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Abstract— Increasing urban mobility requirements demand
efficient transportation system strategies for both vehicular and
pedestrian movement. This study enhances the Decentralized
Graph-based Multi-Agent Reinforcement Learning (DGMARL)
approach, originally tailored for vehicular traffic signal tim-
ing, to incorporate pedestrian traffic dynamics. The improved
algorithm considers crucial metrics such as Eco_PI, assesses
vehicle fuel consumption by factoring in stops and delays, and
addresses pedestrian waiting time, crucial for system efficiency
while acknowledging driver waiting time impact. Utilizing
Digital Twin simulation along the MLK Smart Corridor in
Chattanooga, Tennessee, the algorithm’s performance is com-
pared for various pedestrian control scenarios. To evaluate the
effectiveness of DGMARL, this study compared DGMARL-
enabled signal management with automated pedestrian traffic
detection and an actuated signal management system (real-word
baseline) with pedestrian recall, which predetermingly enforces
a pedestrian phase every cycle. Findings indicate substantial
improvements with DGMARL, showing a 28.29% enhancement
in vehicle Eco_PI, a 60.55% reduction in pedestrian waiting
time, and a 55.74% decrease in driver stop delay, on average,
compared to the baseline actuated signal timing plan.

Index Terms— Traffic Signal Optimization, Pedestrian,
Fuel Consumption, Graph Neural Network, Multi-agent Re-

inforcement Learning, Digital Twin.

I. INTRODUCTION AND BACKGROUND

Urban areas grapple with traffic congestion, leading to
prolonged travel times, increased fuel consumption, and
environmental pollution [1]. Although existing studies, such
as [2], have explored traffic control, they predominantly
focus on vehicular traffic dynamics. Adapting signal control
strategies to evolving traffic patterns remains a persistent
challenge, despite potential solutions proposed in studies
like [3] and [4], which are often limited by computational
efficiency.

To overcome these challenges, this study introduces a
novel approach that integrates dynamic pedestrian signal
management with automated pedestrian traffic detection

This manuscript has been partly authored by UT-Battelle, LLC, un-
der contract DE-AC05-000R22725 with the US Department of En-
ergy (DOE). The publisher acknowledges the US government li-
cense to provide public access under the DOE Public Access Plan
(https://energy.gov/downloads/doe-public-access-plan).

alongside vehicle traffic signal timing optimization. Lever-
aging a decentralized graph-based multi-agent reinforcement
learning algorithm (DGMARL) [5]-[8] which optimizes
vehicle traffic signal timing and dynamic phase selection
in real-time, aiming to reduce not only vehicles’ Eco_PI
which captures vehicle stops on fuel consumption and delay
impact [9], [10], but also pedestrian waiting time and driver
delays by considering both vehicular and pedestrian traffic.
Key features include efficient pedestrian arrival distribution
and observation, multi-agent reinforcement learning, and
seamless interaction with the Digital Twin.

Despite efforts at vehicular traffic optimization, adapting
signal control to dynamic traffic patterns remains challeng-
ing. Studies such as [11]-[13] often overlook environmental
impacts in signal timing optimization. Advancements in
Intelligent Transportation Systems (ITS) have been used to
develop decentralized signal control algorithms [14], that
integrate vehicle and pedestrian data, and there is progress
in RL-based optimization [15]. However, reaching the global
optimal solution considering multiple factors and constraints
across the entire network remains challenging. This study
bridges this gap by globally optimizing both vehicle and
pedestrian traffic signal timing through the DGMARL al-
gorithm by integrating automated pedestrian detection and a
dynamic signal timing plan. Furthermore, a comprehensive
analysis of pedestrian signal time allocation strategies, con-
sidering dynamic signal timing and fixed pedestrian recall,
is conducted.

II. OVERVIEW OF THE PROPOSED SYSTEM

This study presents a comprehensive approach to opti-
mizing signal timing for both vehicles and pedestrians by
integrating pedestrian and vehicular traffic demand. Building
upon our previous work [5], [6], the Reinforcement Learning
(RL) methodology is enhanced to incorporate pedestrian
traffic state alongside vehicular traffic state, enabling global
optimization of vehicle and pedestrian traffic signal timing
in a decentralized distributed environment. This extended
DGMARL algorithm considers parameters such as vehicular
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and pedestrian traffic demand to reduce pedestrian and driver
waiting times.

The DGMARL model from previous work optimizes sig-
nal timing by considering vehicular traffic and enforcing
mandatory constraints such as minimum green serving time
with walk plus flashing “don’t walk” time regardless of
pedestrian traffic demand, and yellow and red clearance time.
This study extends the DGMARL model to incorporate auto-
mated pedestrian traffic detection and a dynamic pedestrian
signal phase. The proposed DGMARL-based signal timing
plan optimizes both pedestrian and vehicular traffic signal
timing according to their respective demands. To assess the
benefits of the extended DGMARL algorithm, a compre-
hensive comparison is conducted between DGMARL-based
signal timing and traditional actuated signal timing with
pedestrian recall. Performance evaluation includes vehicles’
FEco_PI, pedestrian waiting time, and drivers’ waiting time
across the scenarios: 1) Baseline model using real-time signal
timing configuration, including pedestrian recall. 2) Auto-
mated pedestrian traffic detection and activating pedestrian
and vehicle signal phases based on the traffic demand. 3) Dy-
namically adjust the pedestrian signal phase timing based on
pedestrian traffic demand. 4) The effectiveness of automated
pedestrian traffic detection and dynamic pedestrian signal
timing, along with push buttons is evaluated. To analyze

Fig. 1.

MLK Smart Corridor network layout in PTV-Vissim [5], [6]

the system, theoretical modeling is combined with empirical
data using an offline Digital Twin (DT) simulation model
developed with PTV Vissim [16]. This model represents the
2-mile MLK Smart Corridor in Chattanooga, Tennessee, with
11 signalized intersections and bidirectional traffic flows.
The developed DT model is driven using real-time traffic
volume, turn count, and Signal Phasing and Timing (SPaT)
data. While an online version of the DT emulates field signal
indications using SPaT data, the offline version (utilized
in this study) employs traffic signal timing plans provided
by the City of Chattanooga. Data from cameras and zone-
detection devices deployed along the corridor informs the
model. The DT facilitates the simulation and analysis of var-
ious scenarios, offering insight into the optimization process
and its impacts on vehicular and pedestrian traffic. Figure
1 illustrates the developed DT model, depicting the MLK
Corridor traffic network’s realistic intersection geometry.

ITI. ARCHITECTURE OF THE PROPOSED SYSTEM

In the original DGMARL framework [5], [6], Advantage
Actor-Critic (A2C) reinforcement learning agents are de-
ployed at individual intersections. The framework has been
extended to incorporate pedestrian traffic state, pedestrian
and driver waiting time, along with other crucial traffic
state features, such as vehicle presence time in the detector.
Agents exchange this information with neighboring agents
to collaboratively gather data and determine optimal policies
for controlling traffic signals. DGMARL can handle hetero-
geneous data from various sources, ensuring comprehensive
awareness of traffic dynamics. This study utilizes DGMARL
to optimize both vehicular and pedestrian signal timing,
improving the performance and sustainability of the traffic
system. Figure 2 shows the architecture of the proposed

akeo PI® + (1~ @pd_ "

Fig. 2. Architecture of the proposed model

model. The traffic environment is represented as a bi-
directional graph G(V, £), where V consists of intersections
modeled as A2C RL agents, and £ comprises roads or links
connecting these intersections. Each link e; ; € £ connects
the intersections ¢ and j. The intersections have various static
features, including approach links, signal controllers, signal
phases, detectors, lane numbers, uncontrolled approaching
links, and neighboring intersections N; C V. Signal con-
trollers at each intersection are linked to a set of signal phases
¢;, each associated with specific static features, such as
signal lists, minimum mandatory green serving time, yellow
time, red clearance time, pedestrian walk, and flashing “don’t
walk” time [5], [6].

The methodology in this study leverages real-time data
on vehicle traffic state, along with a random distribution of
pedestrian volume, to calculate pedestrian waiting times at
signalized intersections. These data are utilized to construct
a bi-directional graph environment for the RL agent’s in-
teractions [5], [6]. Within this environment, the RL agent
explores diverse signal timing and pedestrian recall con-
figurations, closely observing their effects on both vehicle
flow and pedestrian movement. Through continuous learning
from these interactions, the RL agent enhances its decision-
making abilities, progressively converging towards an opti-
mized signal timing for both vehicular and pedestrian traffic
that minimizes vehicles’ Eco_PI performance and reduces
pedestrian and driver waiting times. Eco_PI is the fuel
consumption impact related to vehicle stops and stop delays.
The reward function incentivizes the RL agent to prioritize
efficient vehicle flow, reducing Eco_PI and driver waiting
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time while minimizing pedestrian waiting time. The agent
aims to maximize cumulative rewards by identifying signal
timing configurations that balance vehicle and pedestrian
needs. Multiple simulations, covering various traffic scenar-
ios, are conducted in offline DT using real-world data. RL
agents are trained on these models to optimize signal timings
compared to fixed signal timing strategies.

IV. THE PROPOSED RL-BASED METHOD

The traffic signal control problem is formulated as a
Markov Decision Process (MDP), denoted as (S, A, p, ),
where S represents the state space, A denotes the action
space, and r signifies the reward associated with an action.
The goal is to find the optimal policy p, maximizing cu-
mulative discounted rewards. To enhance learning efficiency
and informed decision-making, neighboring agents exchange
observations through message passing, allowing for broader
insights into traffic conditions and more effective action
selections, thereby improving signal timing optimization.

A. State Space

As an extension of our preliminary work [5], [6], the
state of the global traffic network at time ¢ is redefined and
upgraded as follows:

%

St = {sichlh = (X0 0]7) ()
where {s; .} is the state of the intersection ¢ at time ¢ which
is the heterogeneous observation of traffic states from all
approaches, and V is the set of intersections in the road
network,

TF VT ¢PV\Koi\F;

Ti,t :< <5l,i,t’6l,i7t>l:¢1 >¢:1 2

and

OIS = (45, oD, ¢FS

MinG MaxG
it 2,1 i,t i,t ’ 7, > (3)

In Equation (2), F; represents the number of phases at
intersection 7, and Ky ; denotes the number of approaching
links at phase ¢;. Each observation for an approaching link !
in phase ¢; includes vehicle traffic state 6%, ';.+ Which includes
vehicle presence time in the detector zone, average waiting
time, average delay, average speed, and pedestrian Volume
5l” In Equation (3), variables like gb”, Zt, and ¢7°

denote the current phase status, duration, and pedestrlan
serving status. ¢} indicates fulfillment of minimum
green time or pedestrian serving in the current phase, while
(b%”c signals if the current phase duration has reached the
maximum green serving time. Pedestrian recall activation
prompts monitoring of the maximum green serving time,
allowing vehicles priority until this limit is reached, after
which pedestrians are served based on traffic conditions.

B. Action Space

The action of an agent at intersection a;; is defined as

the next phase, governed by minimum green time to ensure
safety and efficiency. The revised action formulation is:

it if (¢i\§znG H ¢J\74t1nPW)
aj, =91, if (M & of ) “)
0, otherwise

Where ¢¢ indicates the minimum green time has been
served. If the current phase is non-pedestrian and pedestrian
recall ¢’[ is enabled, the minimum green time serves as the
pedestnan serving time ¢} "W If a;, = 1, the action is
evaluated against the minimum green time constraint based
on the phase duration ¢D If the constraint is met, the
final action is a;, = 1, and the agent selects the phase
with the highest trafﬁc demand based on both pedestrians
waiting time and vehicles’ presence time. Before switching
the next phase to green, the yellow and red clearance timings
are served. If a;; = 0, the agent refrains from action. In
pedestrian crossing phases, the agent forces the final action
to be aj, = 1 and switches to the non-pedestrian phase
as ¢%’”‘G approaches, ensuring pedestrian safety. Pedestrian
serving time ¢FFW is estimated based on pedestrian traffic
demand,

¢M77LPW

o fWZnSW_‘_(Z)innFDW +¢ZE‘PW (5)

MinSW MinFDW ;
¢i ¢’L 1S

where is minimum solid walk time,
flashing don’t walk time, and d)fJPW is,

¢EPW ¢M2nFDW ” Nz,t,ped (6)

where N; ¢ peq is the number of pedestrians waiting. This
dynamic approach prioritizes both vehicular and pedestrian
traffic, reducing waiting times and enhancing signal timing
efficiency.

C. Reward Function

The reward function balances vehicular and pedestrian
traffic needs using the vehicle Eco_PI metric to assess
performance, considering stops and delays based on the fuel
consumption model in [9], [10]. Stops are counted when
vehicles halt while approaching the intersection, and stop
delay is the time vehicles spend stationary in the queue.
Additionally, the reward function includes the waiting times
for pedestrians and drivers. Pedestrian waiting time is the
sum of the differences between each pedestrian’s arrival time
and their waiting time to cross, while driver delays mirror
vehicle delays. The immediate reward r;; for each traffic
movement at intersection ¢ is computed using the following
equations:

ax 0FoPL + 85 6PP + (1 —a— )« 65VT
5EgoPT 1 6DD 4 GPWT

Tit = —

(7
where (o, ) € [0,1] weights the significance of vehi-

cle waiting, driver waiting, and pedestrian waiting timings,
which ensures a balanced focus on both vehicular and pedes-

either 0 or 1. When a;;, = 0, the current signal phase trian movements by normalizing the reward components.
is maintained. When a;, = 1, it indicates a transition to  And §Zf°-F1 is vehicles Eco_PI, §PP is vehicle driver
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delay, which is the vehicle stop delay 677, and 67V7 is

pedestrian waiting time. This study uses o = 0.4, 6 = 0.3
to prioritize reducing vehicle delays while accounting for
pedestrian waiting times. The reward function normalizes the
contributions of pedestrian, driver, and vehicle waiting times
proportionally. In addition, vehicle Eco_P1I is calculated as

Z(szlt

where 67/} is the stop delays that occurred in link Z;, 675 is
the number of stops, and 67 '+ 18 the stop penalty penalized
for every stop [17], [18]. The pedestrian waiting time is
calculated as,

6ELO Pl 7, l t 62 l, t) (8)

L; Niiped
SIVT =31 (tia — tpediam)), 9)
=1 n=1

where N ,cq is the number of pedestrians waiting, ¢;; is
the time that pedestrians are allowed to cross the street,
and tped,; ; ,, is the n-th pedestrian’s arrival time. The opti-
mization of each agent’s policy, represented by ¢, intends to
maximize the global long-term return E[Rf], where R], =
S 7747 =tr; ; denotes the return at time ¢, with ~y being the
discount factor. By incorporating pedestrian and driver wait-
ing time into the reward function, the study seeks to achieve
a more comprehensive and balanced optimization approach
that considers both vehicular and pedestrian performance in
signal timing decisions.

D. The Proposed RL Algorithm

The algorithm 1 outlines signal timing optimization with
vehicles and pedestrian states, using reinforcement learning
for an optimal policy. It dynamically adapts signal timing
based on real-time vehicular and distributed pedestrian traffic
to enhance traffic flow efficiency and pedestrian safety. In this
environment, each intersection hosts an A2C reinforcement
learning agent, denoted as i. At each time step ¢, agent @
observes vehicular state features, including vehicle presence
time in the detector, current signal state through offline
DT data collection, and pedestrian arrivals through random
distribution. It collaborates with neighboring agents N; via
message passing to exchange and receive their states. Agent
1 processes its updated state Sg,t using actor and critic neural
networks to derive the optimal policy 7; and control the
signal phase ¢;. Agent ¢ validates actions against physical
constraints. If the phase is non-pedestrian-crosswalk, the
minimum serving time is set as the estimated pedestrian
walk time qbfp W. otherwise, it uses the phase’s configured
minimum green time. No actions are applied back to the
offline DT if the agent stays in the current green phase.
Otherwise, agent ¢ selects a phase ¢; with higher upcoming
traffic demand and applies the signal phase change action
to the signal controller in offline DT. After applying the
action, agent ¢ observes pedestrians’ waiting time pd; ,,; and
vehicles’ Fco_P1I, estimating the current reward r; based on
the new traffic state s; ;1 1. The current reward and new state
are stored in the experience replay buffer. The agent learns

Algorithm 1 Signal timing optimization with vehicles and

pedestrian state using A2C reinforcement learning

Ensure: Initialize graph G(V, &), agent i € V, link [; € &£,
physical constraints ..

Ensure: Initial signal timing for the intersection ¢, minimum
green time ¢}, yellow time ¢, red clearance time
(;Sl +» Maximum green time (;SM “IG, pedestrian minimum

solid walk time ¢MSW and flashing don’t walk time
GMinFDW

1: For each episode with 7' simulation period, each agent
learns and optimizes the model parameter through multi-
threading with the following steps iterative.

2: Measure the pedestrian volume at intersection 7 and

include it in the state s; ; along with the vehicular traffic

state.

Observe and perform message passing.

Obtain policy, action and value.

Evaluate action with constraints a} , = (a; ¢]ic).

Take action a; , in offline DT if constraint evaluation is

success.

Calculate reward 7; ; and observe new state s; ;. ;.

: Store State and Reward in Replay buffer D.

9: Learn from experience if ¢ >= sample batch_size.

> 9 kW

® 3

from this buffer to minimize critic loss L(w;) and actor loss
J (0) (lines 9-10). Agent ¢ repeats these processes to identify
an optimal policy, improving vehicular traffic Fco_PI and
pedestrian waiting time. This iterative learning allows for
dynamic signal timing adaptation, optimizing traffic flow
efficiency, and enhancing pedestrian safety during crossings.

In a distributed agent environment, each agent makes
context-specific decisions based on local observations and
information from neighboring agents. The convergence of an
optimal policy can vary among agents, leading to increased
learning efficiency. The distributed nature of the agents im-
proves overall learning performance, contributing to finding
improved signal timing strategies tailored to their specific
traffic conditions.

V. EXPERIMENTAL EVALUATION

This study evaluates different traffic signal timing strate-
gies using real-time vehicular and randomly distributed
pedestrian traffic data, comparing them to an actuated sig-
nal timing plan with pedestrian recall. Scenarios include
real-time signal timing with pedestrian recall, automated
pedestrian traffic detection, dynamic adjustment of pedestrian
signal phase timing based on demand, and assessment of
automated pedestrian traffic detection with dynamic signal
timing alongside push buttons. Additionally, monetary anal-
yses of fuel expenses and salary losses due to waiting times
are conducted.

A. Experiment Design

This study utilizes real-world data from the PM-peak
hour scenario of December 15, 2022, obtained from the
MLK Smart Corridor [19], [20]. The dataset encompasses
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transportation and vehicular traffic data, along with randomly
distributed pedestrian data recorded every second.

The proposed model is trained with training comprising
15 episodes for different scenarios, each episode consists of
3600-second simulation steps and learning from 240 batch
sizes of experience replay. The model assigns coefficient
values to reward components: 0.4 for vehicle Eco_PI, 0.3
for drivers’ waiting time, and 0.3 for pedestrian waiting
time, with plans for dynamic adjustment during future
training. Comparisons are made between the performance
of DGMARL with both pedestrian and vehicular traffic
signal timing plans and the baseline MLK Smart Corri-
dor vehicle-actuated signal timing plan. Additionally, push-
button requests are randomly generated with probabilities
ranging from 0.25 to 0.75 to analyze automated pedestrian
traffic detection. By precisely considering pedestrian arrivals,
waiting times, and push-button requests, DGMARL-based
signal control systems prioritize safer pedestrian crossings
and improve vehicular traffic flow. This holistic optimization
approach enhances traffic flow and promotes a safer road
environment for all users.

The experimental setup utilized a real-world dataset col-
lected by the Department of Computer Science and Engineer-
ing at the University of Tennessee, Chattanooga, USA [19]. It
includes data from a corridor connecting 11 intersections on
the MLK Smart Corridor with bidirectional traffic in multiple
directions (East-West, West-East, North-South, and South-
North). The dataset includes intersection geometry, traffic
signal timing plans, camera and zone-detecting device pa-
rameters, Signal Phase and Timing (SPaT) messages, vehicle
flow, speed, and vehicle presence time in the detector. Each
intersection features a diverse phase setup with different
signal light configurations.

The simulation model for the 11 intersections on the
MLK Smart Corridor in offline DT follows network creation
guidelines [21], [22]. It incorporates vehicular data from
archived one-minute volume counts at network entry edges
for December 15, 2022, 10-minute turn percentages at each
intersection approach, and signal timing plans from the
city. Pedestrian data is randomly generated based on the
assumption of a 1% pedestrian volume probability during
the simulation at every second for each intersection’s signal
phase with pedestrian phase crossing enabled.

B. Results and Discussion

In this experiment, the PM-peak hour model with a one-
hour simulation is used to perform the test runs. A total of
458 pedestrians and 2825 vehicles were active on the road, as
shown in Table I, which presents the state of traffic and the
average serving times for pedestrians in both the actuated and
DGMARL scenarios. The observations reveal that DGMARL
with dynamic pedestrian signal timing efficiently adjusts
pedestrian serving times while adhering to minimum serving
time constraints.

Figure 3 displays variations in vehicle Eco_PI, stops,
delay, and pedestrian waiting time across different scenarios:
actuated signal timing with pedestrian recall, automated

TABLE I
OVERALL TRAFFIC AND SERVING STATE

Performance Measurement Value
Total no. of pedestrians arrived 458

Total no. of vehicles traveled 2825

Actuated: Avg. of peds. serving time 22.51s
DGMARL PedRecal: Avg. of peds. serving time 22.51s
DGMARL Automated: Avg. of peds serving time || 21.84s

detection with pedestrian recall, automated detection with
dynamic estimated pedestrian signal timing, and automated
detection with push-button timing. Results show that DG-
MARL combined with automated detection and dynamic
timing, including push-button activation, improves vehicle
Eco_PI by 27.14%, reduces delay by 58.72%, and decreases
pedestrian waiting time by 60.62% on average compared
to both actuated signal timing with pedestrian recall and
DGMARL signal timing with pedestrian recall. In DGMARL
with pedestrian recall scenarios, vehicle stops increase by
4.67% on average, compared to only 0.97% with automated
detection and dynamic timing. Figure 4 shows that the

Automated_DynamicPST_PushButton_75P | EEEESENINIS796% 62.10%
Automated_DynamicPST_PushButton_50P | ESESEREININS7I86% 57.14%
Automated_DynamicPST_PushButton_25P EESERENINNSONRY 62.66%
Automated_DynamicPST_Veh.Ped.Traffic EEEIININS903%: 60.57%
Automated_PedRecall Veh.Ped.Traffic IEBIBENINIS7S0% 52.02%

PedRecall_Veh.Ped. Traffi BIS6HTZN 36.62%
PedRecall_Veh.Traffic HIBRINETEI700N 33.91%
02 0

02 04 06 08 1 12 14 16

® Vehicles Eco_PI  mVehicles Stops ® Vehicles Delay = Pedestrian Waiting Time

Fig. 3. Automated pedestrian traffic detection with dynamic pedestrian
signal timing performance improvements compared to pedestrian recall. PST
- Pedestrian Serving Signal Time.

DGMARL model, with automated pedestrian traffic detection
and dynamic signal timing, adjusts pedestrian serving based
on demand. This reduces pedestrian waiting time by 60.55%
compared to actuated signal timing with pedestrian recall
and by 49.46% compared to DGMARL with pedestrian
recall. Additionally, Figure 5 demonstrates that DGMARL,

4.97 6.33

0.31 0.48 0.10 017 421 136 0.04 17.97
Carter Broad Market Georgia Lindsay Houston Douglas Peeples Magnolia

Intersections

= Actuated_PedRecall Num.OfPeds  ® Actuated_PedRecall_PedWaiting (s)
Actuated_PedRecall_Serving () DGMARL_PedRecall Num.Of.Peds

=DGMARL_PedRecall_PedWaiting (s) ¥ DGMARL_PedRecall_Serving (s)

®DGMARL_Automated_Num.Of.Peds 8 DGMAR_Automated_PedWaiting (s)

= DGMARL_Automated_Serving (s)

Fig. 4. Pedestrian traffic, waiting time, and serving time comparison.

with automated pedestrian traffic detection and dynamic
signal timing, reduces Eco_P1I by 28.29% and driver waiting
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time by 55.74% compared to actuated signal timing with
pedestrian recall. It also reduces Eco_-PI by 9.08% and
driver waiting time by 21.64% compared to DGMARL with
pedestrian recall.
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= Actuated_PedRecall_Veh.EcoPl(s)  ® Actuated_PedRecall_DriversDelay (s)
DGMARL_PedRecall_Veh.EcoPI(s) = DGMARL_PedRecall_DriversDelay (s)
#DGMAR_Automated_Veh.EcoPI (s) #DGMAR_Automated_DriversDelay (s)

Fig. 5. Vehicles Eco_PI and drivers waiting time comparison.

Lastly, a monetary analysis, referencing 2022 Chattanooga
salary data from [23], is conducted to assess pedestrian and
driver waiting times’ impact on productivity. With actuated
signal timing, the average salary loss was 1.29%, decreas-
ing to 0.97% with DGMARL optimizing both vehicular
and pedestrian traffic signal timing. Furthermore, referenc-
ing 2022 gas costs in Chattanooga, Tennessee, from [24],
DGMARL signal timing reduced gas expenses by 24.51%
compared to actuated signal timing.

VI. CONCLUSION

In conclusion, this study explored automated pedestrian
traffic detection coupled with dynamic pedestrian serving
time, optimizing both pedestrian and vehicular traffic sig-
nal timings using Decentralized Graph-based Multi-Agent
Reinforcement Learning. The model significantly improved
traffic flow efficiency, reduced fuel consumption, enhanced
pedestrian safety, and minimized waiting times. The study
demonstrates that decentralized multi-agent models enable
effective traffic flow improvements by allowing agents to
adapt to changing traffic conditions. Future research will
involve testing the model with real-world pedestrian data.
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