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" Introduction

The Interpretation of spectroscopic data from chemical reaction experiments Iis a challenging task, usually performed by expert chemists. The goal of this work Is to train artificial neural
networks (ANNS) to Interpret spectra, allowing for automated experimental investigation. ANNs require large datasets for training, which in this context means creating databases of
chemical compounds and numerically-encoded spectral information. My focus has been on the creation and manipulation of datasets for data from three types of spectroscopic methods:

\_ Nuclear Magnetic Resonance (NMR), Infrared (IR), and Raman spectroscopy.
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Spectroscopy

« NMR
* Highest resolution, expensive
* IR

* Medium resolution, very common

« Raman
* Lowest resolution, cheapest
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Common Data types

« JCAMP-DX

« Standard data type created by
UPAC
Difficult to parse and each file can
nave small variations
« Computationally expensive

« XML

« Contains roots and branches
Easily parsed, each file is standard
« Computationally inexpensive

 HDFS
Designed for large sets of data
Easily parsed, standard formats
« Computationally inexpensive

Python libraries:

jcamp
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/ Labels

« Compounds are stored as SMILES strings
and can be obtained from CAS numbers.

* Functional groups were extracted from
SMILES strings using SMARTS sub-
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Results
 NMR

« >400,000 predicted points
* Achieving ~99% overall testing accuracy
* Lower on some groups like carboxylic acid

strings. Each point was then labeled with
binary variables corresponding to
functional group presence.

« Ethanol example:

PubChemPy RDKit
64-17-5 — CCO ——— > Alkane

(~95%)
* IR
« ~375,000 predicted points, ~2000 experimental
points
* Achieving ~95% testing accuracy
* Raman

« ~250 experimental points
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* Normalization
 Different sources have different scales, so normalization is necessary
« Divide each point by the maximum to give a percentage relative to
maximum instead.
* Interpolate to achieve same resolution

* Other Important Labels
« Solvent
* Field strength
« Concentration
* Resolution

Further Data Manipulation
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* |In-progress
\ All solids
/ Future Work

 Find more Raman data!

 Make predicted points more realistic:
* Add noise
» Shift peaks left or right slightly
* Lower the resolution
* Add solvent fingerprints

* Advanced data manipulation:
« Data augmentation

* Model improvements:
 Ensemble models
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Data Output and Improvements \

. Output -
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* Trimming
\ Determine which functional groups do not appear

* .csv files from DataFrames
* Very large files, this is an area for future
concern

* Improvements
* Querying PubChem to convert CAS to
SMILES is computationally expensive
» Solution: make a dictionary of CAS to
SMILES to streamline CAS conversior
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« Combine all three models, have them talk to each
\ other, output result /
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