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ABSTRACT 
 

Hybrid metal halides, particularly main group halide perovskites, are a unique class of materials 

that offer exceptional optoelectronic properties along with a remarkable materials design space. 

Initial research on this class of materials was driven by the ability of the prototype hybrid 3D 

perovskite-structured compound methylammonium lead iodide to function as the active layer in 

thin film solar cells. It is now known that this class of materials comprise a large family with 

tunable band gaps, relatively high charge carrier mobilities in both single crystal and 

polycrystalline forms, and relatively low concentrations of (deleterious) electrically active states 

within the band gap. Beyond applications in solar cells, the potential of these materials has been 

extended to emi_ers in light emi_ing diodes, and active components of radiation detectors. 

Complementing new functionality, the design space for hybrid metal halides continues to 

increase with discovery of new structural motifs.  

In this project, the combination of organic and inorganic functionalities has been 

employed to open pathways to the design and synthesis new, functional hybrid metal halides. 

Beyond the simple perovskites, Ruddlesden-Popper and Dion-Jacobsen compounds, and other 

variants, such as the newly advanced “hollow” perovskites have been studied. The materials have 

provided routes to understanding the unique electronic properties of hybrid metal halides 

because of their natural quantum well structures as well as other means of controlling band gaps 

and band dispersions. Understanding these materials, including the design rules for their 

formation, their structures and compositions in bulk and in thin films form, and the role of local 

(non-crystallographic) structure has an important aspect of this endeavor. The goal of advancing 

new materials and new fundamental understanding within this deceptively simple, yet 

fascinating class of compounds, so richly endowed with interesting and useful functionality, has 

been fulfilled. 

EXECUTIVE SUMMARY 
 

Hybrid metal halide perovskites based around main group elements are a unique class of 

materials that have offered exceptional optoelectronic properties along with a remarkable 

materials design space The initial study of this class of materials was driven by the performance 

of methylammonium (MA) lead iodide CH3NH3PbI3, also referred to as MAPbI3 in thin film solar 

cells. It is now known that MAPbI3 and its alloys with other halides and A-site cations comprise 

a set of materials with tunable band gaps, relatively high charge carrier mobilities in both single 

crystal and polycrystalline forms, and relatively low concentrations of electrically active states 

within the band gap. The potential of these materials has been demonstrated in applications 

ranging from solar cells to light emi_ing diodes, to radiation detectors. The design space for 

hybrid metal halides has continued to expand with discovery of new structural motifs. The 

combination of organic and inorganic functionalities has opened pathways to design and to 

synthesize new hybrid metal halides. For example, Ruddlesden-Popper (RP) and Dion-Jacobsen 

(DJ) phases have provided a route to understand the unique electronic properties of metal halides 

because of their natural quantum well structures. Emerging materials, such as hollow 

perovskites, have challenged conventional rules of geometric tolerances for incorporation of 

organic species leading to optoelectronic behavior that is intermediate to 3D and 2D phases. 
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 In this research context, already heavily contributed to by the PIs of this project, the 

following questions were addressed in the work that was proposed: (i) Can we design materials 

that bridge 3D and quantum confined optoelectronic behavior? (ii) How do we properly 

characterize materials that bridge 

nanoparticles and layered perovskites? 

(iii) How do misfi_ing organic cations 

impact structure, dimensionality, and 

property? (iv) What is the role of 

exposure to light in phase stability and 

structure? (v) How do the relatively soft 

la_ices of hybrid metal halides respond to 

mechanical strain and how can strain be 

used to control their physical properties? 

(vi) How does going beyond Pb2+ and 

neighboring central ions to transition 

elements enhance functionality?  

The anticipated goals and outcomes 

of what was proposed included to: 

(i) Expand synthesis and chemistry to 

expand the hybrid halide materials 

research domain. (ii) Develop a portfolio 

of materials which display the greater 

stability of 2D metal halides with the 

desired electronic performance of 3D 

perovskites. (iii) Help to advance control 

of functional metal halides by 

understanding the growth processes and 

performance in polycrystalline films. 

(vi) Probe new functionality based on 

transition metal centers. (v) 

Synergistically employ electronic 

structure theory to understand structural and functional behavior. It was believed that addressing 

the questions posed through the systematic development of the proposed goals would result in 

the following: (i) An ability to carefully control chemistry and structure in these materials. (ii) The 

ability to develop new materials for lighting and other optoelectronic applications. (iii) The ability 

to develop new classes of hybrid magnetic halides.  

The collaboration project has been highly productive and impactful. In terms of public 

cations, this is captured in the Web of Science results presented in figure 1. As many as 147 

archival journal publications acknowledge this project as obtained from a Web-of-Science search 

performed end-February 2025. Approximately between half and two-thirds of these articles are 

solely due to this project with the remaining emerging from collaborations, often though the 

sharing of the unique samples developed within this collaboration.  

 
Figure 1. Results of a Web of Science analysis of 
archival journal publications arising from this project 
(data downloaded late February 2025). 
 

 
Figure 2. Graphical representation of the top 5 journals 
in which publications acknowledging SC-0012541 have 
appeared. 



DE–SC0012541 FINAL TECHNICAL REPORT, 2025 

 

 4/9 

The articles have been published in reputable journals; for example, 28 of the articles are 

in the Journal of the American Chemical Society, the large majority of which were led by graduate 

students or postdoctoral researchers supported by the project (figure 2). In terms of training 

personnel, the project has involved exceptional early career researchers some of whom are 

already establishing strong, independent careers in academia, industry, or National Labs. Others 

are well on their way to doing so. The project has had the good fortune to leverage several 

fellowship-holding graduate students and self-funded postdoctoral researchers, which allowing 

more early career researchers to be involved in the work than would otherwise have been 

possible. 

While it is impractical in a brief report to summarize all the accomplishments of this 

project, some key recent accomplishments are presented here. The exemplary studies presented 

here are representative of the questions addressed and they closely hew to the anticipated goals 

and outcomes that were originally proposed. 

 

DESCRIPTION OF SELECT OUTCOMES (FOCUS ON THE LAST THREE YEARS OF THE PROJECT) 
 

Layered Hybrid Lead Iodides with Short Interlayer Distances [1]: Layered hybrid perovskites 

comprise modular components that are individually highly tunable, resulting in materials with a 

range of structures and properties. In these layered materials, the usual assumption is of two-

dimensional electronic behavior, because of the relatively large separations between the inorganic 

layers. Within this collaboration, two layered, hybrid lead iodide perovskites have been reported 

that possess unusually short interlayer distances: (IPA)2(MA)Pb2I7 and (ACA)(MA)PbI4 (IPA = 

isopropylammonium, MA = methylammonium, ACA = acetamidinium). These compounds, 

prepared from mixing small organic cations, crystallize in a Ruddlesden–Popper type structure, 

or in a previously reported (by some of us) structure type  
with alternating cations in the 

interlayer space, respectively. The 

crystal structures of these 

compounds were established and 

have been compared in detail with 

related structures, with the 

electronic structures analyzed using 

density functional theory-based 

calculations suggesting significant 

dispersion even between the layers, 

due to the short non-bonded 

contacts between the iodides (figure 3). Time-resolved microwave conductivity measurements 

were employed to provide insight into charge transport in these compounds. This work has 

helped bridge the world of 3D halide perovskites with the world of the more usual 2D 

Ruddlesden–Popper or Dion-Jacobsen compounds whose electronic structures show li_le or no 

dispersion perpendicular to the inorganic slabs. 

 

 

 
Figure 3. Crystal structure of (ACA)(MA)PbI4 with very short 
non-bonded contacts between the I– in the perovskite layers. 
(b) Band structure displaying significant band dispersion 
(covalency) from inter-slab hopping. 
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Defect Emission from “Hollow” Perovskites [2]: The prototypical hybrid halide perovskites 

APbX3 suffer from poor stability under ambient conditions of light, oxygen, and moisture. It was 

shown within this collaborative effort that when ethylenediamine is one of the amines 

incorporated into the preparation of the 3D hybrid halide perovskites, so-called “hollow” 

perovskites emerge, with greatly enhanced stability to the ambient atmosphere and to light. In 

these materials, some of the extra-large organic cation (or di-cation) extends itself beyond the 

usual A site in the unit cell, to result in vacant M = Sn or Pb sites, and hence the term “hollow”. 

During this project, a new family of 3D highly defective yet 

crystalline “hollow” bromide perovskites with general formula 

(FA)1–x(en)xPb1–0.7xBr3–0.4x where FA = formamidinium, en = 

ethylenediammonium, x ranging from 0.00 to 0.42 were prepared 

and characterized using a plethora of techniques. Pair distribution 

function analysis of synchrotron X-ray sca_ering shed light on the 

local structural coherence, revealing a wide distribution of Pb–Pb 

distances in the crystal structure because of the Pb/Br-deficient 

nature and en inclusion. A depiction of the structure that is 

consistent with NMR and PDF studies is displayed in figure 4. By 

manipulating the number of Pb/Br vacancies, it was possible to 

finely tune the optical properties resulting in blue shifting the 

band gap from 2.20 eV all the way to 2.60 eV for the x = 0.42 

sample. An unexpected outcome was that at x > 0.33, the material 

exhibited strong broad light emission with 1 % 

photoluminescence quantum yield (PLQY) that was maintained 

after exposure to air for more than a year. This is the first example 

of strong broad light emission from a 3D hybrid halide perovskite, 

demonstrating that judicious defect engineering is an excellent 

tool for customizing the optical properties of these semiconductors. This work also demonstrates 

the defect tolerant nature of engineered hybrid halide perovskites, making these materials 

appropriate for use in applications such as hard radiation resilience. Other contributions on 

``hollow'' perovskites that have emerged during this reporting period include work on ion 

transport in these materials and a contribution on their thermochemistry where it has been 

suggested that they are entropy stabilized. 
 

Halide Perovskites and Variants with Transition Metals [3]: During the most recent renewal of 

this project, a proposed area of research was the expansion of the portfolio of materials to develop 

new compounds containing transition metals, including open shell (i.e., magnetic) 4d and 5d 

transition metals. Within this research domain, inorganic and hybrid double perovskites with 

Ru3+ and vacancy-ordered double perovskites with Ru4+ have been prepared and characterized, 

including their structure, optical, and magnetic properties. A new class of compounds for these 

metals: layered double perovskites have also been prepared. Hybrid layered double perovskite 

halides comprise hexa-coordinated 1+ and 3+ metals in the octahedral sites within perovskite 

layers and organic amine cations between the layers. Progress on such materials had hitherto 

been limited to compounds containing main group 3+ ions isoelectronic with Pb2+ (such as Sb3+ 

 
Figure 4. (a) Schematic 
depiction of the local and 
average structure of “hollow” 
(FA)1–x(en)xPb1–0.7xBr3–0.4x 
consistent with a range of 
structural probes, and (b) 
luminescence as a function 
of temperature of a “hollow” 
lead bromide perovskite. 
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and Bi3+). During this past reporting period eight HLDP halides from the A2MIMIIIX8 family, where 

A = paraphenylenediammonium (PPDA), 1,4-butanediammonium (1,4-BDA), or 1,3-

propanediammonium (1,3-PDA); MI = Cu or Ag; MIII = Ru or Mo; X = Cl or Br have been prepared 

and characterized. Figure 5 shows a scheme of some of the new compounds prepared and 

characterized. The optical band gaps, which lie in the range 1.55 eV to 2.05 eV, are tunable 

according to the layer composition, but are largely independent of the spacer. Magnetic 

measurements carried out for (PPDA)2AgRuCl8 and (PPDA)2AgMoCl8 showed no obvious 

evidence of a magnetic ordering transition. The layered double perovskite structure is perhaps 

more widespread, particularly when oxides are considered, than has hitherto been appreciated 

and a recent review from some of the team has emphasized this point.  
 

 

 
Figure 5. Exemplary Dion-Jacobsen type hybrid layered 
double perovskite compounds prepared and studied here. 
The study also encompassed Ruddlesden-Popper variants. 

Figure 6. Straining thin films of MAPbI3 
deposited on flexible substrates results in 
the formation of twin domains due to the 
ferroelastic nature of the material, 
indicated schematically on the right. 

 

Ferroelastic Behavior in Films [4]: While thin films of active materials are required for device 

behavior, it has now been widely appreciated that growing films of hybrid halide perovskites can 

be challenging, including retaining the composition of bulk crystals, and additionally, new 

aspects of behavior can be observed in thin films. For example, mechanical strain can modify the 

structural and electronic properties of methylammonium lead iodide MAPbI3. The consequences 

of ferroelastic hysteresis, which involves the retention of structural memory upon cycles of 

deformation, have been studied here for polycrystalline thin films of MAPbI3. Repeatedly bent 

films were examined using grazing incidence wide-angle X-ray sca_ering to quantitatively 

characterize the strains and proportions of twin domains as seen in figure 6. Approximate 

locations for the coercive stress and saturation on the ferroelastic stress–strain curve have been 

identified, and changes to the stress–strain curve with cyclic strain are characterized. The 

presence of specific twin domains is found to correlate to previously reported strain and defect 

heterogeneity in MAPbI3 films.  Domains from differently strained twin sets interact with each 

other. Long-term stability testing reveals that the domain walls are highly immobile over 

extended periods. Nucleation of new domain walls occurs for specific mechanical strains and 

correlates closely with degradation. The results help to explain the behavior of ion migration, 

degradation rate, and photoluminescence in thin films under compressive and tensile strain. 
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Hybrid Perovskite Synthesis from Solution: Layered or Nano? [5]: Controlling the structure of 

layered hybrid metal halide perovskites, such as the Ruddlesden–Popper (R-P) phases, is 

challenging because of their tendency to form mixtures of varying composition. Colloidal growth 

techniques, such as anti-solvent precipitation, form dispersions with properties that match bulk 

layered R-P phases, but controlling the composition of these particles remains an open problem. 

The microstructure of particles of R-P phases of methylammonium lead iodide prepared by anti-

solvent precipitation from ternary mixtures of alkylammonium cations have been studied using 

a range of techniques. In these systems, one cation can form perovskite phases (CH3NH3+) and 

the other two promote layered structures as spacers (e.g., C4H9NH3+ and C12H25NH3+). It has been 

found that the alkylammonium spacers pack with constant methylene density in the R-P 

interlayer and exclude interlayer solvent in dispersed colloids, regardless of length or branching. 

Using this result, the competition between cations that act as spacers between layers, or as grain-

terminating ligands, are demonstrated to determine the colloidal microstructure of layered R-P 

crystallites in solution. Optical measurements reveal that quantum well dimensions can be tuned 

by engineering the ternary cation composition.  
Transmission synchrotron wide-angle X-ray 

sca_ering and small-angle neutron sca_ering 

(figure 7) reveal changes in the structure of colloids 

in solvent and after deposition into thin films. 

Specifically, spacers are found to alloy between R-P 

layers if they share common steric arrangements but 

tend to segregate into polydisperse R-P phases if 

they do not mix. The structure of colloidal 2D 

perovskites appears to be determined by a sensitive 

balance between spacer–spacer and spacer–solvent 

interactions, and future synthetic progress for 

solution-processed 2D perovskites requires a careful 

accounting of these phenomena. More generally, the 

interlayer region of layered 2D perovskites is 

responsive to solvent-mediated mixing behavior 

among different insulating cations. These results 

suggest that the molecular design of spacer cations 

and solution processing techniques can be used to 

engineer the growth of layered perovskites. 

 

On the Role of Lone Pairs in Hybrid Halide Perovskites [6,7]: The presence of ns2 lone pair 

electrons on divalent Sn (n = 5) and Pb (n = 6) when these cations occupy the M site in all-inorganic 

and hybrid halide AMX3 perovskites distinguishes these materials from the familiar 

semiconductors such as the diamondoid (zinc blende, wurRite, chalcopyrite, …) semiconductors 

traditionally employed in optoelectronics. However, their role in the perovskites has not been 

unambiguously established.  These electrons are stereochemically active, albeit often in a hidden 

fashion, resulting in unusual and highly anharmonic la_ice dynamics that are linked to many of 

the special optoelectronic properties displayed by this material class. Some lone pair containing 

 
Figure 7. Small-angle neutron scattering 
patterns from colloidal dispersions in 
deuterated toluene prepared with different 
precursors and ligands. The inset shows 
the low–q region of the same data. 
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molecular and extended structures from the perspective are displayed in figure 8. In a perspective 

article published during this collaboration, the connections between this atypical electronic 

configuration and the electronic structure and la_ice dynamics of compounds have been 

examined. The lone pair can potentially lead to favorable bandwidths and band alignments,  

mobile holes, large ionic dielectric response, 

large positive thermal expansion, and even 

possibly defect-tolerant electronic transport. 

Taken together, the evidence suggests that other 

high-performing semiconductors may be found 

among compounds with lone pair-bearing 

cations in high symmetry environments and a 

high degree of connectivity between atoms.  
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Figure 8. Molecular and crystal structures of 
water, ammonia, litharge PbO, rock-salt PbS, 
and perovskites CsGeI3 and CsSnBr3 (both at 
room temperature). Note that lone pairs in PbS 
and CsSnBr3 are obscured by the symmetrical 
coordination polyhedra. 
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