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Abstract

Photoelectrochemical cells (PECs) can utilize solar energy for water splitting to produce H» as a
clean fuel. The most critical components of a water-splitting PEC are semiconductor electrodes
(photoelectrodes) that absorb solar energy to generate photoexcited charge carriers and transport
them to the electrode/electrolyte interface for water reduction and oxidation reactions. While
efficient PEC hydrogen production has been successfully demonstrated on the laboratory scale,
the commercial viability of PECs depends critically on the cost of H> produced by the PECs, which
is affected by the cost of PEC construction. Therefore, identifying promising inexpensive
semiconductor electrodes is important. The goal of this project was to bring an advancement in the
synthesis and understanding of inexpensive polycrystalline photoelectrodes based on oxides.
Oxide-based semiconductors are inexpensive, easy to fabricate, and relatively more stable in
aqueous media compared to other types of semiconductors. This project developed new
electrodeposition methods to produce a variety of oxide-based semiconductor electrodes with
precisely controlled compositions and morphologies to enhance photon absorption, electron-hole
separation, and the use of electrons and holes for desired chemical reactions. The resulting high-
quality photoelectrodes were investigated to establish the structure-composition-morphology-
photoelectrochemical property relationships to identify the advantages and limitations of each
oxide semiconductor system.



Project Activities and Accomplishments

Solar water splitting using a photoelectrochemical cell (PEC) provides a viable option for
the sustainable and environmentally benign production of H, which can be used as a clean fuel.
The key components of a water splitting PEC are semiconductor electrodes (photoelectrodes) that
utilize the solar spectrum to generate photoexcited charge carriers and transport them to the
electrode/electrolyte interface for use in water reduction and oxidation reactions. Efficient
hydrogen production by a PEC has already been successfully demonstrated on the laboratory scale.
However, because the commercial viability of PECs depends critically on the cost of H> produced,
practical PEC development requires developing inexpensive and robust semiconductor electrodes
that can achieve a high solar-to-hydrogen efficiency at significantly reduced cost.

The goal of the project was to prepare and investigate oxide-based photoelectrodes for use
in PECs. Among various semiconductors that have been considered as photoelectrodes for use in
PECs, oxide-based photoanodes are particularly attractive because of their stability in aqueous
media in addition to inexpensive and facile processing compared to other types of semiconductors.
However, prior to this project, most oxides considered for solar water splitting were binary oxides
such as Ti0O,, ZnO, and Fe;0s, although there are numerous ternary oxides with potentially more
promising bandgap energies and band positions for solar water splitting. This was because it is not
easy to produce oxides with complex compositions as high-purity, high-quality photoelectrodes;
when ternary and quaternary oxides are synthesized, the chances for simpler binary oxides, which
are often thermodynamically more stable, to form as impurity phases are high. The formation of
these impurity phases and the resulting nonstoichiometry of the desired phase leads to poor
photocurrent and photovoltage performance of the sample. If these impurities and the
nonstoichiometry of the samples are not well characterized and no deliberate effort is made to
perfect the synthesis of these complex oxides, the true properties of these oxides cannot be
revealed. Based on the poor performances of improperly prepared samples, an incorrect evaluation
can be made, and further development of a potentially promising compound can often be
discouraged.

Another challenge in preparing oxide-based photoelectrodes is that their nano-scale
morphologies play a critical role in photocurrent generation. This is because charge transport in
oxide photoelectrodes is slow due to the more ionic nature of the metal ion-oxide bonding, which
results in considerable electron-hole recombination. To alleviate this issue, oxide photoelectrodes
must be prepared with appropriate nanostructures so that the distance the minority carriers must
travel to reach the semiconductor/water interface is shorter than their diffusion lengths.

In order to address these issues and produce compositionally more complex ternary oxides
as high-quality photoelectrodes with desired nanostructures, this project used solution-based
electrodeposition as the major synthesis tool. Through this project, numerous new electrochemical
reactions and deposition conditions were developed to grow ternary oxides directly from the
conducting substrate or deposit precursor materials on the conducting substrate that can be easily
converted to target ternary oxide photoelectrodes through simple post-deposition thermal and
chemical processes. During electrodeposition, deposition potential and current were used as
additional synthesis parameters to finely control the nucleation and growth processes of desired
materials, offering an exceptional level of morphology control (Figure 1). As a result,



photoelectrodes could be prepared with
various nanostructures that can enhance
electron-hole separation and therefore
photocurrent generation. Furthermore,
the solution-based electrodeposition
methods allowed for facile and uniform
composition tuning during the growth
of semiconductor electrodes through
doping and forming solid solutions,
which is critical for tuning the charge
transport properties of photoelectrodes.

Through the newly developed

clectrodeposition conditions, a variety Figure 1. ZnO electrodes prepared with various controlled

of n-type semicpnductors (e.g., BiVO4,  morphologies via electrodeposition-based synthesis.
CuWOsu, Bi2WOe, BixMo03012,

Cu11V6026, AgNbO3, BiFeOs, and Fe,TiOs) that can be used as photoanodes!3#3:8-17:22.25.27.30.32 g
p-type semiconductors (CuxO, CuO, CuFeO,, CuNb,Os CuBi>04, LaFeOs, and CaxFe>Os) that can
be used as photocathodes!->:6-11:12,14,18-21,23-24.26,30,32-33 \yere fabricated and investigated. The
morphologies and compositions of these compounds were varied to identify optimal morphologies
and compositions. Examples for composition tuning include Mo doping of BiVO4,® Mo and W
doping of Cu11VeOas,'” Ag doping of CuBi,04,'* Li doping of CuO,' and K doping of LaFeOs,?
all of which were performed to increase the majority carrier densities in the host photoelectrodes.
The examples of morphology tuning include nanostructure variation of CuB1,0O4 and ZnO using
the variation of deposition conditions.'*!> The resulting optimized photoelectrodes were
investigated to establish the structure-composition-morphology-photoelectrochemical property
relationships to evaluate the advantages and limitations of each oxide semiconductor system.

To aid the semiconductor electrodes in using photogenerated holes and electrons for
desired oxidation and reduction reactions, depositing catalysts on top of the semiconductor
electrodes is often needed (Figure 2a). Thus, this project also developed new
(photo)electrodeposition conditions to deposit catalysts.>?*3! Examples include MoS: to facilitate
the hydrogen evolution reaction and CoSb>Os and MnSb>Ogs to facilitate the oxygen evolution
reaction.”?® Semiconductor electrodes may also require buffer or protection layers to enhance
electron-hole separation or to enhance chemical and photo-electrochemical stabilities (Figure 2b-
¢). Thus, this project also
developed electro-deposition
conditions to uniformly deposit
buffer and protection layers on
the semiconductor electrodes.
Examples include depositing a
ZnFe;04 layer on a BiVOs4
photoanode to protect it in
basic media,” depositing a Figure 2. (a) An SEM image of BiVOs covered by an oxygen
TiO, layer to suppress evolution catalyst (FEOOH) layer, (b) a TEM image of BiVOs
photocorrosion of a CuxO covered by a ZnFe,Os protection layer, and (c) a TEM image of Cu,O
photocathaode,®® and wusing covered by a TiO; protection layer.




ZnO and Al-doped ZnO as a buffer layer in solar cells.!> For the deposition of catalyst, buffer, or
protection layers on top of semiconductor electrodes, it is critical that their deposition conditions
(e.g., potential, pH) are compatible with the underlying semiconductor electrodes, so as to not alter
their compositions and morphologies. Thus, depending on which semiconductor electrode was
used as the working electrode, the deposition conditions of the catalyst, buffer, or protection layers
were customized.

Our efforts resulted in the successful construction of multilayer photoelectrodes that can
enhance the overall performances of oxide-based semiconductor electrodes, which allowed us to
accurately assess which limitations of each system can be mitigated. The synthesis ability and
understanding we gained for producing and investigating oxide-based thin film electrodes
(semiconductors, catalysts, buffer and protection layers) through this project has advanced the
solar fuels field and broadly impacted various energy and catalysis fields requiring thin film-type
oxide electrodes.
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