clarkson University, Postdoc

Brittney Honisch, Bigelow Laboratory for Ocean Sciences, Senior Research Associate

Gabriella Iacono, Bigelow Laboratory for Ocean Sciences, Technician

Peter Craig, Bigelow Laboratory for Ocean Sciences, Technician

¹ The Casco BayKeeper program provided integral data on nitrogen concentration levels around seaweed farms in this region for several decades to contextualize our work. <https://www.cascobay.org/>

Accomplishments and Objectives

This award allowed Bigelow Laboratory for Ocean Sciences to demonstrate a number of key objectives. The focus of the project was on building a cost-effective framework for evaluating the ecosystem service of inorganic nitrogen uptake for farmed seaweed to help build and N removal offset credit industry.

A number of tasks and milestones were laid out in Attachment 3, the Technical Milestones and Deliverables, at the beginning of the project. The actual performance against the stated milestones is summarized here:

Table 1. Key Milestones and Deliverables

Tasks	Milestones and Deliverables
Task 1: Experiments to optimize sample storage and preparation 1.1 Sample storage 1.2 Sample preparation	Q2: Sample processing best practices established for subsequent experimentation Actual Performance: (June 1, 2020) Our team needed to acquire a new lyophilizer, to accommodate demand for this project. The extended lead time for equipment commensurate with the start of the global pandemic slowed progress, but the task was 100% only a few months after the target completion date. The protocols developed during this time period were applied thereafter.
Task 2: Experiments to identify major sources of variance in N uptake and comparing candidate proxies 2.1 Develop sample collection protocol 2.2 Tissue type 2.3 Ontogeny 2.4 Eutrophication level	Q8: Series of four experiments completed. Actual Performance: (January 9, 2023) Our team experienced significant delays in sourcing custom-made aquaria and affiliated parts in order to conduct experiments due to the global pandemic. Once the equipment was finally in hand, it took longer than anticipated to troubleshoot technical challenges. We requested, and were given, a no-cost extension of one year. By the end of the extension we were able to 100% complete all tasks. Deliverables included multiple oral presentations at scientific and trade conferences. Our team also executed two complex techno-economic analyses that were published in peer-reviewed journals.

Project Activities

Our project focus was to understand and quantify major contributions to variance in the measurement of dissolved inorganic nitrogen uptake by seaweed in order to discover the cheapest proxy with requisite accuracy to develop a nitrogen offset credit trading market. The approach we took was to conduct a series of comparative laboratory press-pulse experiments. Our expectation was that elemental analysis could be sufficient, if our underlying hypotheses were supported. These hypotheses are that standardizing sample collection (tissue type and seaweed age) and normalizing uptake rates to historical nitrogen exposure eliminates the largest sources of variance. We were able to demonstrate that not only can elemental analysis be a valid approach, but that inorganic nitrogen removal by seaweeds is of great economic value to waste water management facilities.

Project Outputs

A. Journal Articles

Wu, J., Rogers, S. W., Schaumann, R., Higgins, C., & Price, N. (2022). Bioextractive aquaculture as an alternative nutrient management strategy for water resource recovery facilities. *Water Research*, 212, 118092.

Wu, J., Rogers, S. W., Schaumann, R., & Price, N. N. (2023). A Comparison of Multiple Macroalgae Cultivation Systems and End-Use Strategies of *Saccharina latissima* and *Gracilaria tikvahiae* Based on Techno-Economic Analysis and Life Cycle Assessment. *Sustainability*, 15(15), 12072.

B. Papers

None

C. Status Reports

Scientific assessment of climate change and its effects in Maine. Report issued 2020 by the Scientific and Technical Subcommittee of the Maine Climate Council (Dr. Price is an appointee)

Maine Won't Wait One-Year Progress Report, 2021. Report issued 2021 by the Scientific and Technical Subcommittee of the Maine Climate Council (Dr. Price is an appointee)

D. Media Reports

None

E. Invention Disclosures

None

F. Patent Applications/Issued Patents

None

G. Licensed Technologies

None

H. Networks/Collaborations Fostered

None

I. Websites Featuring Project Work Results

None

J. Other Products (e.g. Databases, Physical Collections, Audio/Video, Software, Models, Educational Aids or Curricula, Equipment or Instruments)

None

K. Awards, Prizes, and Recognition

None

Follow-On Funding

Our team was fortunate to receive additional funding from other government agencies, philanthropic foundations, and for-profit entities after the effective date of our ARPA-E Award.

Table 2. Key Milestones and Deliverables

Source	Funds Received
USDA Organic Research and Extension Initiative (OREI) grant 2021-51300-35226	\$2,900,000
USDA AFRI NIFA Sustainable Agriculture Systems (SAS) grant 2021-69012-35919	\$10,000,000
USDA ARS Contract 0208-32000-001-042-S	\$2,200,000
Stonyfield Organic contract awarded to Bigelow Laboratory	\$50,000
Farmers Advocating for Organics (Organic Valley) award to Bigelow Laboratory	\$25,000
World Wildlife Fund grant to Bigelow Laboratory	\$300,000