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Abstract

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL)
operates one of the most advanced laser systems in the world, relying on a vast number of optical
components and Line Replaceable Units (LRUs) to maintain its functionality. Over time, these
components degrade due to operational wear, necessitating refurbishment to sustain performance.
However, many NIF LRU refurbishment factories have been “mothballed” or suffer from aging
infrastructure, inconsistent work flows, and inefficiencies due to different approaches to production
control and management. This paper explores the concept of reference architecture as a standardized
framework to guide the redevelopment and restructuring of NIF LRU refurbishment factories. By
establishing a common reference architecture, the refurbishment process can achieve reduced
inefficiencies, produce quality products, and enhanced coordination across factories. This paper evaluates
existing reference architectures, particularly those that integrate technical architecture, business
architecture, customer context perspectives, and proposes tailored reference architecture for NIF LRU
refurbishment factories.
1 Introduction

The National Ignition Facility is the world’s most precise and reproducible laser system. It
precisely guides, amplifies, and focuses 192 powerful laser beams into a target about the size of a pencil
eraser in a few billionths of a second, delivering more than 2 million joules of ultraviolet energy and 500
trillion watts of peak power. NIF generates temperatures at the target of more than 180 million degrees
Fahrenheit and pressures of more that 100 billion Earth atmospheres. Those extreme conditions cause

hydrogen atoms to fuse and release energy in a controlled thermonuclear reaction. NIF’s unique energy
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and power enable cutting edge research to help keep America safe and secure, explore new frontiers of
science, and lay the groundwork for a clean, sustainable source of energy. [1]

A remarkable number of optical components and Line Replaceable Units (LRUs) make up NIF’s
infrastructure. There are more than 7,500 meter-sized optics and 26,000 smaller optics. [2] There are over
40 different LRU types in NIF. Many of these LRUs are high precision electro-mechanical assemblies.
Sketches of many of these, along with their locations in the beamline, are shown in Fig. 1. [3] Each of
these optics and LRUs require occasional repair and maintenance due to NIF running past the damage
threshold of optical materials. Due to this operational wear, NIF runs optical and LRU refurbishment
factories to keep the worst damaging optics and LRUs in working order. However, critical LRU factories
are approaching 40 years of age, and some have been completely “mothballed” due to low maintenance
requirements of their LRUs. Over the past several years, NIF has started to see that many less damage
prone optics and LRUs are degrading in performance due to deferred maintenance, obsolescence, and

aging. This increases the risk of a significant stoppage or slowdown in experimental operations.
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Figure 1: Line replaceable units are the optics building blocks of NIF.
To ensure that NIF continues to deliver on key experimental campaigns, a systematic review was
undertaken of the entire NIF enterprise. This review identified key issues that would need to be addressed

to sustain NIF. One of these key initiatives is to restart or upgrade numerous optics and LRU
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refurbishment factories across the directorate. This scope has been spread across multiple groups and
disciplines. There are two key observations from the work that has been completed so far to bring these
factories back online. One, documentation of the original system architectures of each factory has been
sparse and vague. And two, the teams that are working to bring these factories back online are well
engineered, but slightly different ways to decompose their system architectures. This has resulted in
cross-factory interface inefficiencies, quality control issues, and system integration conflicts. Due to the
increased scope size and integration dynamics between factories, a common reference architecture would
help resolve these issues by managing synergy between factories, providing guidance on architecture
principles, architecture baselines, and capturing architectural patterns. [4]

2 Leveraging Existing Reference Architectures

2.1 Reference Architecture Definition and Development Principles

Reference architecture is a standardized framework, or blue print, that provides a predefined set
of best practices, guidelines, and structures for designing and implementing systems within a specific
domain. Additionally, reference architecture is an elaboration of company mission, vision, and strategy.
Such reference architecture can facilitate a shared understanding across multiple products, organizations,
and disciplines about current architecture and future directions. [4] As seen in Figure 2, each organization,
or in this case LRU factory, will implement the same mission, vision, and strategy. This reduces the time
spent redeveloping these components for current and future systems as well as aligning each factory’s

core values.
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Figure 2: Organization mission, vision, and strategy is elaborated in the Reference Architecture and is
received as guidance for future systems.
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For reference architecture to be fully defined, it should address the technical architecture,
business architecture, and customer contexts. If system context is not complete, the reference architecture
would represent solutions for unspecified problems in unspecified contexts. [4] Often times, NIF LRU
factories focus on technical architecture and do not assess the business architecture and customer context
thoroughly. Not including the business architecture could result in a lack of funding flow, staffing, or late
critical path deliverables. If the customer context is not included, the factory could produce LRUs that
don’t meet all stakeholders’ acceptance criteria. Figure 3 shows how all three aspects of reference

architecture provide relation guidance to each other which results in fully defined reference architecture.
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Figure 3: Contextual relationship between business architecture, technical architecture, and customer
context. All three influence each other and drive system requirements.

A reference architecture is based on concepts proven in practice. Most often, preceding
architectures are mined for these proven concepts. [4] From these proven architectures, patterns are
uncovered by gathering implicit and explicit knowledge from those that developed it. For NIF LRU
factories, interviewing individuals who originally designed and built the factories would help find
beneficial patterns and pitfalls in their system architectures. Asking for any formal explicit documentation
produced during that time would also be useful to understand how each factory operated. By
incorporating these patterns into the reference architecture, systems developed from it will have higher
rates of success and intentionally deviate from past mistakes. An additional resource for developing a

reference architecture is to leverage existing reference architectures from external entities. This resource
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can be used to refine and compare the LLNL LRU factory reference architecture, while also pointing out
important functions that may have been missed.

2.2 Existing Reference Architectures

As mentioned in the previous section, it is critical to include the business architecture, technical
architecture, and customer context in reference architecture. After an evaluation of these aspects for NIF
LRU factories, it was determined that a reference architecture that focuses on the business and technical
lifecycle of the factory would be the best fit. This is due to the similarities between technical and
administrative activities across each factory but vastly different customer NIF LRU requirements.
However, there are customer interfaces that should be included such as requirement verification plans,
transport, handling, and storage. Additionally, presenting the relations between technical and
administrative functions would provide a roadmap for individuals that primarily have an engineering
background and not a business or production background. The National Institute of Standards and
Technology (NIST) published a paper titled “Reference Architecture for Smart Manufacturing” that
partitions the reference architecture based on the technical and business lifecycle of a system. The
reference architecture described in this paper meets the NIF LRU factory class of systems’ needs.

2.3 Evaluation of existing reference architectures

The reference architecture presented in ‘“Reference Architecture for Smart Manufacturing”
(RASM) describes the principle technical and business activities involved in the engineering and
production activities of a manufacturing enterprise engaged in the production of complex electro-
mechanical products. [S] RASM was developed by NIST experts drawing extensively on previous
manufacturing factory projects. The overall view maintained in the RASM reference architecture is that
of the engineering or production manager responsible for assigning tasks and ensuring that the results of
on task are provided to another. [5] Thus, ensuring that the architecture functions run smoothly. The
primary domain of the RASM reference architecture is the manufacturing of assembled products and
subassemblies. The architecture is intentionally left at a relatively abstract level to allow factories to be

flexible enough to accommodate a variety of product variants.
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The value to the RASM reference architecture, shown in figure 4, comes from its detailed
functional decomposition that characterizes the key inputs and outputs between functions. It also
decomposes the architecture that follows the general phases of product development and production
system. This is similar to the way project phasing is done at LLNL. In Figure 4, the A0 “Realize Product”
function is decomposed into, A1 “Design Product”, A2 “Engineer Manufacture of Product”, A3 “Provide
Production Resources”, and A4 “Produce Products”. Each first level function is then broken down into
second level functions. The IDEFO model of this architecture acts as a road map that can be traced to
identify deliverables and work flows. Most of the first level functions and inputs and outputs are
considered in LLNL developed factory architectures. However, some of the second level functions are

overlooked or ignored which can lead to inefficiencies due to an underdefined factory system.
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Figure 4. Contextual relationship between business architecture, technical architecture, and customer
context. All three influence each other and drive system requirements.
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3 Development of a Reference Architecture for NIF LRU Factories

3.1 NIF LRU Factory Mission Statement

The NIF LRU factories realize LRU designs by providing product designs, production facility
engineering, production resources, and fabricated products. These services are provided to maintain and
upgrade NIF to aid experimental campaigns in support of NNSA’s and LLNLs Stockpile Stewardship
programs. The NIF LRU factory’s main role is to effectively and repeatably produce quality NIF LRUs.
This includes interfacing with customers to gather LRU design expectations and requirements, designing
and building LRU factories that are in accordance with the NIF safety basis, providing quality training to
internal and external factory personnel resources, and ultimately maintaining the capability to produce
LRUs that are calibrated and acceptance tested. The NIF LRU factory’s job is not complete until the
product is installed on NIF can operationally qualified. An LRU design and quality feedback loop is
expected to be maintained between the factory and the NIF facility. In the event of online problems, the
factory staff is expected to act as subject matter experts that can aid the disposition and root cause
analysis of LRUs.

3.2 NIF LRU Factory Vison

The NIF is a world-class organization that proactively leverages its multi-billion-dollar assets to
ensure that premier science experiments are accomplished in a reliable, safe, and cost-effective
environment. NIF’s LRU factories, which support NIF’s vision, are professional, disciplined, offer
outstanding high precision LRU designs, and produce them with quality workmanship repeatably. All
work completed by NIF LRU factories meet Department of Energy (DOE), LLNL, and state
requirements. NIF LRU factory staff are exceptionally well trained, technically excellent, inquisitive, and
constantly striving for improved performance and technical results. The team environment and aggressive
technical challenges promote professional growth, staff retention, and an esprit de corps as the team heads
towards history-making experimental results. The team’s core values maintain that all activities are

performed safely, with quality, respect toward co-workers, and with integrity. [6]

7



LLNL-TR-2004661

3.3 Functional NIF LRU Realization Model

3.3.1 Functional Decomposition

Figure 5 shows the functional decomposition of the FO “Realize LRU Products” function
provides a structured breakdown of the key activities required to engineer the LRU design, develop the
manufacturing process, allocate resources, and manufacture LRUs. By organizing the process into
discrete and actionable functions, the decomposition offers a clear framework for understanding the roles,
responsibilities, and interactions within the LRU manufacturing lifecycle. This modular architecture
supports both a phased and scalable approach to project implementation. Additionally, this modularity
allows particular functions to go dormant when their nonrecurring engineering (NRE) work is complete
and reactivated if a new LRU product is requested by the customer. Note that only F.2 through F.3 were
decomposed to their second level since LLNL already has a robust product design and review reference

architecture.

7o \
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Figure 5: Functional hierarchy of F.0 “Realize LRU Products. F.1 was not decomposed since LLNL
already has a robust product design and review reference architecture
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3.3.2 First Level Functional Decomposition

Figure 6 shows the first-level decomposition of the “Realize LRU Products” function. At this
level, the reference architecture reveals several key trends that reflect phased and scalable approach
realizing LRU products. A prominent trend, that will also be seen in lower-level decompositions, is the
progressive flow from concept to execution. This waterfall structure emphasizes a reliance on thorough
planning and front-end definition before execution begins. DOE regulations usually require the project
scope and cost to be well known before funding is fully awarded. This architecture conforms to this
standard. Another noticeable trend is the scalability. For example, if a specific factory needs to produce
multiple LRU designs, F.1 “Design LRU Products” could be composed of several design tasks. The
inputs and outputs from F.1 would not change. However, the information transferred between functions

would be more substantial.
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Figure 6. Functional decomposition of F.0 “Realize LRU Product”
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3.3.3 Second Level & Third Level Functional Decompositions

For the purposes of this discussion, F.2 “Engineer of Manufacturing of LRU Products” will be
decomposed to its second and third levels. In the appendix of this paper, functions F.3 and F.4 are also
decomposed further. A common trend that can be seen in the second level and third level decompositions
of this reference architecture, shown in Figure 7 and 8, is the emphasis on data driven decision making.
The functions that define the production process require many inputs to produce their outputs. This allows
for well-informed decisions on critical components of the factory. These decompositions also show that
information is regularly distributed to multiple functions and occasionally have recursive relationships.
This communication helps the organization as a whole maintain the same vision of the product they are
producing and speeds up product refinement. With the reference architecture decomposed to the second
and third levels, which also defines the key information transferred between functions, an LLNL team

developing an LRU factory would have a clear and systematic way to meet stakeholder requirements.
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Figure 7: Functional decomposition of F.2 “Engineer Manufacture of LRU Products”
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Figure 8: Functional decomposition of F.2.2 “Define Production Process”

4 Evaluation of the Proposed Reference Architecture

There are several areas that the proposed NIF LRU factory reference architecture could improve.
This reference architecture has many interconnecting functions that require a large quantity of inputs. If
these functions are not closely managed by a project engineer, or someone completely dedicated to this
role, some functions or even the resulting product could underperform. Perhaps consolidating common
inputs or outputs that result in a data package would be more efficient and easier to track. Additionally,
F.4 “Produce LRU Product” does not currently have a quality control function. Although, the
manufacturing data package should include product test plans, there is no output from the “Perform Jobs”
function (Figure 15) that feeds into a quality control function. This could result in LRUs that are sent to

NIF that don’t meet requirements. Overall, this reference architecture gives users a clear baseline of how
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a NIF LRU factory system architecture should function. Some of these lower-level details should be left
to the user to define further.
5 Conclusion

In conclusion, the implementation of a reference architecture for NIF LRU refurbishment
factories is a critical step toward addressing the operational inefficiencies and inconsistent work flows
currently faced by LLNL LRU factories. By adopting a reference architecture that integrates technical
architecture, business architecture, and customer context, LLNL can enhance coordination across its
factories, improve product quality, and streamline workflows. The proposed reference architecture
presented in this paper was based on lessons learned from previous LLNL factory development projects
and principles from existing reference architecture models. The resulting reference architecture provides a
phased and scalable approach that can adapt to the evolving needs of the NIF facility. If this reference
architecture is put into practice, continuous evaluation and refinement will be needed to address new
challenges discovered during factory development projects and inform the next NIF LRU factory project.
Ultimately, the proposed reference architecture will be a valuable resource for NIF and the staff that work

so hard to maintain its world leading laser performance.
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6 Appendix: Further IDEF0 Functional Decomposition Diagrams

First Level Decomposition of F.0 “Realize LRU Products”
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Figure 9: First Level Functional Decomposition of F.0 “Realize LRU Products”
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Figure 10: Second level functional decomposition of F.2 “Engineer Manufacture of LRU Products”
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Figure 11: Third Level Functional Decomposition of F.2.2 “Define Production Processes”
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Figure 12: Third Level Functional Decomposition of F.2.3
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F.2.4 “Develop Implemenation Plan”
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Figure 13: Third Level Functional Decomposition of F.2.4 “Develop Implemenation Plan”
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Figure 14: Second level functional decomposition of F.3 “Provide Production Resources”
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Figure 15: Second level functional decomposition of F.4 “Produce LRU Products”
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Figure 16: Third Level Functional Decomposition of F.4.4 “Perform Jobs”
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