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Abstract 
 
Photoelectrochemical cells (PECs) can utilize solar energy for water splitting to produce H2 as a 
clean fuel. The most critical components of a water-splitting PEC are semiconductor electrodes 
(photoelectrodes) that absorb solar energy to generate photoexcited charge carriers and transport 
them to the electrode/electrolyte interface for water reduction and oxidation reactions. While 
efficient PEC hydrogen production has been successfully demonstrated on the laboratory scale, 
the commercial viability of PECs depends critically on the cost of H2 produced by the PECs, which 
is affected by the cost of PEC construction. Therefore, identifying promising inexpensive 
semiconductor electrodes is important. The goal of this project was to bring an advancement in the 
synthesis and understanding of inexpensive polycrystalline photoelectrodes based on oxides. 
Oxide-based semiconductors are inexpensive, easy to fabricate, and relatively more stable in 
aqueous media compared to other types of semiconductors. This project developed new 
electrodeposition methods to produce a variety of oxide-based semiconductor electrodes with 
precisely controlled compositions and morphologies to enhance photon absorption, electron-hole 
separation, and the use of electrons and holes for desired chemical reactions. The resulting high-
quality photoelectrodes were investigated to establish the structure-composition-morphology-
photoelectrochemical property relationships to identify the advantages and limitations of each 
oxide semiconductor system.   
 
  



Project Activities and Accomplishments  

Solar water splitting using a photoelectrochemical cell (PEC) provides a viable option for 
the sustainable and environmentally benign production of H2, which can be used as a clean fuel. 
The key components of a water splitting PEC are semiconductor electrodes (photoelectrodes) that 
utilize the solar spectrum to generate photoexcited charge carriers and transport them to the 
electrode/electrolyte interface for use in water reduction and oxidation reactions. Efficient 
hydrogen production by a PEC has already been successfully demonstrated on the laboratory scale. 
However, because the commercial viability of PECs depends critically on the cost of H2 produced, 
practical PEC development requires developing inexpensive and robust semiconductor electrodes 
that can achieve a high solar-to-hydrogen efficiency at significantly reduced cost.  

 The goal of the project was to prepare and investigate oxide-based photoelectrodes for use 
in PECs. Among various semiconductors that have been considered as photoelectrodes for use in 
PECs, oxide-based photoanodes are particularly attractive because of their stability in aqueous 
media in addition to inexpensive and facile processing compared to other types of semiconductors. 
However, prior to this project, most oxides considered for solar water splitting were binary oxides 
such as TiO2, ZnO, and Fe2O3, although there are numerous ternary oxides with potentially more 
promising bandgap energies and band positions for solar water splitting. This was because it is not 
easy to produce oxides with complex compositions as high-purity, high-quality photoelectrodes; 
when ternary and quaternary oxides are synthesized, the chances for simpler binary oxides, which 
are often thermodynamically more stable, to form as impurity phases are high. The formation of 
these impurity phases and the resulting nonstoichiometry of the desired phase leads to poor 
photocurrent and photovoltage performance of the sample. If these impurities and the 
nonstoichiometry of the samples are not well characterized and no deliberate effort is made to 
perfect the synthesis of these complex oxides, the true properties of these oxides cannot be 
revealed. Based on the poor performances of improperly prepared samples, an incorrect evaluation 
can be made, and further development of a potentially promising compound can often be 
discouraged. 
 Another challenge in preparing oxide-based photoelectrodes is that their nano-scale 
morphologies play a critical role in photocurrent generation. This is because charge transport in 
oxide photoelectrodes is slow due to the more ionic nature of the metal ion-oxide bonding, which 
results in considerable electron-hole recombination. To alleviate this issue, oxide photoelectrodes 
must be prepared with appropriate nanostructures so that the distance the minority carriers must 
travel to reach the semiconductor/water interface is shorter than their diffusion lengths.  

In order to address these issues and produce compositionally more complex ternary oxides 
as high-quality photoelectrodes with desired nanostructures, this project used solution-based 
electrodeposition as the major synthesis tool. Through this project, numerous new electrochemical 
reactions and deposition conditions were developed to grow ternary oxides directly from the 
conducting substrate or deposit precursor materials on the conducting substrate that can be easily 
converted to target ternary oxide photoelectrodes through simple post-deposition thermal and 
chemical processes. During electrodeposition, deposition potential and current were used as 
additional synthesis parameters to finely control the nucleation and growth processes of desired 
materials, offering an exceptional level of morphology control (Figure 1). As a result, 



photoelectrodes could be prepared with 
various nanostructures that can enhance 
electron-hole separation and therefore 
photocurrent generation. Furthermore, 
the solution-based electrodeposition 
methods allowed for facile and uniform 
composition tuning during the growth 
of semiconductor electrodes through 
doping and forming solid solutions, 
which is critical for tuning the charge 
transport properties of photoelectrodes. 

 Through the newly developed 
electrodeposition conditions, a variety 
of n-type semiconductors (e.g., BiVO4, 
CuWO4, Bi2WO6, Bi2Mo3O12, 
Cu11V6O26, AgNbO3, BiFeO3, and Fe2TiO5) that can be used as photoanodes1,3,4,5,8-17,22,25,27,30,32 and 
p-type semiconductors (Cu2O, CuO, CuFeO2, CuNb2O6 CuBi2O4, LaFeO3, and Ca2Fe2O5) that can 
be used as photocathodes1-2,6,11,12,14,18-21,23-24,26,30,32-33 were fabricated and investigated. The 
morphologies and compositions of these compounds were varied to identify optimal morphologies 
and compositions. Examples for composition tuning include Mo doping of BiVO4,8 Mo and W 
doping of Cu11V6O26,17 Ag doping of CuBi2O4,14 Li doping of CuO,19 and K doping of LaFeO3,23 
all of which were performed to increase the majority carrier densities in the host photoelectrodes. 
The examples of morphology tuning include nanostructure variation of CuBi2O4 and ZnO using 
the variation of deposition conditions.14,15 The resulting optimized photoelectrodes were 
investigated to establish the structure-composition-morphology-photoelectrochemical property 
relationships to evaluate the advantages and limitations of each oxide semiconductor system.   

To aid the semiconductor electrodes in using photogenerated holes and electrons for 
desired oxidation and reduction reactions, depositing catalysts on top of the semiconductor 
electrodes is often needed (Figure 2a). Thus, this project also developed new 
(photo)electrodeposition conditions to deposit catalysts.3,29,31 Examples include MoS2 to facilitate 
the hydrogen evolution reaction and CoSb2O6 and MnSb2O6 to facilitate the oxygen evolution 
reaction.7,28 Semiconductor electrodes may also require buffer or protection layers to enhance 
electron-hole separation or to enhance chemical and photo-electrochemical stabilities (Figure 2b-
c). Thus, this project also 
developed electro-deposition 
conditions to uniformly deposit 
buffer and protection layers on 
the semiconductor electrodes. 
Examples include depositing a 
ZnFe2O4 layer on a BiVO4 
photoanode to protect it in 
basic media,13 depositing a 
TiO2 layer to suppress 
photocorrosion of a Cu2O 
photocathaode,33 and using 

 

Figure 1. ZnO electrodes prepared with various controlled 
morphologies via electrodeposition-based synthesis.  

 

Figure 2. (a) An SEM image of BiVO4 covered by an oxygen 
evolution catalyst (FeOOH) layer, (b) a TEM image of BiVO4 
covered by a ZnFe2O4 protection layer, and (c) a TEM image of Cu2O 
covered by a TiO2 protection layer.  



ZnO and Al-doped ZnO as a buffer layer in solar cells.15 For the deposition of catalyst, buffer, or 
protection layers on top of semiconductor electrodes, it is critical that their deposition conditions 
(e.g., potential, pH) are compatible with the underlying semiconductor electrodes, so as to not alter 
their compositions and morphologies. Thus, depending on which semiconductor electrode was 
used as the working electrode, the deposition conditions of the catalyst, buffer, or protection layers 
were customized.  

Our efforts resulted in the successful construction of multilayer photoelectrodes that can 
enhance the overall performances of oxide-based semiconductor electrodes, which allowed us to 
accurately assess which limitations of each system can be mitigated. The synthesis ability and 
understanding we gained for producing and investigating oxide-based thin film electrodes 
(semiconductors, catalysts, buffer and protection layers) through this project has advanced the 
solar fuels field and broadly impacted various energy and catalysis fields requiring thin film-type 
oxide electrodes.  
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