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The objective of these notes is to demonstrate that the formulation of the MHD Boussinesq convection
equations that follows the conventions of the turbulence community used in our previous work [Pratt
et al., 2013, 2020, 2017], is consistent and compatible with the formulation from the convection community
used in Busse and Pesch [2006].

1 | The MHD Boussinesq convection equations
In Gaussian units the complete set of governing equations are [as written in Biskamp, 2003]:

∂ρ

∂t
+ (V · ∇)ρ = 0 , (1.1)

ρ
∂V

∂t
+ ρ(V · ∇)V − 1

c
(J × B) = −∇P + ρg + µ∇2V , (1.2)

∂B

∂t
−∇× (V ×B) = η∇2B , (1.3)

∂T

∂t
+ (V · ∇)T = κ∇2T , (1.4)

∇×B = 4π
c
J , (1.5)

∇ ·B = 0 . (1.6)

Here ρ is the density, V is the velocity vector, B is the magnetic field vector, J is the electrical current
vector, T is the temperature, P is the thermal pressure, g is the acceleration due to gravity, and c is the
speed of light. We split each variable into mean and fluctuating quantities:

ρ = ρ0 + δρ , (1.7)
V = V 0 + v , (1.8)
B = B0 + b , (1.9)
T = T0 + θ , (1.10)
P = P 0 + p , (1.11)
J = J0 + j . (1.12)

Generally we assume no static velocity or magnetic features V 0 = 0, B0 = 0. This does not remove
the possibility that a mean velocity or magnetic field may be present or evolve, but it is treated as a
fluctuating quantity. Using these definitions, we derive the governing equations for the fluctuations

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇P̄ + ρg + 1

4π (b · ∇)b+ µ∇2v , (1.13)

∂b

∂t
−∇× (v × b) = η∇2b , (1.14)

∂θ

∂t
+ (v · ∇)(T0 + θ) = κ∇2θ , (1.15)

∇ · v = 0 . (1.16)
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Here we have used a vector identity to obtain the magnetic contribution to the momentum equation (1.13):

1
c
j × b = − 1

8π∇b2 + 1
4πb · ∇b . (1.17)

In eq. (1.17) the first term on the right hand side is the magnetic pressure, which has been included in
the pressure term of eq. (1.13). In eq. (1.13) we have not yet used the Boussinesq approximation and the
density is not yet split into mean and fluctuating parts. In the Boussinesq approximation we assume that
δρ = 0 except for the buoyancy force, which is expressed in the gravity term of the momentum eq. (1.13).
This approximation amounts to:

δρ

ρ0
= −αθ , (1.18)

where α is the volume thermal expansion coefficient. Without loss of generality, we also assume that
the gravity vector has the form g = −gẑ. We then have the correct momentum equation (1.13) for the
Boussinesq MHD equations

∂v

∂t
+ (v · ∇)v = −∇Π+ αθgẑ + 1

4πρ0
(b · ∇)b+ ν∇2v . (1.19)

Here Π is a tensor that includes pressure, magnetic pressure, the pressure due to the gravitational force,
etc. The kinematic viscosity is ν = µ/ρ0.

2 | Working backward from the equations in Busse and Pesch [2006]
The non-dimensional equations used by Busse and Pesch [2006] to study convection are:

∂v′

∂t′
+ (v′ · ∇′)v′ = −∇′π′ +∇′2v′ +B′ · ∇′B′ + θ′ẑ , (2.1)

Pr ∂θ′

∂t′
+ Pr (v′ · ∇′)θ′ = Ra v′z +∇′2θ′ . (2.2)

These equations have been non-dimensionalized using the Prandtl number Pr and Rayleigh number Ra in
the following way

t′ = tν/L2 , (2.3)
r′ = r/L , (2.4)
v′ = vL/ν , (2.5)
θ′ = θ/(∆TPr/Ra) = θαgL3/ν2 . (2.6)

The prime variables are non-dimensional, and the non-primed variables have Gaussian units. Here ν is
the kinematic viscosity, and L is the height of a convecting layer, i.e. the length scale of the temperature
gradient in a periodic system. ∆T is the change in temperature across the convecting layer. To calculate
the derivatives we apply the chain rule

∂

∂t′
= ∂t

∂t′
∂

∂t
= L2

ν

∂

∂t
, (2.7)

∇′ = L∇ , (2.8)
∇′2 = L2∇2 . (2.9)

For the sake of comparison, we then seek to convert eqs. (2.10)-(2.2) to Gaussian units. We find

∂v

∂t
+ (v · ∇)v = − ν

L
∇π + ν∇2v + ν2

L2B
′ · ∇B′ + αgθẑ , (2.10)

∂θ

∂t
+ (v · ∇)θ = vz

∆T

L
+ κ∇2θ . (2.11)

Here vz ∆T/L is the approximation of v ·∇T0 when the gradient is purely in the z-direction, and therefore
eq. (2.11) is identical to eq. (1.15). We compare eq. (2.10) to eq. (1.19); for these equations to be the
same, the magnetic field terms must be equal

1
4πρ0

(b · ∇)b ≡ ν

L2B
′ · ∇B′ . (2.12)
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Thus some non-dimensionalization must be taken into account for the magnetic field in the equations of
Busse and Pesch [2006]. We therefore define:

B′ = B/b0 . (2.13)

From eq. (2.10) we can derive the form of the unknown factor b0

1
4πρ0

= ν2

L2 b
2
0 . (2.14)

Solving we find

b0 = L

ν
√
4πρ0

≡ v0√
4πρ0

. (2.15)

Using this non-dimensionalization of the magnetic field, the MHD convection equations of Busse and
Pesch [2006] are consistent with the standard equations in Gaussian units.
The equation for the evolution of the magnetic field, using this non-dimensionalization, can be derived
from the Gaussian eq.

∂B

∂t
−∇× (v ×B) = η∇2B . (2.16)

This produces:

νb0
L2

∂B′

∂t′
− νb0

L2 ∇′ × (v′ ×B′) = ηb0
L2 ∇

′2B′ , (2.17)

PrM
∂B′

∂t′
− PrM∇′ × (v′ ×B′) = ∇′2B′ . (2.18)

The final equation here uses the magnetic Prandel number PrM = ν/η to non-dimensionalize the induction
equation.

3 | The formulation of the equations used in MHDT

It is convenient to evolve the vorticity field, rather than the momentum equation in eq. (1.19). In the
vorticity equation the pressure term vanishes because the curl of a gradient is zero. The MHD turbulence
code MHDT1, used in Pratt et al. [2013, 2020, 2017] and many other works, thus evolves the vorticity. The
Boussinesq MHD equations including the vorticity fluctuation equation are

∂ω

∂t
−∇× (v × ω + 1

cρ0
j × b) = αg∇θ × ẑ + ν∇2ω , (3.1)

∂b

∂t
−∇× (v × b) = η∇2b , (3.2)

∂θ

∂t
+ (v · ∇)(T0 + θ) = κ∇2θ . (3.3)

These equations are identical to eqs. (1.13)-(1.15) except that the current has not been eliminated, and
we have taken the curl of the momentum equation to produce a vorticity equation.
We non-dimensionalize eqs. (3.1)-(3.3) using a length and time scale associated with the temperature
gradient

L = T0/∇T0 , (3.4)
tb = (αg∇T0)−1/2 . (3.5)

In our periodic system L is conceptually the same as the length scale used in the Busse and Pesch [2006]
equations. The time scale is different; it is related to the buoyancy force, rather than the viscosity. The

1The MHDT code, a classical workhorse originating in the turbulence community, is focused on producing the highest
Reynolds number flows for the least expense; it is a pseudo-spectral code with low-storage explicit time integration.
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non-dimensional variables used in MHDT are:

t′ = t/tb , (3.6)
r′ = r/L , (3.7)

v′ = vtb/L , (3.8)
b′ = b/b0 , (3.9)

j′ = jL/b0 , (3.10)
θ′ = θ/(L∇T0) . (3.11)

Because the time scale used to non-dimensionalize these equations is different from the one used by Busse
and Pesch [2006], the velocity and temperature field non-dimensionalizations are commensurately adjusted.
The normalization factor b0 for the magnetic field is left undetermined at this point and will be discussed
below. For the derivatives we use the conversion

∂

∂t
= ∂t′

∂t

∂

∂t′
= 1

tb

∂

∂t′
, (3.12)

∇ = 1
L
∇′ , (3.13)

∇2 = 1
L2∇

′2 . (3.14)

Using these non-dimensional quantities, and dropping the prime notation, the equations become:

∂ω

∂t
−∇× (v × ω + 1

cρ0
(b0/v0)2

c

4π (∇× b)× b) = ∇θ × ẑ + ν̃∇2ω , (3.15)

∂b

∂t
−∇× (v × b) = η̃∇2b , (3.16)

∂θ

∂t
+ (v · ∇)θ = κ̃∇2θ + vz∇zT0 . (3.17)

In the non-dimensionalizated eqs. (3.15)-(3.17) the new non-dimensional dissipative parameters are defined
using tildes. These are

ν̃ =
(
Pr
Ra

)1/2

, (3.18)

η̃ =
(

Pr
Ra Pr2m

)1/2

, (3.19)

κ̃ =
(

1
Pr Ra

)1/2

. (3.20)

We have not yet addressed the normalization factor b0 for the magnetic field. In the vorticity eq. (3.15)
there is a pre-factor on the magnetic field contribution. We select b0 so that this pre-factor is one, i.e.

b0 = v0
√

4πρ0 . (3.21)

So we find that the non-dimensionalization of the magnetic field is the same as Busse and Pesch [2006]
except for the time scale used to define v0. This choice of normalization for the magnetic field has
sometimes been called Alfvénic units, because it conceptually associates the Alfvén velocity with v0.
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